Combined U-Pb isotopic signatures of U mill tailings from France and Gabon: A new potential tracer to assess their fingerprint on the environment

Aurélien Beaumais, Arnaud Mangeret, David Suhard, Pascale Blanchart, Mejdi Neji, Charlotte Cazala, Alkiviadis Gourgiotis

To cite this version:

HAL Id: irsn-03814952
https://irsn.hal.science/irsn-03814952
Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Combined U-Pb isotopic signatures of U mill tailings from France and Gabon: A new potential tracer to assess their fingerprint on the environment.

Aurélien Beaumaisa, Arnaud Mangereta, David Suharda, Pascale Blancharta, Mejdi Nejia, Charlotte Cazalaa, Alkiviadis Gourgiotisa*

a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, LETIS, USDR, PSE-SANTE/SESANE/LRSI, Fontenay-aux-Roses, 31 Av. de la Division Leclerc, 92260, France.

*Corresponding author: alkiviadis.gourgiotis@irsn.fr
Abstract

Uranium milling activities have produced high volumes of long-lived radioactive processed wastes stored worldwide in near surface environment. The aim of this study is to highlight relevant tracers that can be used for environmental impact assessment studies involving U mill tailings. A multi-tracer study involving elemental content, ^{238}U decay products disequilibria and stable Pb isotopes was performed in different types of U mill tailings (alkaline, acid, neutralized acid) collected from five Tailings Management Facilities in France (Le Bosc, L’Ecarpière, Le Bernardan, and Bellezane) and Gabon (Mounana). Our results showed that U and Pb concentrations range between 30-594 ppm and 66-805 ppm, respectively. These tailings have a strong disequilibrium of ($^{234}\text{U}/^{238}\text{U}$) and ($^{230}\text{Th}/^{238}\text{U}$) activity ratios (1.27-1.87 and 6-65, respectively), as well as higher $^{206}\text{Pb}/^{207}\text{Pb}$ (1.86-7.15) and lower $^{208}\text{Pb}/^{207}\text{Pb}$ (0.22-2.39) compared to geochemical background ($^{234}\text{U}/^{238}\text{U}$) and ($^{230}\text{Th}/^{238}\text{U}$) equal to unity; $^{206}\text{Pb}/^{207}\text{Pb} = 1.20; ^{208}\text{Pb}/^{207}\text{Pb} = 2.47$). In situ analyses (SEM, SIMS) showed that Pb-bearing phases with high $^{206}\text{Pb}/^{207}\text{Pb}$ are related to remaining U-rich phases, S-rich phases and potentially clay minerals or oxyhydroxides. We suggest that the combination of the $^{206}\text{Pb}/^{207}\text{Pb}$ with the ($^{234}\text{U}/^{238}\text{U}$) ratio is a relevant tool for the fingerprinting of the impact of U milling activities on the environment.

Keywords

Radioactive waste; Geochemistry; ($^{234}\text{U}/^{238}\text{U}$); $^{206}\text{Pb}/^{207}\text{Pb}$; Environmental science
1 Introduction

U mill tailings are the radioactive residual waste of the mining and milling of U-ores (crushed and leached ore residue), which is the first step of the nuclear fuel cycle (Landa, 1980, Landa, 1999, IAEA, 2004; Landa, 2004, Abdelouas, 2006, Campbell et al., 2015). Uranium mining and milling activities involved around 250 sites in France from 1948 to 2001, and produced 50 Mt of tailings resulting from the chemical extraction of U from the U-ore, as well as 170 Mt of mine waste rock (database: Programme MIMAUSA, 2019). These tailings are now disposed into 17 Tailing Management Facilities (TMFs) spread over 16 sites in France (e.g. L’Ecarpière, Jouac, Bellezane, Le Bosc; Fig. 1). In Gabon, uranium mining and/or milling activities involved around 5 sites from 1961-1999 and produced 7.5 Mt of tailings from Mounana milling plants (Loueyit et al., 2000). The tailings were disposed into the Mounana Tailing Management Facility.

