
HAL Id: irsn-00196663
https://irsn.hal.science/irsn-00196663v1

Submitted on 13 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NUMERICAL SENSITIVITY AND EFFICIENCY IN
THE TREATMENT OF EPISTEMIC AND

ALEATORY UNCERTAINTY
Eric Chojnacki, Jean Baccou, Sébastien Destercke

To cite this version:
Eric Chojnacki, Jean Baccou, Sébastien Destercke. NUMERICAL SENSITIVITY AND EFFICIENCY
IN THE TREATMENT OF EPISTEMIC AND ALEATORY UNCERTAINTY. Fifth International
Conference on Sensitivity Analysis of Model Output, 2007, Budapest, Hungary. �irsn-00196663�

https://irsn.hal.science/irsn-00196663v1
https://hal.archives-ouvertes.fr


NUMERICAL SENSITIVITY AND EFFICIENCY IN THE TREATMENT OF 
EPISTEMIC AND ALEATORY UNCERTAINTY 

 
E. Chojnacki *, J. Baccou, S. Destercke 

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DPAM, SEMIC, LIMSI, Cadarache, France 
eric.chojnacki@irsn.fr 

 
1. Introduction 

 
Nowadays, the need to treat both epistemic and aleatory uncertainty in a unified framework is well 

recognized [1]. One method to do so is to mix probabilistic convolution (for aleatory uncertainty) and fuzzy 
calculus (for epistemic uncertainty). Existing propositions either concern simple models [2] or are 
computationally very costly [3] (a luxury not always affordable, especially in nuclear safety, where models can 
be very complex). Here, we propose a numerical treatment of such methods, based on Monte-Carlo sampling 
technique, which greatly reduces the computational costs and can be applied to complex models. Moreover, 
using well-known results from order statistics [4], we propose to integrate the notion of numerical accuracy to 
our results. Our proposition mainly consists in setting some decision step before the propagation is done, rather 
than after it has been done. Section 2 recalls theoretical basis of the propagation technique used here and 
discusses previous practical solutions proposed to put this method in practice. Section 3 explains our 
propagating method (called the RAndom FUzzy method, or RaFu) and how it is applied. The RaFu method, 
implemented in SUNSET software for uncertainty analysis, is currently used and developed at IRSN 
 

2. State of the art 
 
Let us consider a set of K parameters X1,…,XK tainted with aleatory uncertainty (i.e. Xi i=1,…,K takes a  

random value and is modelled by a probability distribution pi, or equivalently by a cumulative distribution Fi), 
and a set of L parameters XK+1,…,XK+L tainted with epistemic uncertainty (i.e. Xi i=K+1,…,K+L has a 
deterministic value which is imprecisely known). Let M(X1,…,XK, XK+1,…,XK+L) be the mathematical model of 
interest depending on our K+L uncertain parameters. 

The aleatory uncertainty of a parameter X is faithfully modelled by a probability distribution p. Epistemic 
uncertainty, on its side, is more faithfully modelled by intervals encompassing the imprecisely known true value 
of a parameter. Nevertheless, we often have more information than just a minimal and a maximal values (e.g. an 
expert can give intervals with different confidence levels). Possibility distributions are mappings π : ℝ  [0,1] 
that can be seen as a collection of nested confidence intervals (thus extending the notion of intervals), which are 
the α-cuts [xα,xα] = {x, π (x) ≥ α } of the distribution π. The degree of confidence that the interval [xα,xα] 
contains the true value of the parameter X is then 1- α. Thus, the K first parameters of the model M are modelled 
by probability distributions pi, while the last L are modelled by possibility distributions πi 

Parameters are then propagated through the model. Guyonnet’s proposition [5] (which makes no 
assumption about the complexity of the model) is to first propagate the K first parameters through usual Monte-
Carlo simulation, thus getting N probabilistic samples (eventually integrating some information about 
correlation by usual techniques [6]), and then to propagate the L last parameters by using fuzzy extension 
principle for each N-uple. By using the fact that the extension principle is equivalent to make an interval 
computation for each α-cut, he proposes to approximate the resulting fuzzy number by making computations 
over a limited number of α-cuts. He then gets a collection of N fuzzy numbers Mπi, each of them occurring with 
probability 1/N. To each α-cut of the random fuzzy number Mπ corresponds a collection of N intervals Mπi

α = 
[Mπi,inf

α
 , Mπi,sup

α], from which can be built two cumulated distributions [Fα,Fα]. To build a summarized 
representation, Baudrit et al. [3] propose a post-processing that consists in taking the mean of the cumulated 
distributions [Fα,Fα], while Ferson and Ginzburg [2] propose to take the double pair [F0,F0] and [F1,F1]. In the 
two propositions, authors suppose that the fuzzy random number is built before giving one of these two 
representations. This supposition is computationally costly. For example, let us suppose that 100 samplings are 
done on the K first parameters, and that for each of them, the corresponding fuzzy number is approximated by 
taking twenty α-cuts (α = 0,0.05,…0.95,1). 2100 interval computations are then needed to build the final result.  

