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UNIFYING PRACTICAL UNCERTAINTY

REPRESENTATIONS: I. GENERALIZED P-BOXES

SÉBASTIEN DESTERCKE, DIDIER DUBOIS, AND ERIC CHOJNACKI

Abstract. There exist several simple representations of uncer-
tainty that are easier to handle than more general ones. Among
them are random sets, possibility distributions, probability inter-
vals, and more recently Ferson’s p-boxes and Neumaier’s clouds.
Both for theoretical and practical considerations, it is very useful
to know whether one representation is equivalent to or can be ap-
proximated by other ones. In this paper, we define a generalized
form of usual p-boxes. These generalized p-boxes have interest-
ing connections with other previously known representations. In
particular, we show that they are equivalent to pairs of possibil-
ity distributions, and that they are special kinds of random sets.
They are also the missing link between p-boxes and clouds, which
are the topic of the second part of this study.

1. Introduction

Different formal frameworks have been proposed to reason under
uncertainty. The best known and oldest one is the probabilistic frame-
work, where uncertainty is modeled by classical probability distribu-
tions. Although this framework is of major importance in the treat-
ment of uncertainty due to variability, many arguments converge to
the fact that a single probability distribution cannot adequately ac-
count for incomplete or imprecise information. Alternative theories
and frameworks have been proposed to this end. The three main such
frameworks, are, in decreasing order of generality, Imprecise probabil-
ity theory[43], Random disjunctive sets [12, 40, 32] and Possibility the-
ory [46, 16]. Within each of these frameworks, different representations
and methods have been proposed to make inferences and decisions.

This study focuses on uncertainty representations, regarding the re-
lations existing between them, their respective expressiveness and prac-
ticality. In the past years, several representation tools have been pro-
posed: capacities [5], credal sets [29], random sets [32], possibility dis-
tributions [46], probability intervals [9], p-boxes [21] and, more recently,
clouds [34, 35]. Such a diversity of representations motivates the study
of their respective expressive power.
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The more general representations, such as credal sets and capacities,
are expressive enough to embed other ones as particular instances, fa-
cilitating their comparison. However, they are generally difficult to
handle, computationally demanding and not fitted to all uncertainty
theories. As for simpler representations, they are useful in practical
uncertainty analysis problems [45, 38, 22]. They come in handy when
trading expressiveness (possibly losing some information) against com-
putational efficiency; they are instrumental in elicitation tasks, since
requesting less information[1]; they are also instrumental in summariz-
ing complex results of some uncertainty propagation methods [20, 2].

The object of this study is twofold: first, it provides a short review of
existing uncertainty representations and of their relationships; second,
it studies the ill-explored relationships between more recent simple rep-
resentations and older ones, introducing a generalized form of p-box.
Credal sets and random sets are used as the common umbrella clar-
ifying the relations between simplified models. Finding such formal
links facilitates a unified handling and treatment of uncertainty, and
suggests how tools used for one theory can eventually be useful in the
setting of other theories. We thus regard such a study as an important
and necessary preamble to other studies devoted to computational and
interpretability issues. Such issues, which still remain a matter of lively
debate, are not the main topic of the present work, but we nevertheless
provide some comments regarding them. In particular, we feel that is
important to recall that a given representation can be interpreted and
processed differently according to different theories, which were often
independently motivated by specific problems.

This work is made of two companion papers, one devoted to p-boxes,
introducing a generalization thereof that subsumes possibility distribu-
tions. The second part considers Neumaier’s clouds, an even more
general representation tool.

This paper first reviews older representation tools, already consid-
ered by many authors. A good complement to this first part, although
adopting a subjectivist point of view, is provided by Walley [44]. Then,
in Section 3, we propose and study a generalized form of p-box extend-
ing, among other things, some results by Baudrit and Dubois [1]. As
we shall see, this new representation, which consists of two comono-
tonic distributions, is the missing link between usual p-boxes, clouds
and possibility distributions, allowing to relate these three represen-
tations. Moreover, generalized p-boxes have interesting properties and
are promising uncertainty representations by themselves. In particular,
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Section 3.3 shows that generalized p-boxes can be interpreted as a spe-
cial case of random sets; Section 3.4 studies the relation between prob-
ability intervals and generalized p-boxes and discusses transformation
methods to extract probability intervals from p-boxes, and vice-versa.

In the present paper, we restrict ourselves to uncertainty represen-
tations defined on finite spaces (encompassing the discretized real line)
unless stated otherwise. Representations defined on the continuous real
line are considered in the second part of this paper. To make the paper
easier to read, longer proofs have been moved to an appendix.

2. Non-additive uncertainty theories and some

representation tools

To represent uncertainty, Bayesian subjectivists advocate the use of
single probability distributions in all circumstances. However, when the
available information lacks precision or is incomplete, claiming that a
unique probability distribution can faithfully represent uncertainty is
debatable1. It generally forces to engage in too strong a commitment,
considering what is actually known.

Roughly speaking, alternative theories recalled here (imprecise prob-
abilities, random sets, and possibility theory) have the potential to
lay bare the existing imprecision or incompleteness in the information.
They evaluate uncertainty on a particular event by means of a pair of
(conjugate) lower and upper measures rather than by a single one. The
difference between upper and lower measures then reflects the lack of
precision in our knowledge.

In this section, we first recall basic mathematical notions used in the
sequel, concerning capacities and the Möbius transform. Each theory
mentioned above is then briefly introduced, with focus on practical rep-
resentation tools available as of to-date, like possibility distributions,
p-boxes and probability intervals, their expressive power and complex-
ity.

2.1. Basic mathematical notions. Consider a finite space X con-
taining n elements. Measures of uncertainty are often represented by
set-functions called capacities, that were first introduced in Choquet’s
work [5].

Definition 1. A capacity on X is a function µ, defined on the set of
subsets of X, such that:

1For instance, the following statement about a coin: "We are not sure that this
coin is fair, so the probability for this coin to land on Heads (or Tails) lies between
1/4 and 3/4" cannot be faithfully modeled by a single probability.
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• µ(∅) = 0, µ(X) = 1,
• A ⊆ B ⇒ µ(A) ≤ µ(B).

A capacity such that

∀A, B ⊆ X, A ∩ B = ∅, µ(A ∪ B) ≥ µ(A) + µ(B)

is said to be super-additive. The dual notion, called sub-additivity,
is obtained by reversing the inequality. A capacity that is both sub-
additive and super-additive is called additive.

Given a capacity µ, its conjugate capacity µc is defined as µc(E) =
µ(X) − µ(Ec) = 1 − µ(Ec), for any subset E of X, Ec being its com-
plement. In the following, PX denotes the set of all additive capacities
on space X. We will also denote P such capacities, since they are
equivalent to probability measures on X. An additive capacity P is
self-conjugate, and P = P c. An additive capacity can also be ex-
pressed by restricting it to its distribution p defined on elements of X
such that for all x ∈ X, p(x) = P ({x}). Then ∀x ∈ X, p(x) ≥ 0,
∑

x∈X p(x) = 1 and P (A) =
∑

x∈A p(x).
When representing uncertainty, the capacity of a subset evaluates the

degree of confidence in the corresponding event. Super-additive and
sub-additive capacities are fitted to the representation of uncertainty.
The former, being sub-additive, verify ∀E ⊂ X, µ(E) + µ(Ec) ≤ 1
and can be called cautious capacities (since, as a consequence, µ(E) ≤
µc(E),∀E); they are tailored for modeling the idea of certainty. The
latter being sub-additive, verify ∀E ⊂ X, µ(E) + µ(Ec) ≥ 1, can be
called bold capacities; they account for the weaker notion of plausibility.

The core of a cautious capacity µ is the (convex) set of additive capac-
ities that dominate µ, that is, Pµ = {P ∈ PX |∀A ⊆ X, P (A) ≥ µ(A)}.
This set may be empty even if the capacity is cautious. We need
stronger properties to ensure a non-empty core. Necessary and suffi-
cient conditions for non-emptiness are provided by Walley [43, Ch.2].
However, checking that these conditions hold can be difficult in general.
An alternative to checking the non-emptiness of the core is to use spe-
cific characteristics of capacities that ensure it, such as n-monotonicity.

