
HAL Id: irsn-03814952
https://irsn.hal.science/irsn-03814952v1

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Combined U-Pb isotopic signatures of U mill tailings
from France and Gabon: A new potential tracer to

assess their fingerprint on the environment
Aurélien Beaumais, Arnaud Mangeret, David Suhard, Pascale Blanchart,

Mejdi Neji, Charlotte Cazala, Alkiviadis Gourgiotis

To cite this version:
Aurélien Beaumais, Arnaud Mangeret, David Suhard, Pascale Blanchart, Mejdi Neji, et al.. Com-
bined U-Pb isotopic signatures of U mill tailings from France and Gabon: A new potential tracer to
assess their fingerprint on the environment. Journal of Hazardous Materials, 2022, 430, pp.128484.
�10.1016/j.jhazmat.2022.128484�. �irsn-03814952�

https://irsn.hal.science/irsn-03814952v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 

 

Combined U-Pb isotopic signatures of U mill tailings from France and 1 

Gabon: A new potential tracer to assess their fingerprint on the 2 

environment. 3 

Aurélien Beaumais
a
, Arnaud Mangeret

a
, David Suhard

a
, Pascale Blanchart

a
, Mejdi Neji

a
, 4 

Charlotte Cazala
a
, Alkiviadis Gourgiotis

a*
 5 

a 
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, 6 

USDR,  PSE-SANTE/SESANE/LRSI, Fontenay-aux-Roses, 31 Av. de la Division Leclerc, 7 

92260, France. 8 

(
*
Corresponding author: alkiviadis.gourgiotis@irsn.fr)  9 

mailto:alkiviadis.gourgiotis@irsn.fr


2 

 

Abstract 10 

Uranium milling activities have produced high volumes of long-lived radioactive processed 11 

wastes stored worldwide in near surface environment. The aim of this study is to highlight 12 

relevant tracers that can be used for environmental impact assessment studies involving U 13 

mill tailings. A multi-tracer study involving elemental content, 
238

U decay products 14 

disequilibria and stable Pb isotopes was performed in different types of U mill tailings 15 

(alkaline, acid, neutralized acid) collected from five Tailings Management Facilities in 16 

France (Le Bosc, L’Ecarpière, Le Bernardan, and Bellezane) and Gabon (Mounana). Our 17 

results showed that U and Pb concentrations range between 30-594 ppm and 66-805 ppm, 18 

respectively. These tailings have a strong disequilibrium of (
234

U/
238

U) and (
230

Th/
238

U) 19 

activity ratios (1.27-1.87 and 6-65, respectively), as well as higher 
206

Pb/
207

Pb (1.86-7.15) and 20 

lower 
208

Pb/
207

Pb (0.22-2.39) compared to geochemical background ((
234

U/
238

U) and 21 

(
230

Th/
238

U) equal to unity;
 206

Pb/
207

Pb = 1.20; 
208

Pb/
207

Pb = 2.47). In situ analyses (SEM, 22 

SIMS) showed that Pb-bearing phases with high 
206

Pb/
207

Pb are related to remaining U-rich 23 

phases, S-rich phases and potentially clay minerals or oxyhydroxides. We suggest that the 24 

combination of the 
206

Pb/
207

Pb with the (
234

U/
238

U) ratio is a relevant tool for the 25 

fingerprinting of the impact of U milling activities on the environment. 26 

 27 

Keywords 28 

Radioactive waste; Geochemistry; (
234

U/
238
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206

Pb/
207
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1 Introduction 31 

U mill tailings are the radioactive residual waste of the mining and milling of U-ores (crushed 32 

and leached ore residue), which is the first step of the nuclear fuel cycle (Landa, 1980, Landa, 33 

1999, IAEA, 2004; Landa, 2004, Abdelouas, 2006, Campbell et al., 2015). Uranium mining 34 

and milling activities involved around 250 sites in France from 1948 to 2001, and produced 35 

50 Mt of tailings resulting from the chemical extraction of U from the U-ore, as well as 170 36 

Mt of mine waste rock (database: Programme MIMAUSA, 2019). These tailings are now 37 

disposed into 17 Tailing Management Facilities (TMFs) spread over 16 sites in France (e.g. 38 

L’Ecarpière, Jouac, Bellezane, Le Bosc; Fig. 1). In Gabon, uranium mining and/or milling 39 

activities involved around 5 sites from 1961-1999 and produced 7.5 Mt of tailings from 40 

Mounana milling plants (Loueyit et al., 2000). The tailings were disposed into the Mounana 41 

Tailing Management Facility.  42 

Milling consists of the mechanical and the chemical processes allowing the concentration of 43 

the uranium fraction from the ore (Landa, 1999). Ores that contain limestones contents 44 

greater than 15% are usually leached with alkaline solutions using sodium carbonate-45 

bicarbonate, while most other ores are leached using sulfuric acid. The uranium extracted by 46 

the leaching solution is concentrated by solvent extraction or solid-phase extraction using 47 

ion-exchange resins and subsequent precipitation (with ammonia, magnesium oxide, 48 

hydrogen peroxide) of a uranium ore concentrate (~85 wt. % of U). The leached ore residues 49 

(i.e. tailings) are transferred into a waste-retention pond, or in a mine-out underground-50 

working. Sometimes, the mill waste solution is also added to the tailings in the disposal. The 51 

waste slurries (barren solid and liquid) at acid leach mills are sometimes neutralized (usually 52 

with lime or calcium carbonate) prior to discharge in order to precipitate contaminants (e.g. 53 

calcium sulfate, Fe-oxyhydroxide) (Nirdosh, 1987; Somot et al., 2002; Ballini et al., 2020; 54 
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Chautard et al., 2020). The water released from tailings impoundments is typically treated 55 

with Ba chloride to allow the precipitation of radiobarite (Ra-rich barite) (Ring, 1982; 56 

Snodgrass, 1990). 57 

U-ores are enriched in U decay products, mainly U-238 series that include 
234

U (half-life: 58 

0.246 Ma), 
230

Th (half-life: 75.4 ka), 
226

Ra (half-life: 1602 a), 
210

Pb (half-life: 22.3 a). After 59 

the chemical extraction of U (~90%) from U-ores, 
238

U decay products and one part of initial 60 

U remain in the U mill tailings. Therefore, U mill tailings hold ~ 85% of the radioactivity of 61 

the initial U-ore (Landa, 2004), and thus provisions are taken with regard to their potential 62 

radiological impact. Uranium and its radioactive decay products can be transferred from U-63 

mine sites or TMFs in the environment via mine drainage, mine water runoff, or erosion even 64 

decades after cessation of the mining activities (Abdelouas, 2006; IAEA, 2004; Cuvier et al., 65 

2016; Stetten et al., 2018; Mangeret et al., 2020; Gourgiotis et al., 2020; Martin et al., 2020). 66 

However, weathering and erosion of local bedrock, such as U-rich granite, could also allow 67 

the transfer of a significant amount of U and its radioactive products in the environment 68 

(Bernhard, 2005; Owen and Otton, 1995; Regenspurg et al., 2010; Lefebvre et al., 2021a, 69 

Lefebvre et al., 2021b). Fingerprinting the potential sources of radioactive elements in the 70 

vicinity of TMF would help for the management of U mine tailings as well as contaminated 71 

sediments or soils. 72 

Various tracers, such as elemental content, rare earth elements, and also isotopes (e.g. U, Th, 73 

Pb) have been previously suggested in order to fingerprint the origin of U-rich material, such 74 

as U-ores and U ore concentrate (Keegan et al., 2008; Varga et al., 2009; Svedkauskaite-75 

Legore et al., 2007; Svedkauskaite-Legore et al., 2008; Keegan et al., 2012; Spano et al., 76 

2017a, b; Corcoran et al., 2019). Geochemical studies of U mill tailings were mainly focused 77 

on their elemental content, U speciation and U-series disequilibrium (Somot, 1997; Somot et 78 

al., 1997a; Somot et al., 1997b; Somot et al., 2000; Somot et al., 2002; Pagel and Somot 79 
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2002; Othmane et al., 2014; Déjeant et al., 2016; Liu et al.,  2017; Robertson et al., 2019; 80 

Ballini et al., 2020, Chautard et al., 2020) and only one study focused on stable Pb isotopic 81 

signatures of bulk U mill tailing samples (Santos and Tassinari, 2012). Two others studies 82 

provided Pb isotopic values for only one bulk U mill tailing that was used as an endmember 83 

in environmental studies (Dang et al., 2018; Liu et al., 2018), while Pb isotopic values from 84 

particles retained on filters related to the filtration process of waters collected in boreholes in 85 

U mill tailing dam were also reported (Gulson et al., 1989).  86 

Natural uranium is a mixture of three radioactive isotopes: 
238

U (99.274%; half-life: 4.468 87 

Ga), 
235

U (0.720%; half-life: 0.704 Ga) and 
234

U (0.005% half-life: 0.246 Ma).  (
234

U/
238

U) 88 

activity ratios are widely used in geosciences and environmental sciences as a powerful 89 

process tracers, as this ratio can show a disequilibrium during fluid-rock interaction due to 90 

the so-called alpha recoil effect: (1) direct ejection of the α-recoiled 
234

Th (which decay into 91 

234
U) from the solid phase into the solution (Kigoshi, 1971) and (2) damages to the crystal 92 

lattice and/or (3) the oxidation of 
234

U(IV) into 
234

U(VI) during the alpha decay results in the 93 

preferential release of the 
234

U into solution (e.g. Chabaux et al., 2003). Thus, it comes that 94 

the waters are generally characterized with (
234

U/
238

U) > 1, while the recently weathered 95 

product usually show (
234

U/
238

U) < 1 (e.g. Osmond and Cowart, 1976; Dequincey et al., 96 

2002; Chabaux et al., 2003; Dosseto et al., 2008). The (
234

U/
238

U) ratios measured in 97 

worldwide waters (e.g. river, seawater, groundwater) range from 0.5 to 40 (Osmond and 98 