In some applications, assuming one can afford so much computations is clearly unrealistic. Moreover, 
although it is proposed in [2] and [3,5] to use numerical sampling for complex models, the question of 
numerical accuracy is not considered in any of them. This is why we propose a method where numerical 
accuracy is integrated and where the decision step is set before the propagation (thus reducing computational 
cost). Let us note that the two post-processing methods mentioned above can be found back with our 
propagating method. 

 
 



3. The Random Fuzzy (RaFu) method 
 

The RaFu method uses the same theoretical framework as the one recalled in section 2. It is designed so that 
both epistemic and stochastic uncertainties are simultaneously sampled and propagated through the model, with 
the aim of building a given response. The main originality of the RaFu method is that this response is pre-
defined by a triplet of parameters (γS,γE ,γA)  specified  by a decision maker (DM) : 

• Parameter γS corresponds to the statistical quantity chosen for modelling the stochastic uncertainty of 
the response, 

• Similarly, parameter γE  corresponds to the fuzzy quantity used for modelling the epistemic uncertainty 
of the response, 

• Finally, parameter γA measures the desired numerical accuracy on the final result. 
According to the DM values for (γS,γE ,γA), the RaFu method then determines the minimal sample size and 

the nature of the required sampling to build the wished response. Number of calculations is thus reduced to its 
minimal number, in accordance with the DM choice. Moreover, computation cost can be easily evaluated, 
allowing the DM to eventually revise its choices before uncertainty propagation. For example, if the DM want to 
have an upper limit of the response 95% percentile, to be hyper-cautious about epistemic uncertainty (i.e. 
concentrate on α-cuts [x0,x0]) and to have a numerical certainty of 99% to cover the true value, he or she 
chooses the triplet (γS,γE ,γA)=(0.95,0,0.99). By using results from order statistics [4] (an use often quoted as 
Wilks formula [7]), the RaFu method derives the minimal sampling size to satisfy the DM’s choice (in our 
example, 90 calculations) and the nature of this sampling. Let us note that parameters (γS,γE ,γA) are not 
forcefully numbers (i.e. γE can be “every α-cut, from 0 to 1”). 

It is interesting to note that the post-processing methods proposed in [2] and [3] can both be translated in 
term of a decision on parameter γE. The Post-processing of Baudrit et al. [3] can be interpreted as “I want the 
mean pair of  cumulated distribution taken over every confidence degree (i.e. α-cut)  of epistemic uncertainty”. 
The proposal from Ferson and Ginzburg [2] can be translated by “I want the most optimistic and the most 
pessimistic pair of cumulated distributions”.  

Let us get back to the example given in the previous section. With the RaFu method, knowing the desired 
final quantity before propagation allows to reduce computations from 2100 to 100 in the case of Baudrit et al. 
method (100 samples are made, and one random α-cut is chosen each time. This randomised α-cut insures us 
that we converge to the mean, without having to make the propagation for 21 α-cuts each time). In the same 
way, Ferson and Ginzburg’s result can be obtained by reducing computations from 2100 to 200 (here, 2x100 
computations are required, one set of 100 calculations for a fixed α-cut of level 0, and another one for a level of 
1). Detailed algorithm and convergence proof will be provided in the full length paper. 
 

4. Conclusions 
 
Mixing fuzzy calculus with probabilistic propagation to get fuzzy random variable allow one to take into 

account both aleatory and epistemic uncertainties. A limitation of such methods is often the high computational 
complexity, which, according to us, is not always justified in practice. Thus, we propose a method (the RaFu 
method) that brings forward some decision step and can greatly increase numerical efficiency. The final results 
of usual post-processing methods can be found back with the RaFu method, as well as many other possible 
methods. Finally, we have proposed to add considerations about numerical accuracy in the process, an important 
point in sampling processes that is, to our knowledge, almost never mentioned in works trying to cope both with 
epistemic and aleatory uncertainties. 
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