Definition 2. A super-additive capacity µ defined on X is n−monotone,
where n > 0 and n ∈ N, if and only if for any set A = {Ai|0 < i ≤
n Ai ⊂ X} of events Ai, it holds that

µ(
⋃

Ai∈A

Ai) ≥
∑

I⊆A

(−1)|I|+1µ(
⋂

Ai∈I

Ai)

An n-monotone capacity is also called a Choquet capacity of order
n. Dual capacities are called n-alternating capacities. If a capacity



UNIFYING UNCERTAINTY REPRESENTATIONS: GENERALIZED P-BOXES 5

is n-monotone, then it is also (n − 1)-monotone, but not necessar-
ily (n + 1)-monotone. An ∞-monotone capacity is a capacity that
is n-monotone for every n > 0. On a finite space, a capacity is ∞-
monotone if it is n-monotone with n = |X|. The two particular cases
of 2-monotone (also called convex) capacities and ∞-monotone capaci-
ties have deserved special attention in the literature [4, 43, 31]. Indeed,
2-monotone capacities have a non-empty core. ∞-monotone capacities
have interesting mathematical properties that greatly increase compu-
tational efficiency. As we will see, many of the representations studied
in this paper possess such properties. Extensions of the notion of capac-
ity and of n-monotonicity have been studied by de Cooman et al. [11].

Given a capacity µ on X, one can obtain multiple equivalent rep-
resentations by applying various (bijective) transformations [23] to it.
One such transformation, useful in this paper, is the Möbius inverse:

Definition 3. Given a capacity µ on X, its Möbius transform is a
mapping m : 2|X| → R from the power set of X to the real line, which
associates to any subset E of X the value

m(E) =
∑

B⊂E

(−1)|E−B|µ(B)

Since µ(X) = 1,
∑

E∈X m(E) = 1 as well, and m(∅) = 0. Moreover,
it can be shown [40] that the values m(E) are non-negative for all sub-
sets E of X (hence ∀E ∈ X, 1 ≥ m(E) ≥ 0) if and only if the capacity
µ is ∞-monotone. Then m is called a mass assignment. Otherwise,
there are some (non-singleton) events E for which m(E) is negative.
Such a set-function m is actually the unique solution to the set of 2n

equations

∀A ⊆ X, µ(A) =
∑

E⊆A

m(E),

given any capacity µ. The Möbius transform of an additive capacity P
coincides with its distribution p, assigning positive masses to singletons
only. In the sequel, we focus on pairs of conjugate cautious and bold
capacities. Clearly only one of the two is needed to characterize an
uncertainty representation (by convention, the cautious one).

2.2. Imprecise probability theory. The theory of imprecise proba-
bilities has been systematized and popularized by Walley’s book [43].
In this theory, uncertainty is modeled by lower bounds (called coherent
lower previsions) on the expected value that can be reached by bounded
real-valued functions on X (called gambles). Mathematically speaking,
such lower bounds have an expressive power equivalent to closed con-
vex sets P of (finitely additive) probability measures P on X. In the
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rest of the paper, such convex sets will be named credal sets (as is often
done [29]). It is important to stress that, even if they share similarities
(notably the modeling of uncertainty by sets of probabilities), Walley’s
behavioral interpretation of imprecise probabilities is different from the
one of classical robust statistics2 [25].

Imprecise probability theory is very general, and, from a purely
mathematical and static point of view, it encompasses all represen-
tations considered here. Thus, in all approaches presented here, the
corresponding credal set can be generated, making the comparison of
representations easier. To clarify this comparison, we adopt the follow-
ing terminology:

Definition 4. Let F1 and F2 denote two uncertainty representation
frameworks, a and b particular representatives of such frameworks, and
Pa,Pb the credal sets induced by these representatives a and b. Then:

• Framework F1 is said to generalize framework F2 if and only if
for all b ∈ F2, ∃a ∈ F1 such that Pa = Pb (we also say that F2

is a special case of F1).
• Frameworks F1 and F2 are said to be equivalent if and only if

for all b ∈ F2, ∃a ∈ F1 such that Pa = Pb and conversely.
• Framework F2 is said to be representable in terms of frame-

work F1 if and only if for all b ∈ F2, there exists a subset
{a1, . . . , ak|ai ∈ F1} such that Pb = Pa1

∩ . . . ∩ Pak

• A representative a ∈ F1 is said to outer-approximate (inner-
approximate) a representative b ∈ F2 if and only if Pb ⊆ Pa

(Pa ⊆ Pb)

2.2.1. Lower/upper probabilities. In this paper, lower probabilities (lower
previsions assigned to events) are sufficient to our purpose of repre-
senting uncertainty. We define a lower probability P on X as a super-
additive capacity. Its conjugate P (A) = 1 − P (Ac) is called an upper
probability. The (possibly empty) credal set PP induced by a given
lower probability is its core:

PP = {P ∈ PX |∀A ⊂ X, P (A) ≥ P (A)}.

Conversely, from any given non-empty credal set P , one can con-
sider a lower envelope P∗ on events, defined for any event A ⊆ X
by P∗(A) = minP∈P P (A). A lower envelope is a super-additive ca-
pacity, and consequently a lower probability. The upper envelope

2Roughly speaking, in Walley’s approach, the primitive notions are lower and
upper previsions or sets of so-called desirable gambles describing epistemic uncer-
tainty, and the fact that there always exists a "true" precise probability distribution
is not assumed.
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P ∗(A) = maxP∈P P (A) is the conjugate of P∗. In general, a credal
set P is included in the core of its lower envelope: P ⊆ PP∗

, since PP∗

can be seen as a projection of P on events.
Coherent lower probabilities P are lower probabilities that coincide

with the lower envelopes of their core, i.e. for all events A of X,
P (A) = minP∈PP

P (A). Since all representations considered in this pa-
per correspond to particular instances of coherent lower probabilities,
we will restrict ourselves to such lower probabilities. In other words,
credal sets PP in this paper are entirely characterized by their lower
probabilities on events and are such that for every event A, there is a
probability distribution P in PP such that P (A) = P (A).

A credal set PP can also be described by a set of constraints on
probability assignments to elements of X:

P (A) ≤
∑

x∈A

p(x) ≤ P (A).

Note that 2|X| − 2 values (|X| being the cardinality of X), are needed
in addition to constraints P (X) = 1, P (∅) = 0 to completely specify
PP .

2.2.2. Simplified representations. Representing general credal sets in-
duced or not by coherent lower probabilities is usually costly and deal-
ing with them presents many computational challenges (See, for ex-
ample, Walley [44] or the special issue [3]). In practice, using simpler
representations of imprecise probabilities often alleviates the elicitation
and computational burden. P-boxes and interval probabilities are two
such simplified representations.

P-boxes

Let us first recall some background on cumulative distributions. Let
P be a probability measure on the real line R. Its cumulative distri-
bution is a non-decreasing mapping from R to [0, 1] denoted F P , such
that for any r ∈ R, F P (r) = P ((−∞, r]). Let F1 and F2 be two cumu-
lative distributions. Then, F1 is said to stochastically dominate F2 if
only if F1 is point-wise lower than F2: F1 ≤ F2.

A p-box [21] is then defined as a pair of (discrete) cumulative dis-
tributions [F, F ] such that F stochastically dominates F . A p-box
induces a credal set P[F ,F ] such that:

(1) P[F ,F ]={P ∈ PR|∀r ∈ R, F (r) ≤ P ((−∞, r]) ≤ F (r)}

We can already notice that since sets (−∞, r] are nested, P[F ,F ] is de-
scribed by constraints that are lower and upper bounds on such nested
sets (as noticed by Kozine and Utkin [26], who discuss the problem of
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building p-boxes from partial information). This interesting character-
istic will be crucial in the generalized form of p-box we introduce in
section 3. Conversely we can extract a p-box from a credal set P by con-
sidering its lower and upper envelopes restricted to events of the form
(−∞, r], namely, letting F (r) = P∗((−∞, r]), F (r) = P ∗((−∞, r]).
P[F ,F ] is then the tightest outer-approximation of P induced by a p-
box.