Cowart, 1976; Gilkeson and Cowart, 1987; Osmond and Ivanovitch, 1992), and (
234

U/
238

U) 99 

ratios measured in altered product (e.g. soil, laterite) range from 0.5-1.8 (Suhr et al., 2018 and 100 

references therein). Waters that interacted with U mill tailings could exhibit high U content, 101 

and (
234

U/
238

U) close to unity, as shown by studies of groundwater samples in the vicinity of 102 

U mill tailing disposals (Zielinsky et al., 1997; Kamp and Morrison, 2014), while weathered 103 

profiles developed on U mineralized area show (
234

U/
238

U) that range from 0.89 to 1.20 104 
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(Shirvington et al., 1983; Lowson et al., 1986; Ahamdach et al., 1991). The average 105 

(
234

U/
238

U) activity ratio value recorded in worldwide U-ores of various deposit types is 106 

1.00±0.10 (2σ, n=181; Richter et al., 1999; Uvarova et al., 2014; Keatley et al., 2021).  107 

 (
230

Th/
238

U) and (
226

Ra/
230

Th) activity ratio are widely used in geosciences and 108 

environmental sciences as powerful process tracers, as U-Th-Ra fractionate during fluid-rock 109 

interaction, U and Ra being preferentially mobilized into the fluid phase compared to Th 110 

(Chabaux et al., 2003). For instance, the (
230

Th/
238

U) tracer allow to fingerprint the addition 111 

(low 
230

Th/
238

U) or loss (high 
230

Th/
238

U) of U in a weathering profile. The (
230

Th/
238

U) 112 

activity ratio was used to highlight the U mobility (Mangeret et al., 2018; Gourgiotis et al., 113 

2020) in wetlands mainly impacted by particle transport from U mining activities. For U mill 114 

tailings, the (
230

Th/
238

U) activity ratio was also used to quantify the extraction yield of 115 

uranium (Somot, 1997), while the (
226

Ra/
230

Th) was used to fingerprint the mobility either of 116 

226
Ra or of 

230
Th in the disposals (Somot et al., 2002; Pagel and Somot, 2002). 117 

(
210

Pb/
226

Ra) activity ratio is also used in geosciences as a geochronometer for processes 118 

occurring within the time scale of a century, as the selective high mobility of gaseous 
222

Rn 119 

radionuclide (which is the decay product of 
226

Ra) can create a disequilibrium between 
226

Ra 120 

and 
210

Pb (Reagan et al., 2017; Li et al., 2021). 
226

Ra and 
210

Pb activities were also used in 121 

environmental sciences as tracer of the impact of U milling activities on the environment 122 

(Strok and Smodis, 2013a; Strok and Smodis, 2013b; Sauvé et al., 2021). 123 

Radiogenic lead isotopes 
206

Pb, 
207

Pb, 
208

Pb are respectively the stable end-products of the 124 

decay chains of 
238

U (99.27%; half-life: 4.47 Ga), 
235

U (0.72%; half-life: 0.70 Ga) and 
232

Th 125 

(99.98%, half-life: 14.1 Ga) radionuclides, while the stable 
204

Pb isotope is only primordial. 126 

These isotopes are widely used in geosciences and environmental sciences as a powerful 127 

source tracers, as they do not fractionate significantly during geological processes or 128 
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chemical processes occurring in industrial plants. Moreover, radiogenic lead isotopes have 129 

commonly been used for U-ore exploration purposes (Dickson et al., 1985, Dickson et al., 130 

1987; Quirt and Benedicto, 2020) and also in a few studies related to isotope fingerprinting of  131 

the dissemination U mine material in the environment (France: Cuvier et al., 2016; 132 

Gourgiotis et al., 2020; Martin et al., 2020; Worldwide:  Bollhöfer et al., 1989; Coetzee et al., 133 

2006; Santos and Tassinari, 2012; Dang et al., 2018; Liu et al., 2018), as U-rich minerals (e.g. 134 

~88 wt. % of U in uraninite) are highly enriched in both uranogenic 
206

Pb (the most 135 

abundant) and 
207

Pb (the second most abundant) compared to 
208

Pb and 
204

Pb isotopes. 136 

Therefore, U-ore have a specific Pb isotopic signature compared to Pb-bearing rocks (e.g. 137 

peridotite, basalt, granite, Pb-ore; Stacey and Krammers, 1976) or leaded materials coming 138 

from anthropogenic activities (e.g. gasoline or industrial emissions; Monna et al., 1997) on 139 

Earth’s (
204

Pb: 1.0-1.7%; 
206

Pb: 20.8-27.5%; 
207

Pb: 17.6-23.7%; 
208

Pb: 51.3-56.2%; Berglund 140 

and Wieser, 2011). This specific isotope signature depends on the U-ore content in U and Th, 141 

the age of mineralization and the rate of mixture between the radiogenic (Pb from the U-ore) 142 

and common Pb. 143 

The main objective of this study was to explore if 
238

U-series disequilibrium and stable lead 144 

isotopes can be used as potential relevant tracers to highlight the uranium mine and mill 145 

tailings impact on the environment. Actually, there is no or little information in the literature 146 

on this topic. In order to answer this question, we analyzed in this study the elemental 147 

content, 
238

U-chain disequilibrium (bulk sample analysis) and Pb isotopes composition (bulk 148 

sample and in situ micro-analysis) of different types of U mill tailings collected in five 149 

Tailings Management Facilities: alkaline mill tailings (Le Bosc, France), neutralized acid mill 150 

tailings (L’Ecarpière, Le Bernardan, Bellezane, France), and acid mill tailings (Mounana, 151 

Gabon). The 
238

U-chain disequilibrium was studied first in order to determine if there is a 152 

specific signature associated to the U mill tailings. Secondly, particular attention was paid to 153 
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stable Pb isotopes to figure out if the specific Pb isotope signature of the U-ores (hereafter 154 

radiogenic Pb) is preserved in the U mill tailings. Moreover, a first insight into Pb-bearing 155 

phases in U mill tailings was carried out using SEM and SIMS in-situ techniques in order to 156 

determine whether the Pb from the U-ore is still associated with the remaining primary U-157 

bearing phases or with post-treatment neo-formed mineral phases. This work bring new 158 

insights into the fingerprinting of the impact of U milling activities in the environment. 159 

 160 

2 Materials and Methods 161 

2.1 Site description and sampling 162 

The U mill tailings of this study were collected between 1985 and 2011 by the IRSN (French 163 

Institut of Protection and Nuclear Safety (IPSN) before 2002) and are now stored at IRSN-164 

Fontenay-aux-Roses (Table 1). This set of samples cover various types of U mill tailings 165 

treatments from different types of U-ores of various ages: four neutralized acid U mill tailings 166 

derived from Paleo-Mesozoic granite-related ores from France (ECA-85, JOU-97, JOU-DT, 167 

BZN samples), two alkaline U mill tailings derived from Mesozoic sandstone-related ores 168 

from France (LOD-FS, LOD-MA samples) and one acid U mill tailing derived from 169 

Proterozoic sandstone-related ores from Gabon. The samples have been stored in special 170 

ventilated cabinets at room temperature (20 °C) and have not been conserved under anoxic 171 

conditions nor under specific sealing conditions preventing 
222

Rn emanation. The precise 172 

sampling area and method in the respective TMFs is not known.  173 

The alkaline U mill tailing samples are from Le Bosc (France). U-mineralization are tectonic-174 

lithologic sandstone-related deposits and are located in the Lodève basin. U-ores (0.28 wt. % 175 

on average) were mainly mined in two deposits (Mas Lavayre and Mas d’Alary). U 176 
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mineralization formed during two events 183-172 Ma and 103-113 Ma ago and consist 177 

mainly of pitchblende and U associated with organic matter. The extraction of U from U-ore, 178 

using an alkaline chemical treatment with sodium carbonate and bicarbonate solution due to 179 

their high carbonate content, generated 4.1 Mt of dynamic mill tailings at the SIMO (Société 180 

Industrielle des Minerais de l’Ouest) Le Bosc mill between 1950 and 1997.  181 

The acid U mill tailing sample is from Mounana Tailing Management Facility (Gabon 182 

sample). U mineralizations are tectonic-lithologic sandstone-related deposits and are located 183 

in the Franceville Basin. U-ores (0.37 wt. % on average) were mainly mined in five deposits 184 

(Mounana, Oklo, Okelobondo, Boyindzi, Mikouloungou). U-mineralizations formed 2.05 Ga 185 

ago (Gancarz, 1978) and consist mainly of pitchblende-uraninite associated with organic 186 

matter (Pagel and Somot, 2002; Lecomte et al., 2020). The extraction of U from U-ore using 187 

a chemical treatment with sulfuric acid generated 7.5 Mt of mill tailings between 1961 and 188 

1999 by the COMUF (Compagnie des Mines d’Uranium de Franceville).  189 

The neutralized acid mill tailing samples (chemical treatment with sulfuric acid at 65°C and 190 

neutralization of barren residues and solutions with CaCO3 and/or lime) are from l’Ecarpière, 191 

