Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes
Article Dans Une Revue Algorithms Année : 2024

Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy

Stefano Berrone
  • Fonction : Auteur
  • PersonId : 1435695
Moreno Pintore

Résumé

In this paper, we introduce a Meshfree Variational-Physics-Informed Neural Network. It is a Variational-Physics-Informed Neural Network that does not require the generation of the triangulation of the entire domain and that can be trained with an adaptive set of test functions. In order to generate the test space, we exploit an a posteriori error indicator and add test functions only where the error is higher. Four training strategies are proposed and compared. Numerical results show that the accuracy is higher than the one of a Variational-Physics-Informed Neural Network trained with the same number of test functions but defined on a quasi-uniform mesh.
Fichier principal
Vignette du fichier
algorithms-17-00415.pdf (7.31 Mo) Télécharger le fichier
Origine Publication financée par une institution
licence

Dates et versions

hal-04765033 , version 1 (04-11-2024)

Licence

Identifiants

Citer

Stefano Berrone, Moreno Pintore. Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy. Algorithms, 2024, 17 (9), pp.415. ⟨10.3390/a17090415⟩. ⟨hal-04765033⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More