Cumulative distributions are often used to elicit probabilistic knowl-
edge from experts [6]. P-boxes can thus directly benefit from such
methods and tools, with the advantages of allowing some imprecision in
the representation (e.g., allowing experts to give imprecise percentiles).
P-boxes are also sufficient to represent final results produced by im-
precise probability models when only a threshold violation has to be
checked. Working with p-boxes also allows, via so-called probabilistic
arithmetic [45], for very efficient numerical methods to achieve some
particular types of (conservative) inferences.

Probability intervals

Probability intervals, extensively studied by De Campos et al. [9], are
defined as lower and upper bounds of probability distributions. They
are defined by a set of numerical intervals L = {[l(x), u(x)]|x ∈ X} such
that l(x) ≤ p(x) ≤ u(x),∀x ∈ X, where p(x) = P ({x}). A probability
interval induces the following credal set:

PL = {P ∈ PX |∀x ∈ X, l(x) ≤ p(x) ≤ u(x)}

A probability interval L is called reachable if the credal set PL is
not empty and if for each element x ∈ X, we can find at least one
probability measure P ∈ PL such that p(x) = l(x) and one for which
p(x) = u(x). In other words, each bound can be reached by a prob-
ability measure in PL. Non-emptiness and reachability respectively
correspond to the conditions [9]:

∑

x∈X

l(x) ≤ 1 ≤
∑

x∈X

u(x) non-emptiness

u(x) +
∑

y∈X\{x}

l(y) ≤ 1 and l(x) +
∑

y∈X\{x}

u(y) ≥ 1 reachability

If a probability interval L is non-reachable, it can be transformed into
a probability interval L′, by letting l′(x) = infP∈PL

(p(x)) and u′(x) =
supP∈PL

(p(x)). More generally, coherent lower and upper probabilities

P (A), P (A) induced by PL on all events A ⊂ X are easily calculated
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by the following expressions
(2)

P (A) = max(
∑

x∈A

l(x), 1−
∑

x∈Ac

u(x)), P (A) = min(
∑

x∈A

u(x), 1−
∑

x∈Ac

l(x)).

De Campos et al. [9] have shown that these lower and upper probabil-
ities are Choquet capacities of order 2.

Probability intervals, which are modeled by 2|X| values, are very con-
venient tools to model uncertainty on multinomial data, where they can
express lower and upper confidence bounds. They can thus be derived
from a sample of small size [30]. On the real line, discrete probability
intervals correspond to imprecisely known histograms. Probability in-
tervals can be extracted, as useful information, from any credal set P on
a finite set X, by constructing LP = {[P ({x}), P ({x})], x ∈ X}. LP

then represents the tightest probability interval outer-approximating
P . Numerical and computational advantages that probability intervals
offer are discussed by De Campos et al. [9].

2.3. Random disjunctive sets. A more specialized setting for rep-
resenting partial knowledge is that of random sets. Formally a random
set is a family of subsets of X each bearing a probability weight. Typi-
cally, each set represents an incomplete observation, and the probability
bearing on this set should potentially be shared among its elements,
but is not by lack of sufficient information.

2.3.1. Belief and Plausibility functions. Formally, a random set is de-
fined as a mapping Γ : Ω → ℘(X) from a probability space (Ω,A, P )
to the power set ℘(X) of another space X (here finite). It is also called
a multi-valued mapping Γ. Insofar as sets Γ(ω) represent incomplete
knowledge about a single-valued random variable, each such set con-
tains mutually exclusive elements and is called a disjunctive set3. Then
this mapping induces the following coherent lower and upper probabil-
ities on X for all events A [12] (representing all probability functions
on X that could be found if the available information were complete):

P (A) = P ({ω ∈ Ω|Γ(ω) ⊆ A}); P (A) = P ({ω ∈ Ω|Γ(ω) ∩ A 6= ∅}),

where {ω ∈ Ω|Γ(ω) ∩ A 6= ∅} ∈ A is assumed. When X is finite, a
random set can be represented as a mass assignment m over the power
set ℘(X) of X, letting m(E) = P ({ω, Γ(ω) = E}),∀E ∈ X. Then,
∑

E⊆X m(E) = 1 and m(∅) = 0. A set E that receives strict positive
mass is called a focal set, and the mass m(E) can be interpreted as the

3as opposed to sets as collections of objects, i.e. sets whose elements are jointly
present, such as a region in a digital image.
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probability that the most precise description of what is known about
a particular situation is of the form "x ∈ E". From this mass assign-
ment, Shafer [40] define two set functions, called belief and plausibility
functions, respectively:

Bel(A) =
∑

E,E⊆A

m(E); Pl(A) = 1 − Bel(Ac) =
∑

E,E∩A6=∅

m(E).

The mass assignment being positive, a belief function is an ∞-monotone
capacity. The mass assignment m is indeed the Möbius transform of
the capacity Bel. Conversely, any ∞-monotone capacity is induced
by one and only one random set. We can thus speak of the random
set underlying Bel. In the sequel, we will use this notation for lower
probabilities stemming from random sets (Dempster and Shafer defi-
nitions being equivalent on finite spaces). Smets [42] has studied the
case of continuous random intervals defined on the real line R, where
the mass function is replaced by a mass density bearing on pairs of
interval endpoints.

Belief functions can be considered as special cases of coherent lower
probabilities, since they are ∞-monotone capacities. A random set thus
induces the credal set PBel = {P ∈ PX |∀A ⊆ X, Bel(A) ≤ P (A)}.

Note that Shafer [40] does not refer to an underlying probability
space, nor does he uses the fact that a belief function is a lower proba-
bility: in his view, extensively taken over by Smets [41], Bel(A) is sup-
posed to quantify an agent’s belief per se with no reference to a proba-
bility. However, the primary mathematical tool common to Dempster’s
upper and lower probabilities and to the Shafer-Smets view is the no-
tion of (generally finite) random disjunctive set.

2.3.2. Practical aspects. In general, 2|X| − 2 values are still needed to
completely specify a random set, thus not clearly reducing the complex-
ity of the model representation with respect to capacities. However,
simple belief functions defined by only a few positive focal elements
do not exhibit such complexity. For instance, a simple support belief
function is a natural model of an unreliable testimony, namely an ex-
pert stating that the value of a parameter x belong to set A ⊆ X.
Let α be the reliability of the expert testimony, i.e. the probability
that the information is irrelevant. The corresponding mass assignment
is m(A) = α, m(X) = 1 − α. Imprecise results from some statistical
experiments are easily expressed by means of random sets, m(A) being
the probability of an observation of the form x ∈ A.

As practical models of uncertainty, random sets present many ad-
vantages. First, as they can be seen as probability distributions over
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subsets of X, they can be easily simulated by classical methods such as
Monte-Carlo sampling, which is not the case for other Choquet capaci-
ties. On the real line, a random set is often restricted to a finite collec-
tion of closed intervals with associated weights, and one can then easily
extend results from interval analysis [33] to random intervals [18, 24].

2.4. Possibility theory. The primary mathematical tool of possibil-
ity theory is the possibility distribution, which is a set-valued piece of
information where some elements are more plausible than others. To
a possibility distribution are associated specific measures of certainty
and plausibility.

2.4.1. Possibility and necessity measures. A possibility distribution is a
mapping π : X → [0, 1] from X to the unit interval such that π(x) = 1
for at least one element x in X. Formally, a possibility distribution is
equivalent to the membership function of a normalized fuzzy set [46]4.
Twenty years earlier, Shackle [39] had introduced an equivalent notion
called distribution of potential surprise (corresponding to 1−π(x)) for
the representation of non-probabilistic uncertainty.