Le Bernardan and Bellezane Tailings Management Facilities. The related U-mineralizations 192 

are granite-related deposits.  193 

U-ores (0.10 wt. % on average) milled at the SIMO Ecarpière plant were mainly mined in 194 

three deposits (Ecarpière, Commanderie, Chardon) located in the Mortagne granitic massif 195 

and its surrounding metamorphic series. U mineralization formed 322-308 and 286-264 Ma 196 

ago and consists mainly of pithchblende-uraninite (Cathelineau et al., 1990; Horie and 197 

Hidaka, 2019). The extraction of U-ore generated 11.4 Mt of tailings (7.6 from dynamic 198 

leaching and 3.8 from heap leaching) from 1952-1990.  199 
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Mill tailings disposed at the Bernardan open pit were generated at the SMJ mill (Société des 200 

Mines de Jouac, ex-Dong Trieu ; Jouac, France) from 1978 to 2002 from U-ores (0.57 wt. % 201 

on average) that were mined in the Mailhac sur Benaize mining division (mainly Bernardan 202 

and Les Loges deposits). The U-ores came mainly from Western Marche granitic Massif (e.g. 203 

Bernardan episyenitic deposit) and from surrounding gneisses (Piégut deposit). The U 204 

deposits at Piégut formed 280 Ma ago (Turpin and Leroy, 1987), while those at Bernardan 205 

formed 170-140 Ma ago (Patrier et al., 1997) and consists mainly of pitchblende and 206 

coffinite.  207 

1.57 Mt of mill tailings (1.51 Mt from dynamic leaching and 0.06 from heap leaching) 208 

disposed in the two open pits at Bellezane Tailing Management Facility (from 1989-1993) 209 

were generated at the SIMO mill located at Bessines sur Gartempe (Ballini et al., 2020). The 210 

U-ores (0.143 wt. % on average) were mined in the La Crouzille mining division and came 211 

from the Saint Sylvestre granitic Massif. The U deposits formed 276-270 Ma ago and 183-212 

170 Ma ago (e.g. Margnac Fanay deposits: Leroy and Holliger 1984; Cathelineau et al., 1990) 213 

and consists mainly of pitchblende and coffinite, as well as surficial minerals, such as 214 

autunite and gummite. 215 

Sample information is summarized in Table 1 and supplementary information about the 216 

milling processes can be found in the supplementary materials section.  217 

 218 

2.2 Elemental and isotopic analyses 219 

Around 50 mg of sample were fully digested using a mixture of concentrated HF-HNO3-220 

HClO4 (1:1:0.3) ultrapur® acids in Savillex® PFA vials at 90°C on a hotplate during 48h, 221 

then dried down at 160°C overnight until full dryness. Then, the residues were taken up two 222 

times in 10 drops of concentrated HNO3 and dried down. Finally, the residues were dissolved 223 
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in 40 ml of 3M HNO3. Aliquots of these stock solutions were used for elemental analysis 224 

(ICP-AES and QQQ-ICP-MS), as well as U, Th and Pb isotopic analysis performed by QQQ-225 

ICP-MS and HR-ICP-MS. 226 

2.2.1 Elemental analyses 227 

All samples were analysed for major and trace elements. Major element analyses (Al2O3, 228 

Fe2O3, MgO, CaO, Na2O, K2O, P2O5, MnO, TiO2) of whole rock samples were performed in 229 

solution by ICP-OES Thermo Scientific ICAP-7000®.  S content of the samples was 230 

analysed using an elemental analyser FlashSmart (ThermoScientific) in CHNS mode, after 231 

calcination of the sample under oxygen steam at 1400°C and further oxidation of the 232 

produced gas by contact with Cu oxides. Trace element concentrations (Pb and Ba) of whole-233 

rock samples were determined in solution by QQQ-ICP-MS Agilent Technologies 8800® 234 

(PATERSON analytical platform, IRSN Fontenay-aux-Roses, France) using a standard 235 

calibration regression based on the analysis of standards having various elemental content 236 

that encompass the range of variation of elemental content of the analysed samples. A 237 

machine drift correction based on a Bi spike was also applied. Thus, a Bi solution was mixed 238 

with the sample before the introduction into the nebuliser using a 3 port T-junction. The Pb 239 

content was calculated by taking into account the concentrations of each Pb isotope (
204

Pb, 240 

206
Pb, 

207
Pb, 

208
Pb) due to the important contrast of the Pb isotope composition between the U 241 

mill tailing samples and the Pb calibration standards (natural Pb abundances). Uncertainties 242 

for all analyses are lower than 10 % (Supplementary Table 1).  243 

2.2.2 Stable Pb isotopes analyses 244 

Aliquot of the solutions (3M HNO3) containing more than 200 ng of Pb were taken up and 245 

dried down on a hot plate at 90°C. Then, the residues were evaporated and dissolved two 246 
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times in 10 drops of concentrated ultrapur® HBr. Then, the residues were dissolved in 1 mL 247 

of ultrapur® 0.2M HBr.  248 

Chemical separation of lead from others elements was carried out in a class 10000 laminar-249 

flow hood using only reagent produced from ultrapure® acid (Merck) and 18.2 MΩ.cm
-1

 250 

ultrapure water (Milli-Q ultrapure water system, Merck Millipore). Pb was separated from the 251 

matrix and interfering element by ion-exchange gravity chromatography, using 100 µl of 252 

anionic resin BioRAD AG1-X8 100-200 mesh loaded into a 1 mL pipet tips, based on a 253 

protocol adapted from Manhès et al. (1984). After 4 cleaning steps of the resin (1 mL of 254 

0.25M HNO3, water, 0.2M HCl, water) and a conditioning step of the resin with 1 mL of 255 

0.5M HBr, the dissolved sample was introduced into the column. Then, the matrix elements 256 

were eluted with 5 mL of 0.5M HBr, and finally the Pb was eluted with 5 mL of 0.2M HCl. 257 

The overall Pb yields after the purification were higher than 90%, while the total procedural 258 

chemistry blanks during the course of this study were less than 150 pg. These values are 259 

totally negligible in comparison to the amount of Pb present in the samples (higher than 1µg). 260 

Lead isotopes analyses were performed using an HR-SF-ICPMS Thermo Scientific Element 261 

XR (PATERSON analytical platform) using the standard-sample bracketing technique. The 262 

certified reference material NIST981 was run before and after each sample in order to correct 263 

all the Pb isotopic ratios for the mass bias using an exponential law with the values 264 

recommend by Doucelance and Manhes, 2001. Each run consists of 15 runs of 100 passes, of 265 

10 ms per canal (i.e. 2 canals). The average 
204

Pb/
207

Pb, 
206

Pb/
207

Pb, 
208

Pb/
207

Pb ratios 266 

measured for certified reference materials were 0.065±0.002, 1.09±0.01, 2.35±0.05, (2SD, 267 

n=4) for NIST981 (common lead), and 0.00503±0.00001, 14.0±0.1, 0.197±0.002, (2SD, n=3) 268 

for NIST983 (radiogenic lead) and for international rock standards were 0.064±0.002, 269 

1.21±0.01, 2.46±0.03, (2SD, n=3) for AGV2 and 0.064±0.001, 1.20±0.01, 2.48±0.01, (2SD, 270 

n=3) for BCR-2. 271 
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2.2.3 U-Th isotopes analyses by ICP-MS 272 

The 
234

U/
238

U isotopes ratios as well as the 
238

U and 
230

Th content used for the calculation of 273 

the 
238

U/
230

Th were determined by isotope dilution mass spectrometry (
238

U/
236

U, 274 

230
Th/

229
Th).  275 

Aliquots of the stock solutions (3M HNO3) were taken up and mixed with a 
233

U-
236

U-
229

Th 276 

triple spike (mixture of certified reference materials 
233

U-
236

U enriched solution IRMM3636 277 

with 
229

Th-enriched solution described in Essex et al. (2018)). 278 

Chemical separation of U and Th from the other elements was carried out following the 279 

protocol described in Douville et al. (2010) in a fume-hood using UTEVA resin and high 280 

purity reagent made from distilled acids (evapoclean system for HCl, Savillex DST1000 281 

system for HNO3) and ultrapure water. Column were cleaned and conditioned using 3M 282 

HNO3. Samples were introduced into the column. Matrix elements were discarded using 4 283 

mL 3M HNO3. Th was then eluted using 4 mL 3M HCl, and finally U was eluted using 5 mL 284 

1M HCl. After separation, Th fractions were spiked with IRMM3636 solution. 285 

U and Th analyses were performed using a QQQ-ICPMS Agilent Technologies 8800® 286 

(PATERSON analytical platform). The instrumental mass bias correction was performed 287 

using the certified 
233

U/
236

U ratio of the IRMM3636 solution. In order to assess the precision 288 

and the accuracy of our measurement (Supplementary Table 1), we prepared solutions from 289 

Harwell Uraninite (HU-1) which is known to be close to secular equilibrium with respect to 290 