Milling consists of the mechanical and the chemical processes allowing the concentration of the uranium fraction from the ore (Landa, 1999). Ores that contain limestones contents greater than 15% are usually leached with alkaline solutions using sodium carbonate-bicarbonate, while most other ores are leached using sulfuric acid. The uranium extracted by the leaching solution is concentrated by solvent extraction or solid-phase extraction using ion-exchange resins and subsequent precipitation (with ammonia, magnesium oxide, hydrogen peroxide) of a uranium ore concentrate (~85 wt. % of U). The leached ore residues (i.e. tailings) are transferred into a waste-retention pond, or in a mine-out underground-working. Sometimes, the mill waste solution is also added to the tailings in the disposal. The waste slurries (barren solid and liquid) at acid leach mills are sometimes neutralized (usually with lime or calcium carbonate) prior to discharge in order to precipitate contaminants (e.g. calcium sulfate, Fe-oxyhydroxide) (Nirdosh, 1987; Somot et al., 2002; Ballini et al., 2020;
Chautard et al., 2020). The water released from tailings impoundments is typically treated
with Ba chloride to allow the precipitation of radiobarite (Ra-rich barite) (Ring, 1982; Snodgrass, 1990).

U-ores are enriched in U decay products, mainly U-238 series that include 234U (half-life: 0.246 Ma), 230Th (half-life: 75.4 ka), 226Ra (half-life: 1602 a), 210Pb (half-life: 22.3 a). After the chemical extraction of U (~90%) from U-ores, 238U decay products and one part of initial U remain in the U mill tailings. Therefore, U mill tailings hold ~ 85% of the radioactivity of the initial U-ore (Landa, 2004), and thus provisions are taken with regard to their potential radiological impact. Uranium and its radioactive decay products can be transferred from U-mine sites or TMFs in the environment via mine drainage, mine water runoff, or erosion even decades after cessation of the mining activities (Abdelouas, 2006; IAEA, 2004; Cuvier et al., 2016; Stetten et al., 2018; Mangeret et al., 2020; Gourgiotis et al., 2020; Martin et al., 2020).

However, weathering and erosion of local bedrock, such as U-rich granite, could also allow the transfer of a significant amount of U and its radioactive products in the environment (Bernhard, 2005; Owen and Otton, 1995; Regenspurg et al., 2010; Lefebvre et al., 2021a, Lefebvre et al., 2021b). Fingerprinting the potential sources of radioactive elements in the vicinity of TMF would help for the management of U mine tailings as well as contaminated sediments or soils.

Various tracers, such as elemental content, rare earth elements, and also isotopes (e.g. U, Th, Pb) have been previously suggested in order to fingerprint the origin of U-rich material, such as U-ores and U ore concentrate (Keegan et al., 2008; Varga et al., 2009; Svedkauskaite-Legore et al., 2007; Svedkauskaite-Legore et al., 2008; Keegan et al., 2012; Spano et al., 2017a, b; Corcoran et al., 2019). Geochemical studies of U mill tailings were mainly focused on their elemental content, U speciation and U-series disequilibrium (Somot, 1997; Somot et al., 1997a; Somot et al., 1997b; Somot et al., 2000; Somot et al., 2002; Pagel and Somot
Ballini et al., 2020, Chautard et al., 2020) and only one study focused on stable Pb isotopic signatures of bulk U mill tailing samples (Santos and Tassinari, 2012). Two others studies provided Pb isotopic values for only one bulk U mill tailing that was used as an endmember in environmental studies (Dang et al., 2018; Liu et al., 2018), while Pb isotopic values from particles retained on filters related to the filtration process of waters collected in boreholes in U mill tailing dam were also reported (Gulson et al., 1989).

