Pré-Publication, Document De Travail Année : 2025

Recursive decoding of binary rank Reed-Muller codes and Plotkin construction for matrix codes

Résumé

We give a recursive decoding algorithm of the rank metric Reed-Muller codes introduced by Augot, Couvreur, Lavauzelle and Neri in 2021 for the binary case, i.e., $G = (\mathbb{Z}/{2\mathbb{Z}})^m$. In a broad range of parameters, this recursive decoding algorithm has better complexity compared to a recently proposed decoding algorithm based on Dickson matrices. Imitating the recursive structure, we introduce a Plotkin-like construction of matrix rank metric codes over finite fields and provide a decoding algorithm associated to this construction.
Fichier principal
Vignette du fichier
ISIT_Submitted_Version.pdf (321.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04915230 , version 1 (27-01-2025)

Licence

Identifiants

  • HAL Id : hal-04915230 , version 1

Citer

Alain Couvreur, Rakhi Pratihar. Recursive decoding of binary rank Reed-Muller codes and Plotkin construction for matrix codes. 2025. ⟨hal-04915230⟩
0 Consultations
0 Téléchargements

Partager

More