234
U/

238
U = (54.903±0.011) × 10

-6
) and to 

230
Th/

238
U = (1.6953±0.0003) × 10

-5
 (Cheng et al., 291 

2013). 292 

2.2.4 Th-230, Ra-226 and Pb-210 analyses by gamma spectrometry 293 

The activities of 
238

U-series nuclides were determined in the U mill tailing samples at the 294 

IRSN/LUTECE laboratory using either (i) a High Purity coaxial Germanium detector (EGPC 295 
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20, Intertech) or (ii) a well-type HP Ge detector (GWL-220-15, ORTEC®). The first detector 296 

displays a better resolution (0.75 and 1.75 keV at the photopeaks 122 keV of 
57

Co and 1332 297 

keV for 
60

Co), two times lower than the well-type detector, while for the latter a significant 298 

higher efficiency was obtained for low energy rays (i.e. the peak of 
210

Pb at 46.5 keV) which 299 

was therefore appropriate for the analysis of low-weight solid samples.  These two detectors 300 

were calibrated according to the international IAEA standards RGU-1 and RGTh-1, two 301 

silica-diluted ores of U and Th respectively, as it was performed previously (Mangeret et al., 302 

2018, Mangeret et al., 2020, Supplementary Table 1). The 
230

Th activities were measured at 303 

67.7 KeV, 
226

Ra activities were measured from the 
214

Pb rays at 295.2 and 351.9 keV and the 304 

214
Bi ray at 609.3 keV. 

210
Pb activities were determined from the ray at 46.5 keV. The 305 

samples have been sealed (to prevent any loss of gaseous 
222

Rn) 3 weeks before the analysis 306 

in order to reach the complete regrowth of both 
214

Bi and 
214

Pb. From 39 to 94 g of sample 307 

were used for analysis performed by the coaxial detector, while lower amounts (from 1.4 to 308 

2.6 g) of sample were used for analysis with the well-type detector.  309 

 310 

2.4 In situ analysis 311 

In order to identify radiogenic Pb-bearing phases, two U mill tailings (Gabon and JOU-97) 312 

containing the highest level of radiogenic Pb were selected for further in-situ analysis using 313 

secondary electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) 314 

techniques. For this study, around a hundred milligrams of U mill tailing samples were 315 

embedded in an Epoxy resin (modified recipe of EMbed-812 kit, EMS, Hatfield; with BDMA 316 

replacing the DMP-30 in order to reduce the resin viscosity) and degassed under vacuum 317 

before being transfered into a 10 mm diameter stainless steel ring holder. The resin 318 

polymerization was reached after 48h at 60°C in an oven. The samples sustained several 319 
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polishing steps (1) using a 5 µm Si-C disk, followed by (2) a 3 µm and then a 1 µm diamond 320 

powder onto soft-disks. The samples were finally coated with a thin layer of C. 321 

2.4.1 SEM analyses 322 

In order to identify the Pb-rich phases, the secondary electron microscope (SEM) Hitachi 323 

S3500N (LUTECE platform, IRSN, Fontenay-aux- Roses) was used to localize the phases 324 

that host heavy elements using the SEM-Back Scattered Electron (BSE) detector under a 325 

voltage of 25 kV accelerating voltage. Then, the SEM-Energy Dispersive X-ray Spectroscopy 326 

(EDS) analysis was performed with two EDS Brücker 5030 XFlash SDD detectors working 327 

under a voltage of 25 keV at a working distance of 16.8 mm in order to characterize the 328 

elemental composition of the phases, especially with respect to Pb and U. The SEM-EDS 329 

data were acquired at 8 µs/pixels at 100 kcps/s using the Esprit software 1.9 for a pixel size of 330 

0.3 µm. 331 

2.4.2 SIMS analyses 332 

The SIMS analyses of Pb-rich phases were performed using a CAMECA IMS 4F-E7 333 

instrument (PATERSON Platform, IRSN, Fontenay-aux-Roses) in order to localise the 334 

radiogenic (uranogenic) Pb-bearing phases (i.e. 
206

Pb-rich, 
208

Pb-poor) at the grain scale. For 335 

this preliminary study, only images were acquired, not isotope ratios, as the isotopic 336 

difference between the common Pb and the radiogenic Pb is very high. A homemade three 337 

holes sample holder were especially designed in order to introduce 3 samples (hosted in 1 338 

mm diameter rings) at the same time in the analysis chamber (pressure of 5 × 10
-9

 mbar) of 339 

the instrument. Analysis were performed with a 1 nA, 12 kV O2
-
 primary beam projected on a 340 

~ 1 µm area which scan the area of interest (raster of 250 µm x 250 µm for JOU-97 and 500 x 341 

500 µm for Gabon). The positively charged secondary ions or molecules were accelerated at 342 

10 kV into the mass spectrometer, measured with a mass resolution of 400 by ion counting in 343 
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monocollection mode and sequentially converted into an image with a lateral resolution of 344 

around 1 µm. Each analysis was preceded by a 5-min pre-sputtering performed with a ~ 100 345 

nA primary beam. The analysis of JOU-97 sample consisted in 65 integration cycles of 1 s 346 

for 
23

Na, 
24

Mg, 
27

Al, 
28

Si, 
39

K 
40

Ca, 
56

Fe (major elements)  and 300 integration cycles of 5 s 347 

for 
204

Pb, 
206

Pb, 
207

Pb, 
208

Pb, and of 2 s for 
238

U
16

O. The analysis of Gabon sample consisted 348 

in 80 integration cycles of 1 s for major elements and 700 integration cycles of 10 s for
 
Pb 349 

isotopes and 
238

U
16

O. The mass calibration of the instrument was performed using enriched 350 

material, such as for instance a Si-rich plate, a Pb-rich metal plate having a common Pb 351 

isotopic composition, or a U-doped resin.  352 

 353 

3 Results and discussion 354 

3.1 Elemental content of U mill tailings 355 

The major elements contents (Al, Mg, Fe, Ca, Na, K, Ti, Mn, P) of U mill tailings from 356 

France are close to the average value reported for the upper continental crust (UCC) (Rudnick 357 

and Gao, 2014; Fig. 2). However, the major elements contents of the U mill tailings from 358 

Gabon show a strong depletion of Mg, Ca, Na, and Mn (in a lesser extent for Al, K, Fe, Ti, P) 359 

compared to UCC, which is probably due to the low content of these elements in the 360 

mineralized quartzite sediment (Gauthier-Lafaye et al., 1986; Bankole et al., 2020).  361 

The Ba content of U mill tailings is similar to UCC. This suggests either that the potential 362 

addition of radiobarite (precipitated during the treatment of the liquid effluent with BaCl2) 363 

into the U mill tailings had only a minor impact on the bulk Ba content of U mill tailings or 364 

that the Ba content of U-ores was lower compared to the UCC. 365 
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The neutralized acid mill tailings show a high enrichment in S with values that range from 20 366 

to 60 times higher than the one for the UCC, while the alkaline U mill tailings do not display 367 

a S enrichment or depletion. This demonstrates the impact of the addition of S during the 368 

milling via sulphuric acid leaching and the precipitation of secondary sulphate on the U mill 369 

tailings composition. The lack of S enrichment in U mill tailings from Mounana, Gabon 370 

could be related to the lack of neutralization process (the addition of Ca-carbonate or lime 371 

allows the precipitation secondary CaSO4 into the U mill tailing). The low S content of Le 372 

Bosc (LOD-FS, LOD-MA) alkaline mill tailing samples could be explained by the lack of 373 

sulfuric acid involved in the treatment of the U-ores.  374 

All U-mill tailings of this study exhibit a strong U enrichment with values that range from 10 375 

to 200 times higher than the UCC’s one. This U enrichment is consistent with the uncomplete 376 

U extraction (i.e. extraction yields < 100%) from the U-ore (Fig. 2).  U mill tailings display 377 

also a high enrichment in Pb with values that range from 6 to 80 times higher than the UCC’s 378 

one. Except some particular U mineralization (e.g. parsonsite which is a hydrated phosphate 379 

of U and Pb related to weathering processes) that contains high common Pb concentrations, 380 

the Pb enrichment is generally related to the accumulation of stable radiogenic Pb produced 381 

by the U-ore. In addition, the U mill tailings show no Th (
232

Th) enrichment, which suggests 382 

that the U-ores were not enriched in Th (
232

Th). 383 

Detailed information about element concentrations can be found in table 2.  384 

 385 

3.2 U-238 decay chain disequilibrium in U mill tailings 386 

In a closed system the secular equilibrium (activity ratios equal to one) of the U-238 decay 387 

chain is reached in about 2 million years (i.e. ~ 8 times of the longer half-life decay product: 388 
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234
U). Any deviation from the secular equilibrium can be used to highlight physicochemical 389 

processes that led to the gain or loss of the chain radionuclides.   390 

3.2.1 (
234

U/
238

U) activity ratio 391 

The (
234

U/
238

U) activity ratios of the studied U mill tailings of this study range from 1.27 392 

(LOD-FS and BZN samples) to 1.87 (Gabon sample) (Fig. 3a; Table 3). The U mill tailings 393 

samples from Lodève and from Mounana have higher (
234

U/
238

U) ratios compared to the 394 

values from the corresponding U-ores reported by Richter et al. (1999) (respectively 0.94 and 395 

0.99). Overall, the U mill tailings of this study have significantly higher (
234

U/
238

U) activity 396 

ratios compared to the average value ((
234

U/
238

U) = 1.00±0.10, 2σ, n=181) recorded in 397 

worldwide U-ores of various deposit types (Richter et al., 1999; Uvarova et al., 2014; Keatley 398 

et al., 2021) and to typical values (0.99±0.19, 2σ, n=335) of natural weathered materials 399 

(Suhr et al., 2018 and references therein) or weathered profiles developed on U mineralized 400 

area that show (
234

U/
238

U) ranging from 0.89 to 1.20 (Shirvington et al., 1983; Lowson et al., 401 

1986; Ahamdach et al., 1991). In addition, U mill tailings have also higher (
234

