%0 Journal Article %T Molecular Changes In Cardiac Tissue As A New Marker To Predict Cardiac Dysfunction Induced By Radiotherapy %+ Universidade de Lisboa = University of Lisbon (ULISBOA) %+ Service de recherche en radiobiologie et en médecine régénérative (IRSN/PSE-SANTE/SERAMED) %+ Laboratoire de Radiobiologie des expositions accidentelles (IRSN/PSE-SANTE/SERAMED/LRAcc) %+ Pôle Santé Environnement - Direction Santé (IRSN/PSE-SANTE) %+ Universidade do Porto = University of Porto %+ NOVA Medical School - Faculdade de Ciências Médicas (NMS) %A Ribeiro, Sónia %A Simões, Ana Rita %A Rocha, Filipe %A Vala, Inês Sofia %A Pinto, Ana Teresa %A Ministro, Augusto %A Poli, Esmeralda %A Diegues, Isabel Maria %A Pina, Filomena %A Benadjaoud, Mohamed Amine %A Flamant, Stephane %A Tamarat, Radia %A Osório, Hugo %A Pais, Diogo %A Casal, Diogo %A Pinto, Fausto José %A Matthiesen, Rune %A Fiuza, Manuela %A Constantino Rosa Santos, Susana %< avec comité de lecture %@ 2234-943X %J Frontiers in Oncology %I Frontiers %V 12 %P 945521 %8 2022 %D 2022 %R 10.3389/fonc.2022.945521 %K cardiotoxicity %K radiotherapy %K cardiac dysfunction %K cardiac muscle %K microvasculature %K global longitudinal strain (GLS) %Z Life Sciences [q-bio]/Bioengineering/Nuclear medicine %Z Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemJournal articles %X The contribution of radiotherapy, per se , to late cardiotoxicity remains controversial. To clarify its impact on the development of early cardiac dysfunction, we developed an experimental model in which the hearts of rats were exposed, in a fractionated plan, to clinically relevant doses of ionizing radiation for oncological patients that undergo thoracic radiotherapy. Rat hearts were exposed to daily doses of 0.04, 0.3, and 1.2 Gy for 23 days, achieving cumulative doses of 0.92, 6.9, and 27.6 Gy, respectively. We demonstrate that myocardial deformation, assessed by global longitudinal strain, was impaired (a relative percentage reduction of >15% from baseline) in a dose-dependent manner at 18 months. Moreover, by scanning electron microscopy, the microvascular density in the cardiac apex was significantly decreased exclusively at 27.6 Gy dosage. Before GLS impairment detection, several tools (qRT-PCR, mass spectrometry, and western blot) were used to assess molecular changes in the cardiac tissue. The number/expression of several genes, proteins, and KEGG pathways, related to inflammation, fibrosis, and cardiac muscle contraction, were differently expressed in the cardiac tissue according to the cumulative dose. Subclinical cardiac dysfunction occurs in a dose-dependent manner as detected by molecular changes in cardiac tissue, a predictor of the severity of global longitudinal strain impairment. Moreover, there was no dose threshold below which no myocardial deformation impairment was detected. Our findings i) contribute to developing new markers and exploring non-invasive magnetic resonance imaging to assess cardiac tissue changes as an early predictor of cardiac dysfunction; ii) should raise red flags, since there is no dose threshold below which no myocardial deformation impairment was detected and should be considered in radiation-based imaging and -guided therapeutic cardiac procedures; and iii) highlights the need for personalized clinical approaches. %G English %2 https://irsn.hal.science/irsn-03778983/document %2 https://irsn.hal.science/irsn-03778983/file/fonc_12_945521.pdf %L irsn-03778983 %U https://irsn.hal.science/irsn-03778983 %~ IRSN %~ CARDIO %~ PSESANTE %~ SERAMED