Several set-functions can be defined from a possibility distribution
π [15]:

Possibility measures: Π(A) = sup
x∈A

π(x).(3)

Necessity measures: N(A) = 1 − Π(Ac).(4)

Sufficiency measures: ∆(A) = inf
x∈A

π(x).(5)

The possibility degree of an event A evaluates the extent to which this
event is plausible, i.e., consistent with the available information. Neces-
sity degrees express the certainty of events, by duality. In this context,
distribution π is potential (in the spirit of Shackle’s), i.e. π(x) = 1
does not guarantee the existence of x. Their characteristic property
are: N(A∩B) = min(N(A), N(B)) and Π(A∪B) = max(Π(A), Π(B))
for any pair of events A, B of X. On the contrary ∆(A) measures the
extent to which all states of the world where A occurs are plausible.
Sufficiency5 distributions, generally denoted by δ, express actual pos-
sibility. They are understood as degree of empirical support and obey
an opposite convention: δ(x) = 1 guarantees (= is sufficient for) the
existence of x.

4The membership function of a fuzzy set ν is a mapping ν : X → [0, 1]
5also called guaranteed possibility distributions [15].
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2.4.2. Relationships with previous theories. A necessity measure (resp
a possibility measure) is formally a particular case of belief function
(resp. a plausibility function) induced by a random set with nested
focal sets (already in [40]). Given a possibility distribution π and a
degree α ∈ [0, 1], strong and regular α-cuts are subsets respectively de-
fined as Aα = {x ∈ X|π(x) > α} and Aα = {x ∈ X|π(x) ≥ α}. These
α-cuts are nested, since if α > β, then Aα ⊆ Aβ. On finite spaces, the
set {π(x), x ∈ X} is of the form α0 = 0 < α1 < . . . < αM = 1. There
are only M distinct α-cuts. A possibility distribution π then induces
a random set having, for i = 1, . . . ,M , the following focal sets Ei with
masses m(Ei):

(6)

{

Ei = {x ∈ X|π(x) ≥ αi} = Aαi

m(Ei) = αi − αi−1

In this nested situation, the same amount of information is contained
in the mass function m and the possibility distribution π(x) = Pl({x}),
called the contour function of m. For instance a simple support belief
function such that m(A) = α, m(X) = 1− α forms a nested structure,
and yields the possibility distribution π(x) = 1 if x ∈ A and 1 − α
otherwise. In the general case, m cannot be reconstructed only from its
contour function. Outer and inner approximations of general random
sets in terms of possibility distributions have been studied by Dubois
and Prade in [17].

Since the necessity measure is formally a particular case of belief
function, it is also an ∞-monotone capacity, hence a particular coherent
lower probability. If the necessity measure is viewed as a coherent lower
probability, its possibility distribution induces the credal set Pπ = {P ∈
PX |∀A ⊆ X, P (A) ≥ N(A)}. We recall here a result, proved by Dubois
et al. [19, 14] and by Couso et al. [8] in a more general setting, which
links probabilities P that are in Pπ with constraints on α-cuts, that
will be useful in the sequel:

Proposition 1. Given a possibility distribution π and the induced con-
vex set Pπ, we have for all α in (0, 1], P ∈ Pπ if and only if

1 − α ≤ P ({x ∈ X|π(x) > α})

This result means that the probabilities P in the credal set Pπ can
also be described in terms of constraints on strong α-cuts of π (i.e.
1 − α ≤ P (Aα)).

2.4.3. Practical aspects. At most |X| − 1 values are needed to fully as-
sess a possibility distribution, which makes it the simplest uncertainty
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representation explicitly coping with imprecise or incomplete knowl-
edge. This simplicity makes this representation very easy to handle.
This also implies less expressive power, in the sense that, for any event
A , either Π(A) = 1 or N(A) = 0 (i.e. intervals [N(A), Π(A)] are of the
form [0, α] or [β, 1]). This means that, in several situations, possibility
distributions will be insufficient to reflect the available information.

Nevertheless, the expressive power of possibility distributions fits
various practical situations. Moreover, a recent psychological study [37]
shows that sometimes people handle uncertainty according to possibil-
ity theory rules. Possibility distributions on the real line can be inter-
preted as a set of nested intervals with different confidence degrees [14]
(the larger the set, the highest the confidence degree), which is a good
model of, for example, an expert opinion concerning the value of a
badly known parameter. Similarly, it is natural to view nested con-
fidence intervals coming from statistics as a possibility distribution.
Another practical case where uncertainty can be modeled by possibil-
ity distributions is the case of vague linguistic assessments concerning
probabilities [10].

2.5. P-boxes and probability intervals in the uncertainty land-

scape. P-boxes, reachable probability intervals, random sets and pos-
sibility distributions can all be modeled by credal sets and define coher-
ent lower probabilities. Kriegler and Held [27] show that random sets
generalize p-boxes (in the sense of Definition 4), but that the converse
do not hold (i.e. credal sets induced by different random sets can have
the same upper and lower bounds on events of the type (∞, r], and
hence induce the same p-boxes).

There is no specific relationship between the frameworks of possibil-
ity distributions, p-boxes and probability intervals, in the sense that
none generalize the other. Some results comparing possibility distribu-
tions and p-boxes are given by Baudrit and Dubois [1]. Similarly, there
is no generalization relationship between probability intervals and ran-
dom sets. Indeed upper and lower probabilities induced by reachable
probability intervals are order 2 capacities only, while belief functions
are ∞-monotone. In general, one can only approximate one represen-
tation by the other.

Transforming a belief function Bel into the tightest probability in-
terval L outer-approximating it (i.e. PBel ⊂ PL, following Definition 4)
is simple, and consists of taking for all x ∈ X:

l(x) = Bel({x}) and u(x) = Pl({x})
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Credal sets

Coherent Lower/upper probabilities

2-monotone capacities

Random sets (∞-monotone)

P-boxes

Probabilities

Probability Intervals

Possibilities

Figure 1. Representation relationships: summary
A −→ B: A generalizes B

and since belief and plausibility functions are the lower envelope of
the induced credal set PBel, we are sure that the so-built probability
interval L is reachable.

The converse problem, i.e. to transform a set L of probability inter-
vals into an inner-approximating random set was studied by Lemmer
and Kyburg [28]. On the contrary, Denoeux [13] extensively studies
the problem of transforming a probability interval L into a random
set outer-approximating L (i.e., PL ⊂ PBel). The transformation of a
given probability interval L into an outer-approximating possibility dis-
tribution is studied by Masson and Denoeux [30], who propose efficient
methods to achieve such a transformation.

The main relations existing between imprecise probabilities, lower/upper
probabilities, random sets, probability intervals, p-boxes and possibil-
ity distributions, are pictured on Figure 1. From top to bottom, it goes
from the more general, expressive and complex theories to the less gen-
eral, less expressive but simpler representations. Arrows are directed
from a given representation to the representations it generalizes.

3. Generalized p-boxes

As recalled in Section 2.2, p-boxes are useful representations of uncer-
tainty in many practical applications[7, 21, 27]. So far, they only make
sense on the (discretized) real line equipped with the natural ordering
of numbers. P-boxes are instrumental to extract interpretable informa-
tion from imprecise probability representations. They provide faithful
estimations of the probability that a variable x̃ violates a threshold θ,
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i.e., upper and lower estimates of the probability of events of the form
x̃ ≥ θ. However, they are much less adequate to compute the proba-
bility that some output remains close to a reference value ρ [1], which
corresponds to computing upper and lower estimates of the probability
of events of the form |x̃ − ρ| ≥ θ. The rest of the paper is devoted to
the study of a generalization p-boxes, to arbitrary (finite) spaces, where
the underlying ordering relation is arbitrary, and that can address this
type of query. Generalized p-boxes will also be instrumental to char-
acterize a recent representation proposed by Neumaier [34], studied in
the second part of this paper.

Generalized p-boxes are defined in Section 3.1. We then proceed
to show the link between generalized p-boxes, possibility distributions
and random sets. We first show that the former generalize possibility
distributions and are representable (in the sense of Definition 4) by
pairs thereof. Connections between generalized p-boxes and probability
intervals are also explored.