U/
238

U) 402 

activity ratios compared to the average value for U-ore concentrate (0.97±0.09, 2σ, n=56; 403 

Kayzar-Boggs et al., 2021) that derived from the U-rich leachate during the milling process.  404 

Due to the high atomic mass, the high (
234

U/
238

U) activity ratios of U mill tailings cannot be 405 

explained by U isotope fractionation (kinetic or at equilibrium) during mining and milling 406 

processes or mill tailing disposal.   407 

 During the milling process, U-ore are crushed and leached using alkaline or acid solution in 408 

order to dissolve the U-rich phases, leaving a leached ore residue corresponding to the U mill 409 

tailings. Acid-leaching experimental studies performed on U-bearing minerals (carnotite, 410 

uraninite, euxenite), using different acids (HCl, HNO3, HF, HClO4) have shown that the 411 

resulting leachates (liquid phase) have (
234

U/
238

U) < 1 (Kobashi et al., 1979), while the acid-412 
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leaching residue (solid phase) have (
234

U/
238

U) activity ratio up to 400 in the smallest grain 413 

fraction (Sheng and Kuroda, 1984, Sheng and Kuroda, 1986a; Sheng and Kuroda, 1986b; 414 

Essien et al., 1990). However, another study performed on U-bearing minerals (uraninite, 415 

samarskite) with dilute HCl reported that the leachates from uraninite samples have 416 

(
234

U/
238

U) > 1 while the leachates from the samarskite sample has (
234

U/
238

U) = 1 (Kobashi 417 

and Tominaga, 1982). More recently, acid-leaching experimental studies have been 418 

performed on U-ores using sulphuric acid in order to reproduce an industrial U-ore leaching 419 

processing (Satybaldiyev et al., 2015; Keatley et al., 2021). In the flow-through experimental 420 

study performed by Satybaldiyev et al (2015) on uraninite with dilute sulphuric acid, the 421 

leachates collected containing most of the U were characterized by a (
234

U/
238

U) < 1 (0.92-422 

1.00), which is related to the oxidation and the dissolution of uraninite. In the batch 423 

experimental study performed by Keatley et al., (2021) with diluted sulfuric acid of various 424 

vein-type U-ores including oxidized (e.g. autunite, torbernite) and reduced (e.g. uraninite, 425 

pitchblende, coffinite) U-bearing minerals, some of the leachates and residues have different 426 

(
234

U/
238

U) values (ranging from 0.83 to 1.12) compared to the bulk starting U-bearing phase, 427 

with both higher and/or lower values. In general, but not exclusively, the leachates from 428 

oxidised U-ores tend to exhibit lower (
234

U/
238

U) values, while leachates from the reduced U-429 

ores tend to show higher (
234

U/
238

U) compared to their respective U-ores. Overall, all these 430 

experiments of U-ore leaching suggest that a 
234

U-
238

U radioactive disequilibria can be 431 

produced between the leachate and the ore residue. The various type of experimentally 432 

observed 
234

U-
238

U disequilibria have been interpreted in terms of difference in oxidation 433 

states between 
238

U and 
234

U, preferential leaching of 
234

U from damaged crystal lattice due 434 

to alpha-recoil displacement, 
234

U implantation into a U-poor acid-resistant phase from the 435 

adjacent U-rich acid soluble phase, incongruent dissolution area depleted in 
234

U (near grain 436 

boundary between U-rich phase and U poor phase).  437 
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Decays of 
238

U yield alpha recoil of 
234

Th which decay via beta decays to 
234

Pa giving 
234

U. 438 

Emission of alpha recoiled nuclide forms ~20-30 nm-long damages in the crystalline lattice 439 

(Fleischer, 1980; Ordonez-Regil et al., 1989) and part of the alpha recoiled nuclides can be 440 

implanted into the outermost part of the adjacent crystal. Several authors reported that the 441 

residue of acid-leaching experiments of U-ores could have (
234

U/
238

U) > 1 suggesting that 442 

234
U is recoiled from an acid-soluble U-rich phase to a neighbouring acid-resistant U-poor 443 

phase in the U-ore (Sheng and Kuroda 1984; Sheng and Kuroda 1986a,b; Essien, 1990). As a 444 

result, U-poor phase become enriched in 
234

U through time with respect to 
238

U, while the U-445 

rich phase becomes depleted (Fig. 4.1). During dissolution via leaching, U-rich phases are 446 

preferentially removed, and thus the residue become enriched in 
234

U (Fig. 4.2). Nuclides 447 

located into the alpha recoil tracks may have higher reactivity with fluid, leading to their 448 

preferential removal during acid leaching if the track has not been sufficiently annealed. 449 

However, the U mill tailings of this study exhibit (
234

U/
238

U) greater than one, which suggest 450 

that at least a fraction of the the recoil nuclides became trapped into the crystal lattice of the 451 

U-poor phase via track annealing process (Eyal and Fleischer, 1985; Lumpkin et al., 1989), 452 

thus preventing their mobility during acid-leaching. 453 

In order to explain the range of (
234

U/
238

U) values in the mill tailings a mixing model was 454 

used (Langmuir et al., 1978) between a U-rich and U-poor phases in a (
234

U/
238

U) vs. 
238

U 455 

diagram (Fig. 5). For the U-rich phase end-member (U-rich phases with their boundaries that 456 

are depleted in 
234

U by α-recoil effect), the U content was set to 700 mg.g
-1

, which is a typical 457 

average value for uraninite (Ecarpière, France: Horie and Hidaka, 2019; Worldwide: 458 

Alexandre et al., 2016), whereas the (
234

U/
238

U) ratio was set to 1, which is close to the 459 

average value for the U-ores (Richter et al, 1999 ; Uvarova et al. 2014 ; Keatley et al., 2001) 460 

and U-ore concentrates (Kayzar-Boggs et al., 2021) that derived from the U-rich leachate 461 

during the milling process. For the U-poor phase end-member, the (
234

U/
238

U) ratio was set to 462 
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400, which is the highest value reported for the acid-leach U ore residue (mixture of U-poor 463 

phases implanted with 
234

U and phases non-implanted with 
234

U, Sheng and Kuroda, 1986), 464 

while two different low level of U contents were used in order to encompass all the U mill 465 

tailing data with the mixing curves. The first one was set to 0.05 ppm of U which is an 466 

intermediate value between quartz (0.01 µg.g
-1

; Gotze et al., 2004) and K-feldspar (0.09-0.26 467 

µg.g
-1 

of U; Arzamastsev et al., 2005), which are the two dominant phases in the U mill 468 

tailings (Somot, 1997; Ballini et al., 2020). The second was set to 0.6 ppm of U which is 469 

intermediate between the value used for quartz and K-feldspar and the value for the upper 470 

continental crust (3 µg.g
-1 

of U; Rudnick and Gao, 2014). Mixing curves are drown in Figure 471 

5 and validate the process that could explain the high (
234

U/
238

U) activity ratio described 472 

above. According to the mixing model, the variation of (
234

U/
238

U) activity ratios is 473 

dependent to U concentration in the U mill tailing. This concentration is related to the initial 474 

U content of the processed U-ore and to the U extraction yield reached during the milling 475 

process.  476 

3.2.2 (
230

Th/
238

U) activity ratio and U extraction yield 477 

The (
230

Th/
238

U) activity ratios of U mill tailings range from 6.6 (Gabon sample) to 65 (ECA-478 

85 sample) (Table 3; Fig. 3a). For comparison, the U mill tailings from Australia display also 479 

(
230

Th/
238

U) values higher than 1, that range from 2.5 to 10 (Lowson and Short, 1986). In 480 

addition, the worldwide U-ore concentrates, resulting from selective U extraction from the U-481 

ore exhibit (
230

Th/
238

U) activity ratio values much lower than 1 (Keatley et al., 2021). The 482 

high (
230

Th/
238

U) activity ratio values in the U mill tailings reflect the preferential U 483 

extraction from the ore while the others 
238

U-decay products mainly remain in the U mill 484 

tailing (Landa, 1999).  485 

3.2.3 
210

Pb, 
226

Ra and 
230

Th disequilibrium 486 
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The (
226

Ra/
230

Th) and (
210

Pb/
226

Ra) were also investigated by gamma spectrometry. 487 

(
226

Ra/
230

Th) activity ratios range from 0.60 to 3.13 (Fig. 3b, Table 3). Four U mill tailings 488 

samples (LOD-FS, LOD-MA, JOU-97 and BZN) have (
226

Ra/
230

Th) activity ratios close to 489 

secular equilibrium (i.e. 0.95-1.05), which suggest that 
226

Ra and 
230

Th were not significantly 490 

fractionated during the U-ore treatment and/or subsequent U mill tailing management. 491 

However, two others U mill tailings samples (Jouac-DT, Gabon) have (
226

Ra/
230

Th) > 1, 492 

while ECA-85 sample has (
226

Ra/
230

Th) < 1. For Gabon sample, the 
226

Ra and 
230

Th 493 

disequilibrium points out the selective migration of Th due to the acidity of non-neutralized 494 

barren solutions and accumulation of 
226

Ra in the samples thanks to the precipitation of Ba-495 

Pb-Ra sulfates (Pagel and Somot, 2002). For JOU-DT sample, as suggested by Somot et al., 496 