Natural uranium is a mixture of three radioactive isotopes: 235U (99.274%; half-life: 4.468 Ga), 235U (0.720%; half-life: 0.704 Ga) and 234U (0.005% half-life: 0.246 Ma). $(^{234}\text{U}/^{238}\text{U})$ activity ratios are widely used in geosciences and environmental sciences as a powerful process tracers, as this ratio can show a disequilibrium during fluid-rock interaction due to the so-called alpha recoil effect: (1) direct ejection of the α-recoiled 234Th (which decay into 234U) from the solid phase into the solution (Kigoshi, 1971) and (2) damages to the crystal lattice and/or (3) the oxidation of 234U(IV) into 234U(VI) during the alpha decay results in the preferential release of the 234U into solution (e.g. Chabaux et al., 2003). Thus, it comes that the waters are generally characterized with $(^{234}\text{U}/^{238}\text{U}) > 1$, while the recently weathered product usually show $(^{234}\text{U}/^{238}\text{U}) < 1$ (e.g. Osmond and Cowart, 1976; Dequincey et al., 2002; Chabaux et al., 2003; Dosseto et al., 2008). The $(^{234}\text{U}/^{238}\text{U})$ ratios measured in worldwide waters (e.g. river, seawater, groundwater) range from 0.5 to 40 (Osmond and Cowart, 1976; Gilkeson and Cowart, 1987; Osmond and Ivanovitch, 1992), and $(^{234}\text{U}/^{238}\text{U})$ ratios measured in altered product (e.g. soil, laterite) range from 0.5-1.8 (Suhr et al., 2018 and references therein). Waters that interacted with U mill tailings could exhibit high U content, and $(^{234}\text{U}/^{238}\text{U})$ close to unity, as shown by studies of groundwater samples in the vicinity of U mill tailing disposals (Zielinsky et al., 1997; Kamp and Morrison, 2014), while weathered profiles developed on U mineralized area show $(^{234}\text{U}/^{238}\text{U})$ that range from 0.89 to 1.20
(Shirvington et al., 1983; Lowson et al., 1986; Ahamdach et al., 1991). The average activity ratio value recorded in worldwide U-ores of various deposit types is 1.00±0.10 (2σ, n=181; Richter et al., 1999; Uvarova et al., 2014; Keatley et al., 2021).

(230Th/238U) and (226Ra/230Th) activity ratio are widely used in geosciences and environmental sciences as powerful process tracers, as U-Th-Ra fractionate during fluid-rock interaction, U and Ra being preferentially mobilized into the fluid phase compared to Th (Chabaux et al., 2003). For instance, the (230Th/238U) tracer allow to fingerprint the addition (low 230Th/238U) or loss (high 230Th/238U) of U in a weathering profile. The (230Th/238U) activity ratio was used to highlight the U mobility (Mangeret et al., 2018; Gourgiotis et al., 2020) in wetlands mainly impacted by particle transport from U mining activities. For U mill tailings, the (230Th/238U) activity ratio was also used to quantify the extraction yield of uranium (Somot, 1997), while the (226Ra/230Th) was used to fingerprint the mobility either of 226Ra or of 230Th in the disposals (Somot et al., 2002; Pagel and Somot, 2002).

(210Pb/226Ra) activity ratio is also used in geosciences as a geochronometer for processes occurring within the time scale of a century, as the selective high mobility of gaseous 222Rn radionuclide (which is the decay product of 226Ra) can create a disequilibrium between 226Ra and 210Pb (Reagan et al., 2017; Li et al., 2021). 226Ra and 210Pb activities were also used in environmental sciences as tracer of the impact of U milling activities on the environment (Strok and Smodis, 2013a; Strok and Smodis, 2013b; Sauvé et al., 2021).

Radiogenic lead isotopes 206Pb, 207Pb, 208Pb are respectively the stable end-products of the decay chains of 238U (99.27%; half-life: 4.47 Ga), 235U (0.72%; half-life: 0.70 Ga) and 232Th (99.98%, half-life: 14.1 Ga) radionuclides, while the stable 204Pb isotope is only primordial. These isotopes are widely used in geosciences and environmental sciences as a powerful source tracers, as they do not fractionate significantly during geological processes or
chemical processes occurring in industrial plants. Moreover, radiogenic lead isotopes have
commonly been used for U-ore exploration purposes (Dickson et al., 1985, Dickson et al.,
1987; Quirt and Benedicto, 2020) and also in a few studies related to isotope fingerprinting of
the dissemination U mine material in the environment (France: Cuvier et al., 2016;
Gourgiotis et al., 2020; Martin et al., 2020; Worldwide: Bollhöfer et al., 1989; Coetzee et al.,
2006; Santos and Tassinari, 2012; Dang et al., 2018; Liu et al., 2018), as U-rich minerals (e.g.
~88 wt. % of U in uraninite) are highly enriched in both uranogenic 206Pb (the most
abundant) and 207Pb (the second most abundant) compared to 208Pb and 204Pb isotopes.
Therefore, U-ore have a specific Pb isotopic signature compared to Pb-bearing rocks (e.g.
peridotite, basalt, granite, Pb-ore; Stacey and Krammers, 1976) or leaded materials coming
from anthropogenic activities (e.g. gasoline or industrial emissions; Monna et al., 1997) on
Earth’s (204Pb: 1.0-1.7%; 206Pb: 20.8-27.5%; 207Pb: 17.6-23.7%; 208Pb: 51.3-56.2%; Berglund
and Wieser, 2011). This specific isotope signature depends on the U-ore content in U and Th,
the age of mineralization and the rate of mixture between the radiogenic (Pb from the U-ore)
and common Pb.