3.1. Definition of generalized p-boxes. The starting point of our
generalization is to notice that any two cumulative distribution func-
tions modelling a p-box are comonotonic. Two mappings f and f ′ from
a space X to the real line are said to be comonotonic if and only if, for
any pair of elements x, y ∈ X, we have f(x) < f(y) ⇒ f ′(x) ≤ f ′(y). In
other words, given an indexing of X = {x1, . . . , xn}, there is a permu-
tation σ of {1, 2, . . . , n} such that f(xσ(1)) ≥ f(xσ(2)) ≥ · · · ≥ f(xσ(n))
and f ′(xσ(1)) ≥ f ′(xσ(2)) ≥ · · · ≥ f ′(xσ(n)). We define a generalized
p-box as follows:

Definition 5. A generalized p-box [F, F ] defined on X is a pair of
comonotonic mappings F, F , F : X → [0, 1] and F : X → [0, 1] from
X to [0, 1] such that F is pointwise less than F (i.e. F ≤ F ) and there
is at least one element x in X for which F (x) = F (x) = 1.

Since each distribution F, F is fully specified by |X| − 1 values, it
follows that 2|X| − 2 values completely determine a generalized p-box.
Note that, given a generalized p-box [F, F ], we can always define a
complete pre-ordering ≤[F ,F ] on X such that x ≤[F ,F ] y if F (x) ≤ F (y)

and F (x) ≤ F (y), due to the comonotonicity condition. If X is a subset
of the real line and if ≤[F ,F ] is the natural ordering of numbers, then
we retrieve classical p-boxes.

To simplify notations in the sequel, we will consider that, given a
generalized p-box [F, F ], elements x of X are indexed such that i < j
implies that xi ≤[F ,F ] xj. We will denote (x][F ,F ] the set of the form

{xi|xi ≤[F ,F ] x}. The credal set induced by a generalized p-box [F, F ]
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can then be defined as

P[F ,F ] = {P ∈ PX |i = 1, . . . , n, F (xi) ≤ P ((xi][F ,F ]) ≤ F (xi)}.

It induces coherent upper and lower probabilities such that F (xi) =
P ((xi][F ,F ]) and F (xi) = P ((xi][F ,F ]). When X = R and ≤[F ,F ] is the

natural ordering on numbers, then ∀r ∈ R, (r][F ,F ] = (−∞, r], and the

above equation coincides with Equation (1).
In the following, sets (xi][F ,F ] are denoted Ai, for all i = 1, . . . , n.

These sets are nested, since ∅ ⊂ A1 ⊆ . . . ⊆ An = X6. For all i =
1, . . . , n, let F (xi) = αi and F (xi) = βi. With these conventions, the
credal set P[F ,F ] can now be described by the following n constraints
bearing on probabilities of nested sets Ai:

(7) i = 1, . . . , n αi ≤ P (Ai) ≤ βi

with 0 = α0 ≤ α1 ≤ . . . ≤ αn = 1, 0 = β0 < β1 ≤ β2 ≤ . . . ≤ βn = 1
and αi ≤ βi.

As a consequence, a generalized p-box can be generated in two dif-
ferent ways:

• By starting from two comonotone functions F ≤ F defined on
X, the pre-order being induced by the values of these functions,

• or by assigning upper and lower bounds on probabilities of a
prescribed collection of nested sets Ai.

Note that the second approach is likely to be more useful in practical
assessments and elicitation of generalized p-boxes.

Example 1. All along this section, we will use this example to illustrate
results on generalized p-boxes. Let X = {x1, . . . , x6}. These elements
could be, for instance, the facets of a biased die. For various reasons, we
only have incomplete information about the probability of some subsets
A1 = {x1, x2}, A2 = {x1, x2, x3}, A3 = {x1, . . . , x5}, or X(= A4). An
expert supplies the following confidence bounds on the frequencies of
these sets:

P (A1) ∈ [0, 0.3] P (A2) ∈ [0.2, 0.7] P (A3) ∈ [0.5, 0.9]

The uncertainty can be modeled by the generalized p-box pictured on
Figure 2:

x1 x2 x3 x4 x5 x6

F 0.3 0.3 0.7 0.9 0.9 1
F 0 0 0.2 0.5 0.5 1.

6Since ≤[F,F ] is a complete pre-order on X, we can have xi =[F,F ] xi+1 and
Ai = Ai+1, which explains the non-strict inclusions. They would be strict if <[F,F ]

were a linear order.
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0 xi

1

x1 x2 x3 x4 x5 x6

0.2
0.4
0.6
0.8

: F
: F

Figure 2. Generalized p-box [F, F ] of Example 1

3.2. Connecting generalized p-boxes with possibility distribu-

tions. It is natural to search for a connection between generallized
p-boxes and possibility theory, since possibility distributions can be
interpreted as a collection of nested sets with associated lower bounds,
while generalized p-boxes correspond to lower and upper bounds also
given on a collection of nested sets. Given a generalized p-box [F, F ],
the following proposition holds:

Proposition 2. Any generalized p-box [F, F ] on X is representable by
a pair of possibility distributions πF , πF , such that P[F ,F ] = Pπ

F
∩PπF

,
where:

πF (xi) = βi and πF (xi) = 1 − max{αj|αj < αi; j = 0, . . . , i}

for i = 1, . . . , n, with α0 = 0.

Proof of Proposition 2. Consider the set of constraints given by Equa-
tion (7) and defining the convex set P[F ,F ]. These constraints can be

separated into two distinct sets: (P (Ai) ≤ βi)i=1,n and (P (Ac
i) ≤

1 − αi)i=1,n. Now, rewrite constraints of Proposition 1, in the form
∀α ∈ (0, 1]: P ∈ Pπ if and only if P ({x ∈ X|π(x) ≤ α}) ≤ α.

The first set of constraints (P (Ai) ≤ βi)i=1,n defines a credal set Pπ
F

that is induced by the possibility distribution πF , while the second set
of constraints (P (Ac

i) ≤ 1− αi)i=1,n defines a credal set PπF
that is in-

duced by the possibility distribution πF , since Ac
i = {xk, . . . xn}, where

k = max{j|αj < αi}. The credal set of the generalized p-box [F, F ],
resulting from the two sets of constraints, namely i = 1, . . . , n, βi ≤
P (Ai) ≤ αi, is thus Pπ

F
∩ PπF

. �

Example 2. The possibility distributions πF , πF for the generalized
p-box defined in Example 1 are:

x1 x2 x3 x4 x5 x6

πF 0.3 0.3 0.7 0.9 0.9 1
πF 1 1 1 0.8 0.8 0.5
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Note that, when F is injective, <[F ,F ] is a linear order, and we have

πF (xi) = 1 − αi−1. So, generalized p-boxes allow to model uncertainty
in terms of pairs of comonotone possibility distributions. In this case,
contrary to the case of only one possibility distribution, the two bounds
enclosing the probability of a particular event A can be tighter, i.e.
no longer restricted to the form [0, α] or [β, 1], but contained in the
intersection of intervals of this form.

An interesting case is the one where, for all i = 1, . . . , n−1, F (xi) =
0 and F (xn) = 1. Then, πF = 1 and Pπ

F
∩ PπF

= Pπ
F

and we
retrieve the single distribution πF . We recover πF if we take for all

i = 1, . . . , n, F (xi) = 1. This means that generalized p-boxes also
generalize possibility distributions, and are representable by them in
the sense of Definition 4.

3.3. Connecting Generalized p-boxes and random sets. We al-
ready mentioned that p-boxes are special cases of random sets, and the
following proposition shows that it is also true for generalized p-boxes.

Proposition 3. Generalized p-boxes are special cases of random sets,
in the sense that for any generalized p-box [F, F ] on X, there exist a
belief function Bel such that P[F ,F ] = PBel.

In order to prove Proposition 3, we show that the lower probabilities
induced by a generalized p-box and by the belief function given by
Algorithm 1 coincide on every event. To do that, we use the partition
of X induced by nested sets Ai, and compute lower probabilities of
elements of this partition. We then check that the lower probabilities
on all events induced by the generalized p-box coincide with the belief
function induced by Algorithm 1. The detailed proof can be found in
the appendix.