(2002), the 
226

Ra and 
230

Th disequilibria suggests the selective migration of 
226

Ra via slightly-497 

acidic rain water. The slight disequilibrium of 
226

Ra and 
230

Th for ECA-85 samples implies 498 

either an addition of 
230

Th or a loss of 
226

Ra probably during the milling process or 499 

subsequent management steps. However, the lack of detailed information concerning the 500 

milling process and the geochemical composition of liquid effluent or underground mine 501 

waters that were occasionally added to the mine tailings in the pond/pile (Somot, 1997), as 502 

well as the sampling area and method, prevent us to decipher precisely the origin of this 503 

disequilibrium. 504 

The (
210

Pb/
226

Ra) activity ratios of the studied U mill tailings are all lower than 1 (Fig. 3, 505 

Table 3). This low activity ratio could be explained by the loss of 
222

Rn leading thus to a 506 

lower production of 
210

Pb compared to the activity of 
226

Ra. A large quantity of 
222

Rn 507 

nuclides is produced in the U mill tailings disposal and migrate into the cover materials, 508 

designed to prevent significant radon fluxes to reach the atmosphere (Ferri et al., 2002, Saâdi 509 

et Guillevic, 2016). The (
210

Pb/
226

Ra) < 1 recorded in the U mill tailing of this study are 510 
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therefore likely due to continuous 
222

Rn loss in these porous and permeable types of materials 511 

either in the disposal or during the samples storage in the laboratory. 512 

 513 

3.3 Pb isotope signature of U mill tailings 514 

3.3.1 Bulk samples 515 

The Pb isotope signature of Th-poor U-ores (France: Cathelineau et al. (1990); Gabon: 516 

Gancarz, (1978); Gauthier-Lafaye et al., (1996)) is characterized by higher (
206

Pb/
207

Pb) and 517 

lower (
208

Pb/
207

Pb) ratios compared to the common Pb isotope signature of the Present Day 518 

Average Crust (PDAC; 
206

Pb/
207

Pb = 1.20; 
208

Pb/
207

Pb = 2.47; Stacey and Krammers, 1975; 519 

Fig. 6). The U mill tailings have 
204

Pb/
207

Pb, 
206

Pb/
207

Pb, 
208

Pb/
207

Pb ratios that range from 520 

0.00396 to 0.06111, from 1.86 to 7.15 and from 0.22 to 2.39, respectively (Table 4; Fig. 6). 521 

Similarly to U-ores, the U mill tailing samples show a wider Pb isotopic range compared to 522 

the whole range reported for common Pb in chemical or natural materials in the environment, 523 

excluding U-ores (IUPAC, Berglund and Wieser, 2011), with higher (
206

Pb/
207

Pb) and lower 524 

(
208

Pb/
207

Pb) ratios compared to the values reported for the PDAC. This suggests that the 525 

radiogenic signature of the U-ores is preserved in the U mill tailings. 526 

All the U mill tailings from France display a negative linear correlation and plot along a line 527 

that link the PDAC to the range of highly radiogenic Pb composition of the U-ores from 528 

France (Fig. 6). Moreover, the U mill tailings from Gabon do not plot on this trend and 529 

exhibit a Pb isotopic composition intermediate between the PDAC and the U-ores from 530 

Gabon.  531 

The various proportion of mixing between two components are represented by a line in a Pb-532 

Pb isotopic diagram, suggesting that the U mill tailings are mixture between (1) phases that 533 
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have common Pb composition coming from either the U-ore host rock or from the reagent 534 

used for the U extraction and (2) phases that have a radiogenic Pb isotope composition of the 535 

U-ore (Gabon or France). 536 

The proportion of radiogenic Pb from the U-ore hosted in each U mill tailing was estimated 537 

using the approach (i.e. k factor) described in Gourgiotis et al. (2020). The Pb isotopes 538 

composition of the PDAC has been used for the geochemical background end-member. The 539 

206
Pb/

207
Pb

 
ratio of the radiogenic end-member used for U mill tailings from France (19.55) 540 

has been determined by the intercept (1/intercept) in a 
207

Pb/
206

Pb
 
vs.

 204
Pb/

206
Pb diagram (Fig 541 

6b). Similarly, the 
208

Pb/
207

Pb ratio of the radiogenic end-member has been calculated by the 542 

intercept in a 
208

Pb/
207

Pb
 
vs.

 204
Pb/

207
Pb diagram and was found to be 0.10. For U mill tailing 543 

from Gabon, the Pb isotopes composition of the radiogenic end-member was calculated for a 544 

Th-free U phase that crystallized 2.05 Ga ago (Gancarz, 1978; 
206

Pb/
207

Pb = 7.9 and 545 

208
Pb/

207
Pb = 0). The estimated proportion of radiogenic Pb range from 14% to 66% for U 546 

mill tailings from France and is 95% for U mill tailing from Gabon. 547 

3.3.2 Radiogenic-Pb bearing phases in the U mill tailings 548 

The samples having the highest (
206

Pb/
207

Pb) and lowest (
208

Pb/
207

Pb) ratios (GABON and 549 

JOU-97) were selected in order to determine the radiogenic Pb bearing phases. The aim of 550 

this preliminary study is to determine if the radiogenic Pb is associated to the remaining U 551 

bearing phases (probably partially altered) in the U mill tailings or if the “radiogenic Pb” is 552 

associated to neo-formed phases. Thanks to isotope imaging by SIMS, the radiogenic Pb was 553 

identified when 
206

Pb isotope signal was higher than the 
208

Pb signal (Figs. 7 and 8). 554 

Some preliminary results show that in JOU-97 sample, the radiogenic Pb was mainly 555 

identified in U-rich phases and in a lesser extent in micrometric-sized U-poor phases that 556 

potentially host Si, Al, Mg, Fe, K, Ca and Pb or S (interference of S on Pb for their respective 557 
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Kα rays) based on SEM-EDX spectrum of 18 to 27 μm
2
 areas (Supplemental figure A1). 558 

However, the precise identification of the mineralogy of theses phases is difficult to assess 559 

due to the small size of the particles, as the area taken into account for SEM-EDX spectrum 560 

could potentially involve neighbouring phases that do not host radiogenic Pb. In Gabon 561 

sample, the radiogenic Pb was encountered in U-rich and in U-free S-rich phases that could 562 

be either Pb-sulphide or Pb-sulphate. The radiogenic Pb is therefore hosted for both samples 563 

in primary U-rich phases that remain after the milling process. For GABON sample the 564 

radiogenic Pb is also encountered in U-free S-rich phases that could be either (i) remaining 565 

Pb-sulphide (galena) related to natural hydrothermal alteration of U-rich phases (Gauthier-566 

Lafaye et al., 1996) or (ii) neo-formed Pb-Ba-Ra sulphate related to the milling process 567 

involving sulphuric acid (Pagel and Somot, 2002; Schmandt et al., 2019; Rollog et al., 2020). 568 

For JOU-97 sample the radiogenic Pb is also encountered in association with micrometric-569 

sized U-poor phases that could potentially be either clay minerals or oxyhydroxides related to 570 

(i) the weathering of minerals from the mineralized granites or (ii) the rapid diagenesis of 571 

neutralized U mill tailing after deposition in the disposal (Somot et al., 2000; Somot et al., 572 

2002, Cook et al., 2018; Ballini et al., 2020; Chautard et al., 2020; Ram et al., 2021b). 573 

Moreover, U-rich phases without or with minor radiogenic Pb content were also identified 574 

(Fig. 7), suggesting U or Pb mobility (Syverson et al., 2019; Ram et al., 2021a; Ram et al., 575 

2021c; Ram et al., 2021d). 576 

 577 

3.4 Tracking the presence of U mill tailing in the environment 578 

In the context of U mines environmental impact assessment, U mill tailings are one of the 579 

source to be considered for the release of radionuclides into the environment. Transfer of 580 

radionuclides related to U mining or milling activities into the environment, where they can 581 
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accumulate (e.g. wetlands, lake sediments, soils), could occur via particulate or dissolved 582 

species transport (Bollhoefer et al., 2006; Sinclair et al., 2006; Strok and Smodis 2010; 583 

Smodis 2014; Morin et al., 2016; Liu et al., 2017; Stetten et al., 2018; Dang et al., 2018, Liu 584 

et al., 2018; Yin et al., 2019; Yin et al., 2020; Wang et al., 2019; Mangeret et al, 2020, 585 

Paradis et al, 2020; Gourgiotis et al. 2020; Wang et al., 2021; Yin et al., 2021). 586 

The U mill tailings are radioactive materials that have higher content of U (30-600 ppm) and 587 

Pb (60-800 ppm) compared to the average value encountered in the environment (3 and 10 588 

ppm, respectively). Therefore, the transfer of U and Pb from U mill tailing into the 589 

environment, via solid particles or dissolved species, would contribute to the U and Pb 590 

content in the local geochemical background. However, U-ores outcrops potentially occurring 591 

outside of the U mine sites present also similar geochemical signature with even higher 592 

content of U and Pb. Moreover, weathering and erosion of the local bedrock that is often 593 

granitic in the case of the French U-mines areas can also play an important role in increasing 594 

these concentration levels. Indeed, high U contents have already been documented in sites 595 

non-impacted by mining activities, such as Alpine soils (up to 4000 ppm) and lacustrine 596 

sediments (up to 400 ppm) (Regenspurg et al., 2010; Lefebvre et al., 2021a, b) as well as 597 

ground and surface waters (Owen and Otton, 1995) where the surrounding bedrock consists 598 

mainly of crystalline rocks that commonly contain trace amounts of U (Bernhard, 2005). 599 