The main objective of this study was to explore if 238U-series disequilibrium and stable lead
isotopes can be used as potential relevant tracers to highlight the uranium mine and mill
tailings impact on the environment. Actually, there is no or little information in the literature
on this topic. In order to answer this question, we analyzed in this study the elemental
content, 238U-chain disequilibrium (bulk sample analysis) and Pb isotopes composition (bulk
sample and in situ micro-analysis) of different types of U mill tailings collected in five
Tailings Management Facilities: alkaline mill tailings (Le Bosc, France), neutralized acid mill
tailings (L’Ecarpière, Le Bernardan, Bellezane, France), and acid mill tailings (Mounana,
Gabon). The 238U-chain disequilibrium was studied first in order to determine if there is a
specific signature associated to the U mill tailings. Secondly, particular attention was paid to
stable Pb isotopes to figure out if the specific Pb isotope signature of the U-ores (hereafter radiogenic Pb) is preserved in the U mill tailings. Moreover, a first insight into Pb-bearing phases in U mill tailings was carried out using SEM and SIMS in-situ techniques in order to determine whether the Pb from the U-ore is still associated with the remaining primary U-bearing phases or with post-treatment neo-formed mineral phases. This work bring new insights into the fingerprinting of the impact of U milling activities in the environment.

2 Materials and Methods

2.1 Site description and sampling

The U mill tailings of this study were collected between 1985 and 2011 by the IRSN (French Institut of Protection and Nuclear Safety (IPSN) before 2002) and are now stored at IRSN-Fontenay-aux-Roses (Table 1). This set of samples cover various types of U mill tailings treatments from different types of U-ores of various ages: four neutralized acid U mill tailings derived from Paleo-Mesozoic granite-related ores from France (ECA-85, JOU-97, JOU-DT, BZN samples), two alkaline U mill tailings derived from Mesozoic sandstone-related ores from France (LOD-FS, LOD-MA samples) and one acid U mill tailing derived from Proterozoic sandstone-related ores from Gabon. The samples have been stored in special ventilated cabinets at room temperature (20 °C) and have not been conserved under anoxic conditions nor under specific sealing conditions preventing 222Rn emanation. The precise sampling area and method in the respective TMFs is not known.

The alkaline U mill tailing samples are from Le Bosc (France). U-mineralization are tectonic-lithologic sandstone-related deposits and are located in the Lodève basin. U-ores (0.28 wt. % on average) were mainly mined in two deposits (Mas Lavayre and Mas d’Alary). U
mineralization formed during two events 183-172 Ma and 103-113 Ma ago and consist mainly of pitchblende and U associated with organic matter. The extraction of U from U-ore, using an alkaline chemical treatment with sodium carbonate and bicarbonate solution due to their high carbonate content, generated 4.1 Mt of dynamic mill tailings at the SIMO (Société Industrielle des Minerais de l’Ouest) Le Bosc mill between 1950 and 1997.

The acid U mill tailing sample is from Mounana Tailing Management Facility (Gabon sample). U mineralizations are tectonic-lithologic sandstone-related deposits and are located in the Franceville Basin. U-ores (0.37 wt. % on average) were mainly mined in five deposits (Mounana, Oklo, Okelobondo, Boyindzi, Mikouloungou). U-mineralizations formed 2.05 Ga ago (Gancarz, 1978) and consist mainly of pitchblende-uraninite associated with organic matter (Pagel and Somot, 2002; Lecomte et al., 2020). The extraction of U from U-ore using a chemical treatment with sulfuric acid generated 7.5 Mt of mill tailings between 1961 and 1999 by the COMUF (Compagnie des Mines d’Uranium de Franceville).

The neutralized acid mill tailing samples (chemical treatment with sulfuric acid at 65°C and neutralization of barren residues and solutions with CaCO$_3$ and/or lime) are from l’Ecarpière, Le Bernardan and Bellezane Tailings Management Facilities. The related U-mineralizations are granite-related deposits.