Algorithm 1 below provides an easy way to build the random set
encoding a given generalized p-box. It is similar to existing algo-
rithms [27, 38], and extends them to more general spaces. The main
idea of the algorithm is to use the fact that a generalized p-box can
be seen as a random set whose focal sets are obtained by threshold-
ing the cumulative distributions (as in Figure 2). Since the sets Ai

are nested, they induce a partition of X whose elements are of the
form Gi = Ai \ Ai−1. The focal sets of the random set equivalent to
the generalized p-box are made of unions of consecutive elements of
this partition. Basically, the procedure comes down to progressing a
threshold θ ∈ [0, 1]. When αi+1 > θ ≥ αi and βj+1 > θ ≥ βj, then, the
corresponding focal set is Ai+1 \ Aj, with mass

(8) m(Ai+1 \ Aj) = min(αi+1, βj+1) − max(αi, βj).
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Algorithm 1: R-P-box → random set transformation

Input: Generalized p-box [F, F ] and corresponding nested sets
∅ = A0, A1, . . . , An = X, lower bounds αi and upper
bounds βi

Output: Equivalent random set
for i = 1, . . . , n do

Build partition Gi = Ai \ Ai−1

Build set
{γl|l = 1, . . . , 2n − 1} = {αi|i = 1, . . . , n} ∪ {βi|i = 1, . . . , n}
With γl indexed such that
γ1 ≤ . . . ≤ γl ≤ . . . ≤ γ2n−1 = βn = αn = 1
Set α0 = β0 = γ0 = 0 and focal set E0 = ∅
for k = 1, . . . , 2n − 1 do

if γk−1 = αi then
Ek = Ek−1 ∪ Gi+1

if γk−1 = βi then
Ek = Ek−1 \ Gi

Set m(Ek) = γk − γk−1

We can also give another characterization of the random set (8): let
us note 0 = γ0 < γ1 < . . . < γM = 1 the distinct values taken by F , F
over elements xi of X (note that M is finite and M < 2n). Then, for
j = 1, . . . ,M , the random set defined as:

(9)

{

Ej={xi∈X|(π
F

(xi)≥γj)∧(1−πF (xi)<γj)}

m(Ej) = γj − γj−1

is the same as the one built by using Algorithm 1, but this formulation
lays bare the link between Equation (6) and the possibility distributions
πF , πF .

Example 3. This example illustrates the application of Algorithm 1,
by applying it to the generalized p-box given in Example 1. We have:

G1 = {x1, x2} G2 = {x3} G3 = {x4, x5} G4 = {x6}

and

0 ≤ 0 ≤ 0.2 ≤ 0.3 ≤ 0.5 ≤ 0.7 ≤ 0.9 ≤ 1

α0 ≤ α1 ≤ α2 ≤ β1 ≤ α3 ≤ β2 ≤ β3 ≤ α4

γ0 ≤ γ1 ≤ γ2 ≤ γ3 ≤ γ4 ≤ γ5 ≤ γ6 ≤ γ7
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which finally yields the following random set

m(E1) = m(G1) = 0 m(E2) = m(G1 ∪ G2) = 0.2

m(E3) = m(G1 ∪ G2 ∪ G3) = 0.1 m(E4) = m(G2 ∪ G3) = 0.2

m(E5) = m(G2 ∪ G3 ∪ G4) = 0.2 m(E6) = m(G3 ∪ G4) = 0.2

m(E7) = m(G4) = 0.1

This random set can then be used as an alternative representation of
the provided information.

Propositions 3 and 2 together indicate that generalized p-boxes are
more expressive than single possibility distributions and less expressive
than random sets, but, as recalled before, less expressive (and, in this
sense, simpler) models are often easier to handle in practice. The fol-
lowing explicit expression for lower probabilities induced by generalized
p-boxes [F, F ] on X shows that we can expect it to be the case (see
appendix):

(10) P (

j
⋃

k=i

Gk) = max(0, αj − βi−1).

Let us call a subset E of X [F, F ]-connected if it can expressed as

an union of consecutive elements Gk, i.e. E =
⋃j

k=i Gk, with 0 <
i < j ≤ n. For any event A, let A∗ =

⋃

E⊆A E, with E all maximal

[F , F ]-connected subsets included in A. We know (see appendix) that
P (A) = P (A∗). Then, the explicit expression for P (A) is P (A∗) =
∑

E⊆A P (E), which remains quite simple to compute, and more efficient
than computing the belief degree by checking which focal elements are
included in A.

Notice that Equation (10) can be restated in terms of the two possi-
bility distributions πF , πF , rewriting P (E) as

P (E) = max(0, NπF
(

j
⋃

k=1

Gk) − Ππ
F
(

i−1
⋃

k=1

Gk)),

where Nπi
(A), Ππi

(A) are respectively the necessity and possibility de-
gree of event A (given by Equations (3)) with respect to a distribution
πi. It makes P (A∗) even easier to compute.

3.4. Probability intervals and generalized p-boxes. As in the
case of random sets, there is no direct relationship between probabil-
ity intervals and generalized p-boxes. The two representations have
comparable complexities, but do not involve the same kind of events.
Nevertheless, given previous results, we can state how a probability
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interval L can be transformed into a generalized p-box [F , F ], and
vice-versa.

First consider a probability interval L and some indexing {x1, . . . , xn}

of elements in X. A generalized p-box [F ′, F
′
] outer-approximating the

probability interval L can be computed by means of Equations (2) as
follows:

F ′(xi) = P (Ai) = α′
i = max(

∑

xi∈Ai

l(xi), 1 −
∑

xi /∈Ai

u(xi))(11)

F
′
(xi) = P (Ai) = β′

i = min(
∑

xi∈Ai

u(xi), 1 −
∑

xi /∈Ai

l(xi))

where P , P are respectively the lower and upper probabilities of PL.
Recall that Ai = {x1, . . . , xi}. Note that each permutation of elements
of X provide a different generalized p-box and that there is no tightest
outer-approximation among them.

Next, consider a generalized p-box [F, F ] with nested sets A1 ⊆ . . . ⊆
An. The probability interval L′ on elements xi corresponding to [F, F ]
is given by:

P ({xi}) = l′(xi) = max(0, αi − βi−1)(12)

P ({xi}) = u′(xi) = βi − αi−1

where P , P are the lower and upper probabilities of the credal set P[F ,F ]

on elements of X, αi = F (Ai), βi = F (Ai) and β0 = α0 = 0. This is
the tightest probability interval outer-approximating the generalized
p-box, and there is only such set.

Of course, transforming a probability interval L into a p-box [F, F ]
and vice-versa generally induces a loss of information. But we can show
that probability intervals are representable (see definition 4) by gener-
alized p-boxes: let Σσ the set of all possible permutations σ of elements
of X, each defining a linear order. A generalized p-box according to

permutation σ is denoted [F ′, F
′
]σ and called a σ-p-box. We then have

the following proposition (whose proof is in the appendix):

Proposition 4. Let L be a probability interval, and let [F ′, F
′
]σ be

the σ-p-box obtained from L by applying Equations (11). Moreover, let

L′′
σ denote the probability interval obtained from the σ-p-box [F ′, F

′
]σ

by applying Equations (12). Then, the various credal sets thus defined
satisfy the following property:

(13) PL =
⋂

σ∈Σσ

P[F ′,F
′

]σ
=

⋂

σ∈Σσ

PL′′

σ
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Figure 3. Representation relationships: summary with
generalized p-boxes. A −→ B: A generalizes B. A 99K B:
B is representable by A

This means that the information modeled by a set L of probability in-
tervals can be entirely recovered by considering sets of σ-p-boxes. Note
that not all |X|! such permutations need to be considered, and that in
practice, L can be exactly recovered by means of a reduced set S of
|X|/2 permutations, provided that {xσ(1), σ ∈ S}∪{xσ(n), σ ∈ S} = X.
Since P[F ,F ] = PπF

∩Pπ
F
, then it is immediate from Proposition 4,that,

in terms of credal sets, PL =
⋂

σ∈Σσ

(

PπFσ
∩ Pπ

Fσ

)

, where πF σ
, πF σ

are

respectively the possibility distributions corresponding to F σ and F σ.