The U mill tailings of this study have a Pb isotope signature with high 
206

Pb/
207

Pb and low 600 

208
Pb/

207
Pb ratios, similar to their related U-ores (Fig. 6). Therefore, for an environmental 601 

sample displaying a radiogenic isotope signature, it is not possible to decipher the origin of 602 

this signature between (1) the natural weathering of U-ore, (2) the U-ore mining activities and 603 

(3) the U milling activities, by using only stable Pb isotopes. 604 

Previous studies have shown that (
234

U/
238

U) ratio could be used to track the impact of U mill 605 

tailings in the environment, as the water that interacted with U mill tailings (Zielinsky et al., 606 
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1997; Ketterer et al., 2000; Bush and Morrisson, 2012; Kamp and Morrison, 2014; Wang et 607 

al., 2021) could have high U content associated to a (
234

U/
238

U) near to unity, which contrast 608 

with the groundwater (0.5<(
234

U/
238

U)<30; Osmond and Cowart, 1992) and the dissolved 609 

load of major rivers (1.3±0.5, 2σ;  Suhr et al., 2018) that have a lower U content associated 610 

usually with a (
234

U/
238

U)>1. The U mill tailings of this study show a disequilibrium with 611 

higher (
234

U/
238

U) activity ratios compared to (1) U-ores, (2) the average weathered solid 612 

products, excluding U-ores (
234

U/
238

U) = 0.99±0.19 (Suhr et al., 2018) or to the range covered 613 

by weathered U-mineralizations (0.89-1.20; Lowson et al., 1986). 614 

In this study we propose to use the U-Pb isotopic composition of U mill tailings which is 615 

unique as it combines both (1) the highly radiogenic Pb signature related to U-ores and (2) 616 

the high disequilibrium with (
234

U/
238

U), related to the milling process of U-ores. Thus, this 617 

signature is distinct compared to (1) U-ores, which exhibit radiogenic Pb isotopes signature, 618 

but are on average at secular equilibrium with respect to 
234

U-
238

U, and (2) weathered solid 619 

products which exhibit mostly small or moderate disequilibrium associated to a common 620 

(weathered crust, excluding U-ores) or radiogenic (weathered U mineralizations) Pb isotopes 621 

signature.  622 

The impact of a contamination from U mill tailings in the environment on the U-Pb signature 623 

of a contaminated sample was investigated with a mixing model (Langmuir et al., 1978) 624 

between the U mill tailings from this study and the PDAC (Stacey and Krammers, 1976; 625 

Rudnick and Gao, 2014) at secular equilibrium. The mixing curves are plotted in the figure 9. 626 

The results of this model show that only a fraction of 5 wt. % of U mill tailings added to a 627 

sediment is sufficient in most cases to get a material with a distinct U-Pb isotopic signature 628 

compared to the natural range, with both 
206

Pb/
207

Pb > 1.6 and (
234

U/
238

U) > 1.2.It is worth 629 

mentioning that combining Pb isotopes to U isotopes is more relevant than to (
230

Th/
238

U) 630 

activity ratio which can exhibit important variations due to chemical fractionation. Higher 631 
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238
U mobility compared to that of 

230
Th can lead to (

230
Th/

238
U) values similar to that 632 

observed in uranium mill tailings. Chemical fractionation can also influence (
210

Pb/
226

Ra) and 633 

(
226

Ra/
230

Th) activity ratios altering the initial U mill tailing signature limiting thus their use 634 

as a relevant tracer of U mill tailings. Finally, regarding elemental composition, we believe 635 

that S concentration seems to be a promising tracer to highlight the impact of acid U mill 636 

tailings or tailing activities on the environment.  637 

 638 

4 Conclusions  639 

The goal of this study was to identify relevant tracers that can be used for environmental 640 

impact assessment studies involving U mill tailings. The results put in light the U series 641 

disequilibrium in the U mill tailings, especially with higher (
234

U/
238

U) compared to most of 642 

the solid weathered products and high (
230

Th/
238

U) activity ratios related to the selective U 643 

extraction during the milling process. This high (
234

U/
238

U) activity ratios were likely 644 

acquired by the removal of labile U-rich phases by dissolution, while the neighbouring 645 

milling-resistant U-poor phases that are enriched in recoiled 
234

U remain in the U mill 646 

tailings. This study also suggest the conservation of the specific Pb isotopic signature of U-647 

ores into the U mill tailings with higher 
206

Pb/
207

Pb and lower 
208

Pb/
207

Pb compared to 648 

common lead. This specific Pb signature have been encountered in the U mill tailing into the 649 

remaining U-rich phases, (remaining or secondary) S-rich phases and potentially in 650 

association with clay minerals or oxyhydroxides. As a consequence, we recommend to use 651 

stable Pb isotopes combined with (
234

U/
238

U) activity ratios as multi-tracking tool providing a 652 

relevant fingerprinting for the impact of U milling activities on the environment. 653 
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6 Figures  658 

 659 

Figure 1: a) Geological map of France (1/1000000 series, © BRGM) and b) modified 660 

geological map of Gabon (only indicating the Paleoproterozoic Francevillian Group that host 661 

the U deposits; Bankole et al., 2020) showing the localization of the former uranium mines 662 

and the U mill Tailing Management Facilities (France: Programme MIMAUSA database; 663 

Gabon: Ossa et al., 2021). The names of the Tailing Management Facilities are reported for 664 

sites where U mill tailing samples were analysed in this study. 665 
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 666 

Figure 2: Major and trace elements patterns of U mill tailings from France and Gabon 667 

normalized to the Upper Continental Crust values from Rudnick and Gao (2014). The 668 

selected elements are ordered from the most (Al) to the less (U) abundant in the upper 669 

continental crust. 670 

 671 

Figure 3: (a) (
230

Th/
238

U) vs. (
234

U/
238

U) and (b) (
210

Pb/
226

Ra) vs. (
226

Ra/
230

Th) activity ratio 672 

diagrams. (a) Data from ICPMS measurements and (b) data from gamma spectrometry 673 

measurements. The gray dashed lines represent the secular equilibrium value for each activity 674 

ratio. The light gray field represents the (
234

U/
238

U) activity ratio values recorded in 675 



31 

 

worldwide U ores from different types of U deposits (Richter et al, 1999; Uvarova et al. 676 

2014; Keatley et al., 2001; Kayzar-Boggs et al., 2021). The values recorded in worldwide U 677 

ore concentrates (UOC) from different types of U deposits plot outside the diagram field with 678 

low (
230

Th/
238

U) ratios and are indicated with the arrow (Kayzar-Boggs et al., 2021).  679 

 680 

Figure 4: Sketch showing the process suggested by Sheng and Kuroda (1986) that would 681 

produce the (
234

U/
238

U)>1 in the U mill tailings. The implantation of 
234

Th (which decay into 682 

234
U) from a U-rich phase into U-poor phase by alpha-recoil effect (Kigoshi, 1971) associated 683 

to the annealing of the alpha-recoil damage (Eyal and Fleisher, 1985; Lumpkin et al., 1990). 684 
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The size of alpha recoil damages (20-30 nm) is coming from (Fleischer, 1980; Ordonez-Regil 685 

et al., 1989). The (
234

U/
238

U)≈1 is derived from the average value (0.97±0.09, 2σ, n=56) of U-686 

ore concentrates (Kayzar-Boggs et al., 2021) that derived from the U-rich leachate during the 687 

milling process. 688 

 689 

Figure 5: (
234

U/
238

U) vs. U diagram. Solid gray lines represent the mixing curves between a 690 

U-rich phase at secular equilibrium (black star, 700000 ppm of U) and two different U-poor 691 

phases (grey stars) that have different U contents (0.05 ppm and 0.6 ppm of U) and a 692 

(
234

U/
238

U) activity ratio of 400. The weight fractions of U-rich phase in the mix are 693 

represented with a black dot. The grey field correspond to the U-ores composition. 694 
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 695 

Figure 6: (a) 
206

Pb/
207

Pb vs. 
208

Pb/
207

Pb and (b) 
207

Pb/
206

Pb vs. 
204

Pb/
206

Pb diagrams for U 696 

mill tailings from France and Gabon. The dark gray circle represent the present day average 697 

crust (PDAC: Stacey and Krammers, 1975) and this circle includes the range of composition 698 

of chemical or natural materials encountered in the environment (Berglund and Wieser, 699 

2011). Small blue circles represent the Pb isotope ratios for U oxides from France 700 
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(L’Ecarpière: Cathelineau et al., 1990; Lodève: Lancelot et al., 1984 ; Piégut: Turpin and 701 

Leroy, 1987; Pen Ar Ran and Métairie Neuve: Ballouard et al., 2017 ; Margnac and Fanay U 702 

deposits: Leroy and Holliger, 1984). Large blue circles represent the theoritical 
206

Pb/
207

Pb 703 

ratios calculated for the first (Retail: 425 Ma) and the last (Bertholène: 40 Ma) U deposit in 704 

France reported in Cathelineau et al. (1990) using the Pb-Pb datation method (e.g. Patterson, 705 

1956). Small orange circles represent the Pb isotope ratios for U oxides from Gabon (Gancarz 706 

et al., 1978). Large orange circles represent the theoritical 
206

Pb/
207

Pb ratios calculated for the 707 

U deposit in the Francevillian basin (Gabon) at 2050±30 Ma (Gancarz, 1978). The blue 708 

(France) and the orange (Gabon) areas represent the possible range of composition resulting 709 

from the mixing between a material having the composition of the PDAC and the respective 710 

U ores. The fraction of radiogenic Pb coming from the U ores in the U mill tailing (k factor, 711 

in grey) have been determined from the equation proposed by Gourgiotis et al. (2020). The 712 

Pb isotopic compositions used for the end-members are described in the text. (b) The dashed 713 

lines represent the linear regression of the six U mill tailings from France (orange) and from 714 

U mill tailings from Gabon and PDAC (blue). The apparent age of formation of U deposits 715 

was calculated using the respective intercept values. 716 
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 717 

Figure 7: (a) SEM-BSE imaging (U,Pb)-rich phases of JOU-97 sample. (b), (c), (d) SIMS 718 

mapping of 
206

Pb, 
208

Pb, 
238

U
16

O. 719 

 720 
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Figure 8: (a) SEM-BSE imaging of (U,Pb)-rich phases of GABON sample. (b) and (c) SEM-721 

EDS mapping of Pb and S.  (d), (e), (f) and (g) SIMS mapping of 
28

Si, 
206

Pb, 
208

Pb, 
238

U
16

O. 722 

 723 

Figure 9: (
234

U/
238

U) vs 
206

Pb/
207

Pb diagram showing the specific signature of U mill tailings 724 

(UMT). Dashed lines represent mixing curves between each U mill tailings and a material 725 

having the composition of the present day average crust at secular equilibrium (U, Pb 726 

content: Rudnick and Gao, 2014; 
206

Pb/
207

Pb: Stacey and Krammers, 1976). The fraction of 727 

5% of U mill tailings in the mix is represented with a black dot. The average (
234

U/
238

U) 728 

activity ratio of the weathered crust and dissolved load of major rivers comes from Suhr et 729 

al., (2018). (
234

U/
238

U) of the seawater (Osmond and Cowart, 1976). Field of weathered U-730 

ores was drawn using the range of (
234

U/
238

U) reported in Lowson et al., (1986) and the range 731 

of 
206

Pb/
207

Pb for U-ores. The natural Pb isotopic variation (excluding U-ores) comes from 732 

Berglund and Wieser (2011). 733 

 734 



37 

 

7 Tables  735 

U mill 
tailings 

TMF U mineralization   U-ore milling process                              
and effluent treatment 

    Mining 
division 

Deposit 
type 

Geological 
unit 

Age                           Mill 
factory 

Milling 
type 

Effluent 
treatment 

LOD-FS           
LOD-MA 

Le Bosc 
(Lodève) 

Lodèvois 
Tectonic-
lithologic 

sandstone 

Lodève 
basin 

(I) 183-172Ma               
(II) 103-113Ma 

  
SIMO     

Le Bosc 
Alkaline 

Not 
neutralized 

ECA-85 L'Ecarpière 
Bretagne-
Vendée 

Granite 
related 

Mortagne 
massif 

(I) 322-308Ma                     
(II) 286-264Ma 

  
SIMO 

Ecarpière 
Acid 

CaCO3,       
Lime 

BZN Bellezane 
La 

Crouzille 
Granite 
related 

Saint 
Sylvestre 

massif 

(I) 276-270Ma                   
(II) 183-170 Ma 

  
SIMO 

Bessines 
Acid Lime 

JOU-97   
JOU-DT 

Le 
Bernardan 

(Jouac) 

Mailhac-
sur-

Benaize 

Granite 
related 

Western 
Marche 
massif 

(I) 280Ma                          
(II) 170-140Ma 

  
SMJ 

Jouac 
Acid 

Lime,         
BaCl2 

Gabon Mounana Mounana 
Tectonic-
lithologic 

sandstone 

Francevillian 
basin 

(I) 2050Ma   
COMUF 
Mounana 

Acid 
Not 

neutralized 

 736 

Table 1: U mill tailings description. Information about the U mill tailings are coming from 737 

Somot et al., (1997), Pagel and Somot (2002), Ballini et al., (2020). The type of U deposit 738 

comes from the classification suggested by IAEA (2018). (I) and (II) correspond to the age of 739 

the main stage of U deposition from Cathelineau et al., (1990) and references therein, Horie 740 

and Hidaka (2019) and Gancartz, (1978). Abbreviations: TMF, for Tailing Management 741 

Facilities ; FS, for faille sud; MA, for Mas d’Alary; DT, for Dong Trieu; SIMO, for Société 742 

Industrielle des Minerais de l’Ouest; SMJ, for Société des Mines de Jouac; COMUF, for 743 

Compagnie des Mines d’Uranium de Franceville. 744 

  745 
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Sample LOD-FS LOD-MA ECA-85 BZN JOU-97 JOU-DT GABON 
TMF Le Bosc 

(Lodève) 
Le Bosc 
(Lodève) 

L'Ecarpièr
e 

Bellezan
e 

Le 
Bernarda
n (Jouac) 

Le 
Bernarda
n (Jouac) 

Mounan
a 

Major elements (wt. %)             

Al2O3 16.57 15.43 12.98 14.34 10.85 15.25 6.14 

Fe2O3 (T) 6.18 6.72 3.69 2.53 2.68 3.86 1.00 

MgO 3.81 3.72 0.86 0.52 1.41 1.51 0.20 

CaO 6.45 7.21 6.71 2.36 4.05 4.60 0.10 

Na2O 2.72 2.90 1.48 1.89 1.28 1.62 0.11 

K2O 5.65 4.82 3.64 5.34 4.07 5.78 1.39 

TiO2 0.65 0.62 0.35 0.25 0.16 0.26 0.16 

MnO 0.13 0.17 0.03 0.06 0.08 0.17 0.01 

P2O5 0.15 0.13 0.34 0.26 0.14 0.17 0.02 

S (T) 0.12 0.09 3.04 2.77 1.87 3.07 0.05 

Trace elements (µg/g
-1

)             

Ba 688 652 320 480 1193 532 592 

Pb 542 443 66 418 76 201 805 

Th (ID) 11.2 10.8 17.6 15.3 8.8 10.5 21.0 

U (ID) 594 321 30 169 101 131 71 

 746 

Table 2: Major and trace element contents of U mill tailings from France and Gabon. Major 747 

elements were measured using ICP-OES technique, while S(T) content was measured using a 748 

CHNS elemental analyser. Trace elements were measured using an ICPMS/MS with a 749 

standard calibration technique (Ba and Pb) or by isotope dilution (ID for U and Th). 750 

  751 
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Sample 
238

U 2σ (
238

U) 2σ (
234

U/
238

U) 
2σ (

230
Th/

238

U) 
2σ (

226
Ra/

230
T

h) 
2σ (

210
Pb/

226
R

a) 
2σ 

  µg/g   Bq/kg   AR   AR   AR   AR   

LOD-FS 590 
±1.
5 

7342 
±1
9 

1.29 
±0.0

3 
7.1 

±0.
3 

0.91 
±0.0

5 
0.69 ±0.02 

LOD-MA 319 
±1.
1 

3966 
±1
3 

1.64 
±0.0

4 
7.9 

±0.
2 

0.95 
±0.0

4 
0.71 ±0.01 

ECA-85 29.6 
±0.
1 

369 ±1 1.78 
±0.0

2 
65.0 

±0.
3 

0.63 
±0.0

4 
0.92 ±0.04 

BZN 168 
±0.
5 

2086 ±7 1.29 
±0.0

1 
15.4 

±0.
2 

1.00 
±0.0

0 
0.83 ±0.01 

JOU-97 100 
±0.
7 

1243 ±9 1.27 
±0.0

2 
23.1 

±0.
3 

0.60 
±0.0

3 
0.68 ±0.02 

JOU-DT 
129.

7 
±0.
5 

1615 ±6 1.51 
±0.0

1 
19.1 

±0.
3 

2.55 
±0.1

2 
0.828 

±0.00
4 

GABON 70.4 
±0.
4 

877 ±5 1.87 
±0.0

5 
6.6 

±0.
2 

3.13 
±0.4

0 
0.89 ±0.01 

 752 

Table 3: Activities of 
238

U and activity ratios (AR) of long-live radionuclides of U mill 753 

tailings from France and Gabon. U and Th isotopes were measured by ICP-MS. (
230

Th/
226

Ra) 754 

and (
210

Pb/
226

Ra) were measured by gamma spectrometry. 755 

Sample 
204

Pb/
207

Pb 2σ 
206

Pb/
207

Pb 2σ 
208

Pb/
207

Pb 2σ %Pbrad 

              k 

LOD-FS 0.0592 ±0.0008 2.455 ±0.019 2.304 ±0.016 24% 

LOD-MA 0.0606 ±0.0005 2.053 ±0.015 2.353 ±0.012 18% 

ECA-85 0.0475 ±0.0004 5.812 ±0.049 1.871 ±0.009 60% 

BZN 0.0611 ±0.0003 1.862 ±0.007 2.388 ±0.005 14% 

JOU-97 0.0437 ±0.0005 6.900 ±0.126 1.731 ±0.004 66% 

JOU-DT 0.0505 ±0.0004 4.948 ±0.041 1.981 ±0.014 53% 

GABON 0.0040 ±0.0001 7.157 ±0.082 0.222 ±0.001 95% 

 756 

Table 4: Pb isotopes of U mill tailings from France and Gabon measured by HR-ICPMS. The 757 

fraction of radiogenic Pb (%Pbrad), the Pb from the U-ore, was calculating using the method 758 

described in Gourgiotis et al., (2020). 759 

  760 
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