4. Conclusion

This paper introduces a generalized notion of p-box. Such a gener-
alization allows to define p-boxes on finite (pre)-ordered spaces as well
as discretized p-boxes on multi-dimensional spaces equipped with an
arbitrary (pre)-order. On the real line, this preorder can be of the form
x ≤ρ y if and only if |x − ρ| ≤ |y − ρ|, thus accounting for events of
the form “close to a prescribed value ρ”. Generalized p-boxes are rep-
resentable by a pair of comonotone possibility distributions. They are
special case of random sets, and the corresponding mass assignment has
been laid bare. Generalized p-boxes are thus more expressive than sin-
gle possibility distributions and likely to be more tractable than general
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random sets. Moreover, the fact that they can be interpreted as lower
and upper confidence bounds over nested sets makes them quite at-
tractive tools for subjective elicitation. Finally, we showed the relation
existing between generalized p-boxes and sets of probability intervals.
Figure 3 summarizes the results of this paper, by placing generalized
p-boxes inside the graph of Figure 1. New relationships and represen-
tations obtained in this paper are in bold lines. Computational aspects
of calculations with generalized p-boxes need to be explored in greater
detail (as is done by De Campos et al. [9] for probability intervals) as
well as their application to the elicitation of imprecise probabilities.
Another issue is to extend presented results to more general spaces,
to general lower/upper previsions or to cases not considered here (e.g.
continuous p-boxes with discontinuity points), possibly using existing
results [42, 11]. Interestingly, the key condition when representing gen-
eralized p-boxes by two possibility distributions is their comonotonic-
ity. In the second part of this paper, we pursue the present study by
dropping this assumption. We then recover so-called clouds, recently
proposed by Neumaier [34].

References

[1] C. Baudrit, D. Dubois, Practical representations of incomplete probabilistic
knowledge, Computational Statistics and Data Analysis 51 (1) (2006) 86–108.

[2] C. Baudrit, D. Guyonnet, D. Dubois, Joint propagation and exploitation of
probabilistic and possibilistic information in risk assessment, IEEE Trans.
Fuzzy Systems 14 (2006) 593–608.

[3] A. Cano, F. Cozman, T. Lukasiewicz (eds.), Reasoning with imprecise proba-
bilities, vol. 44 of I. J. of Approximate Reasoning, 2007 (2007).

[4] A. Chateauneuf, J.-Y. Jaffray, Some characterizations of lower probabilities
and other monotone capacities through the use of Möbius inversion, Mathe-
matical Social Sciences 17 (3) (1989) 263–283.

[5] G. Choquet, Theory of capacities, Annales de l’institut Fourier 5 (1954) 131–
295.

[6] R. Cooke, Experts in uncertainty, Oxford University Press, Oxford, UK, 1991.
[7] J. Cooper, S. Ferson, L. Ginzburg, Hybrid processing of stochastic and sub-

jective uncertainty, Risk Analysis 16 (1996) 785–791.
[8] I. Couso, S. Montes, P. Gil, The necessity of the strong alpha-cuts of a fuzzy

set, Int. J. on Uncertainty, Fuzziness and Knowledge-Based Systems 9 (2001)
249–262.

[9] L. de Campos, J. Huete, S. Moral, Probability intervals: a tool for uncertain
reasoning, I. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 2
(1994) 167–196.

[10] G. de Cooman, A behavioural model for vague probability assessments, Fuzzy
Sets and Systems 154 (2005) 305–358.



24 S. DESTERCKE, D. DUBOIS, AND E. CHOJNACKI

[11] G. de Cooman, M. Troffaes, E. Miranda, n-monotone lower previsions and
lower integrals, in: F. Cozman, R. Nau, T. Seidenfeld (eds.), Proc. 4th Inter-
national Symposium on Imprecise Probabilities and Their Applications, 2005.

[12] A. Dempster, Upper and lower probabilities induced by a multivalued mapping,
Annals of Mathematical Statistics 38 (1967) 325–339.

[13] T. Denoeux, Constructing belief functions from sample data using multinomial
confidence regions, I. J. of Approximate Reasoning 42 (2006) 228–252.

[14] D. Dubois, L. Foulloy, G. Mauris, H. Prade, Probability-possibility transforma-
tions, triangular fuzzy sets, and probabilistic inequalities, Reliable Computing
10 (2004) 273–297.

[15] D. Dubois, P. Hajek, H. Prade, Knowledge-driven versus data-driven logics, J.
of Logic, Language and Information 9 (2000) 65–89.

[16] D. Dubois, H. Prade, Possibility Theory: An Approach to Computerized Pro-
cessing of Uncertainty, Plenum Press, New York, 1988.

[17] D. Dubois, H. Prade, Consonant approximations of belief functions, I.J. of
Approximate reasoning 4 (1990) 419–449.

[18] D. Dubois, H. Prade, Random sets and fuzzy interval analysis, Fuzzy Sets and
Systems (42) (1992) 87–101.

[19] D. Dubois, H. Prade, When upper probabilities are possibility measures, Fuzzy
Sets and Systems 49 (1992) 65–74.

[20] S. Ferson, L. Ginzburg, Hybrid arithmetic, in: Proc. of ISUMA/NAFIPS’95,
1995.

[21] S. Ferson, L. Ginzburg, V. Kreinovich, D. Myers, K. Sentz, Constructing prob-
ability boxes and Dempster-Shafer structures, Tech. rep., Sandia National Lab-
oratories (2003).

[22] M. Fuchs, A. Neumaier, Potential based clouds in robust design optimization,
Journal of statistical theory and practice To appear.

[23] M. Grabisch, J. Marichal, M. Roubens, Equivalent representations of set func-
tions, Mathematics on operations research 25 (2) (2000) 157–178.

[24] J. Helton, W. Oberkampf (eds.), Alternative Representations of Uncertainty,
Special issue of Reliability Engineering and Systems Safety, vol. 85, Elsevier,
2004.

[25] P. Huber, Robust statistics, Wiley, New York, 1981.
[26] I. Kozine, L. Utkin, Constructing imprecise probability distributions, I. J. of

General Systems 34 (2005) 401–408.
[27] E. Kriegler, H. Held, Utilizing random sets for the estimation of future climate

change, I. J. of Approximate Reasoning 39 (2005) 185–209.
[28] J. Lemmer, H. Kyburg, Conditions for the existence of belief functions cor-

responding to intervals of belief, in: Proc. 9th National Conference on A.I.,
Anaheim, 1991.

[29] I. Levi, The Enterprise of Knowledge, MIT Press, London, 1980.
[30] M. Masson, T. Denoeux, Inferring a possibility distribution from empirical

data, Fuzzy Sets and Systems 157 (3) (2006) 319–340.
[31] E. Miranda, I. Couso, P. Gil, Extreme points of credal sets generated by 2-

alternating capacities, I. J. of Approximate Reasoning 33 (2003) 95–115.
[32] I. Molchanov, Theory of Random Sets, Springer, London, 2005.
[33] R. Moore, Methods and applications of Interval Analysis, SIAM Studies in

Applied Mathematics, SIAM, Philadelphia, 1979.



UNIFYING UNCERTAINTY REPRESENTATIONS: GENERALIZED P-BOXES 25

[34] A. Neumaier, Clouds, fuzzy sets and probability intervals, Reliable Computing
10 (2004) 249–272.

[35] A. Neumaier, On the structure of clouds, Available on
http://www.mat.univie.ac.at/∼neum (2004).

[36] Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer
Academic, Dordrecht, 1991.

[37] E. Raufaste, R. Neves, C. Mariné, Testing the descriptive validity of possibility
theory in human judgments of uncertainty, Artificial Intelligence 148 (2003)
197–218.

[38] H. Regan, S. Ferson, D. Berleant, Equivalence of methods for uncertainty
propagation of real-valued random variables, I. J. of Approximate Reasoning
36 (2004) 1–30.

[39] G. L. S. Shackle, Decision, Order and Time in Human Affairs, Cambridge
University Press, Cambridge, 1961.

[40] G. Shafer, A mathematical Theory of Evidence, Princeton University Press,
New Jersey, 1976.

[41] P. Smets, The normative representation of quantified beliefs by belief functions,
Artificial Intelligence 92 (1997) 229–242.

[42] P. Smets, Belief functions on real numbers, I. J. of Approximate Reasoning 40
(2005) 181–223.

[43] P. Walley, Statistical reasoning with imprecise Probabilities, Chapman and
Hall, New York, 1991.

[44] P. Walley, Measures of uncertainty in expert systems, Artifical Intelligence 83
(1996) 1–58.

[45] R. Williamson, T. Downs, Probabilistic arithmetic i : Numerical methods
for calculating convolutions and dependency bounds, I. J. of Approximate
Reasoning 4 (1990) 8–158.

[46] L. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and
Systems 1 (1978) 3–28.

Appendix

Proof of Proposition 3. From the nested sets A1 ⊆ A2 ⊆ . . . ⊆
An = X we can build a partition s.t. G1 = A1, G2 = A2 \A1, . . . , Gn =
An \ An−1. Once we have a finite partition, every possible set B ⊆ X
can be approximated from above and from below by pairs of sets B∗ ⊆
B∗ [36]:

B∗ =
⋃

{Gi, Gi ∩ B 6= ∅}; B∗ =
⋃

{Gi, Gi ⊆ B}

made of a finite union of the partition elements intersecting or con-
tained in this set B. Then P (B) = P (B∗),P (B) = P (B∗), so we only
have to care about unions of elements Gi in the sequel. Especially, for
each event B ⊂ Gi for some i, it is clear that P (B) = 0 = Bel(B)
and P (B) = P (Gi) = Pl(B). So, to prove Proposition 3, we have to
show that lower probabilities given by a generalized p-box [F, F ] and
by the corresponding random set built through algorithm 1 coincide on
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unions of elements Gi. We will first concentrate on unions of conscutive
elements Gi, and then to any union of such elements.

Let us first consider union of consecutive elements
⋃j

k=i Gk (when

k = 1, we retrieve the sets Aj). Finding P (
⋃j

k=i Gk) is equivalent to

computing the minimum of
∑j

k=i P (Gk) under the constraints

i = 1, . . . , n αi ≤ P (Ai) =
i

∑

k=1

P (Gk) ≤ βi

which reads

αj ≤ P (Ai−1) +

j
∑

k=i

P (Gk) ≤ βj

so
∑j

k=i P (Gk) ≥ max(0, αj − βi−1). This lower bound is optimal,
since it is always reachable: if αj > βi−1, take P s.t. P (Ai−1) = βi−1,

P (
⋃j

k=i Gk) = αj − βi−1, P (
⋃n

k=j+1 Gk) = 1 − αj. If αj ≤ βi−1, take P

s.t. P (Ai−1) = βi−1, P (
⋃j

k=i Gk) = 0, P (
⋃n

k=j+1 Ek) = 1 − βi−1. And

we can see, by looking at Algorithm 1, that Bel(
⋃j

k=i Gk) = max(0, αj−

βi−1): focal elements of Bel are subsets of
⋃j

k=i Gk if βi−1 < αj only.
Now, let us consider a union A of non-consecutive elements s.t.

A = (
⋃i+l

k=i Gk ∪
⋃j

k=i+l+m Gk) with m > 1. As in the previous case,

we must compute min
(

∑i+l
k=i P (Gk) +

∑j
k=i+l+m P (Gk)

)

to find the

lower probability on P (A). An obvious lower bound is given by

min
(

i+l
∑

k=i

P (Gk)+

j
∑

k=i+l+m

P (Gk)
)

≥ min
(

i+l
∑

k=i

P (Gk)
)

+min
(

j
∑

k=i+l+m

P (Gk)
)

and this lower bound is equal to

max(0, αi+l − βi−1) + max(0, αj − βi+l+m−1) = Bel(A)

Consider the two following cases with probabilistic mass assignments
showing that bounds are attained:

• αi+l < βi−1, αj < βi+l+m−1 and probability masses:

P (Ai−1) = βi−1, P (
⋃i+l

k=i Gk) = αi+l − βi−1, P (
⋃i+l+m−1

k=i+l+1 Gk) = βi+l+m−1 − αi+l,

P (
⋃j

k=i+l+m Gk) = αj − βi+l+m−1 and P (
⋃n

k=j+1 Gk) = 1 − αj.
• αi+l > βi−1, αj > βi+l+m−1 and probability masses:

P (Ai−1) = βi−1, P (
⋃i+l

k=i Gk) = 0, P (
⋃i+l+m−1

k=i+l+1 Gk) = αj − βi−1,

P (
⋃j

k=i+l+m Ek) = 0 and P (
⋃n

k=j+1 Gk) = 1 − αj.

The same line of thought can be followed for the two remaining cases.
As in the consecutive case, the lower bound is reachable without vio-
lating any of the restrictions associated to the generalized p-box. We
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have P (A) = Bel(A) and the extension of this result to any number n
of "discontinuities" in the sequence of Gk is straightforward. The proof
is complete, since for every possible union A of elements Gk, we have
P (A) = Bel(A) �

Proof of Proposition 4. To prove this proposition, we must first re-
call a result given by De Campos et al. [9]: given two probability in-
tervals L and L′ defined on a space X and the induced credal sets PL

and PL′ , the conjunction PL∩L′ = PL ∩ PL′ of these two sets can be
modeled by the set (L ∩ L′) of probability intervals that is such that
for every element x of X,

l(L∩L′)(x) = max(lL(x), lL′(x)) and u(L∩L′)(x) = min(uL(x), uL′(x))

and these formulas extend directly to the conjunction of any number
of probability intervals on X.

To prove Proposition 4, we will show, by using the above conjunction,
that PL =

⋂

σ∈Σσ
PL′′

σ
. Note that we have, for any σ ∈ Σσ, PL ⊂

P[F ′,F
′

]σ
⊂ PL′′

σ
, thus showing this equality is sufficient to prove the

whole proposition.
Let us note that the above inclusion relationships alone ensure us

that
PL ⊆

⋂

σ∈Σσ
P[F ′,F

′

]σ
⊆

⋂

σ∈Σσ
PL′′

σ
. So, all we have to show is that the

inclusion relationship is in fact an equality.
Since we know that both PL and

⋂

σ∈Σσ
PL′′

σ
can be modeled by

probability intervals, we will show that the lower bounds l on every
element x in these two sets coincide (and the proof for upper bounds
is similar).

For all x in X, lL′′

Σ
(x) = maxσ∈Σσ

{lL′′

σ
(x)}, with L′′

Σ the probability
interval corresponding to

⋂

σ∈Σσ
PL′′

σ
and L′′

σ the probability interval
corresponding to a particular permutation σ. We must now show that,
for all x in X, lL′′

Σ
(x) = lL(x).

Given a ranking of elements of X, and by applying successively Equa-
tions (11) and (12), we can express the differences between bounds
l′′(xi) of the set L′′ and l(xi) of the set L in terms of set of bounds L.
This gives, for any xi ∈ X:

l(xi) − l′′(xi) = min(l(xi), 0 +
∑

xi∈Ai−1

(u(xi) − l(xi)),

(14)

0 +
∑

xi∈Ac
i

(u(xi) − l(xi)), (l(xi) +
∑

xj 6=xi

xj∈X

u(xj)) − 1, 1 −
∑

xi∈X

l(xi))
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We already know that, for any permutation σ and for all x in X, we
have lL′′

σ
(x) ≤ lL(x). So we must now show that, for a given x in X,

there is one permutation σ such that lL′′

σ
(x) = lL(x). Let us consider

the permutation placing the given element at the front. If x is the first
element xσ(1), then Equation (14) has value 0 for this element, and we
thus have lL′′

σ
(x) = lL(x). Since if we consider every possible ranking,

every element x of X will be first in at least one of these rankings, this
completes the proof. �
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