U-ores (0.10 wt. % on average) milled at the SIMO Ecarpière plant were mainly mined in three deposits (Ecarpière, Commanderie, Chardon) located in the Mortagne granitic massif and its surrounding metamorphic series. U mineralization formed 322-308 and 286-264 Ma ago and consists mainly of pitchblende-uraninite (Cathelineau et al., 1990; Horie and Hidaka, 2019). The extraction of U-ore generated 11.4 Mt of tailings (7.6 from dynamic leaching and 3.8 from heap leaching) from 1952-1990.
Mill tailings disposed at the Bernardan open pit were generated at the SMJ mill (Société des Mines de Jouac, ex-Dong Trieu; Jouac, France) from 1978 to 2002 from U-ores (0.57 wt. % on average) that were mined in the Mailhac sur Benaize mining division (mainly Bernardan and Les Loges deposits). The U-ores came mainly from Western Marche granitic Massif (e.g. Bernardan episyenitic deposit) and from surrounding gneisses (Piégut deposit). The U deposits at Piégut formed 280 Ma ago (Turpin and Leroy, 1987), while those at Bernardan formed 170-140 Ma ago (Patrier et al., 1997) and consists mainly of pitchblende and coffinite.

1.57 Mt of mill tailings (1.51 Mt from dynamic leaching and 0.06 from heap leaching) disposed in the two open pits at Bellezane Tailing Management Facility (from 1989-1993) were generated at the SIMO mill located at Bessines sur Gartempe (Ballini et al., 2020). The U-ores (0.143 wt. % on average) were mined in the La Crouzille mining division and came from the Saint Sylvestre granitic Massif. The U deposits formed 276-270 Ma ago and 183-170 Ma ago (e.g. Margnac Fanay deposits: Leroy and Holliger 1984; Cathelineau et al., 1990) and consists mainly of pitchblende and coffinite, as well as surficial minerals, such as autunite and gummite.

Sample information is summarized in Table 1 and supplementary information about the milling processes can be found in the supplementary materials section.

2.2 Elemental and isotopic analyses

Around 50 mg of sample were fully digested using a mixture of concentrated HF-HNO₃-HClO₄ (1:1:0.3) ultrapur® acids in Savillex® PFA vials at 90°C on a hotplate during 48h, then dried down at 160°C overnight until full dryness. Then, the residues were taken up two times in 10 drops of concentrated HNO₃ and dried down. Finally, the residues were dissolved
in 40 ml of 3M HNO₃. Aliquots of these stock solutions were used for elemental analysis (ICP-AES and QQQ-ICP-MS), as well as U, Th and Pb isotopic analysis performed by QQQ-ICP-MS and HR-ICP-MS.

2.2.1 Elemental analyses

All samples were analysed for major and trace elements. Major element analyses (Al₂O₃, Fe₂O₃, MgO, CaO, Na₂O, K₂O, P₂O₅, MnO, TiO₂) of whole rock samples were performed in solution by ICP-OES Thermo Scientific ICAP-7000®. S content of the samples was analysed using an elemental analyser FlashSmart (ThermoScientific) in CHNS mode, after calcination of the sample under oxygen steam at 1400°C and further oxidation of the produced gas by contact with Cu oxides. Trace element concentrations (Pb and Ba) of whole-rock samples were determined in solution by QQQ-ICP-MS Agilent Technologies 8800® (PATERNSON analytical platform, IRSN Fontenay-aux-Roses, France) using a standard calibration regression based on the analysis of standards having various elemental content that encompass the range of variation of elemental content of the analysed samples. A machine drift correction based on a Bi spike was also applied. Thus, a Bi solution was mixed with the sample before the introduction into the nebuliser using a 3 port T-junction. The Pb content was calculated by taking into account the concentrations of each Pb isotope (²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb) due to the important contrast of the Pb isotope composition between the U mill tailing samples and the Pb calibration standards (natural Pb abundances). Uncertainties for all analyses are lower than 10 % (Supplementary Table 1).

2.2.2 Stable Pb isotopes analyses

Aliquot of the solutions (3M HNO₃) containing more than 200 ng of Pb were taken up and dried down on a hot plate at 90°C. Then, the residues were evaporated and dissolved two
times in 10 drops of concentrated ultrapur® HBr. Then, the residues were dissolved in 1 mL of ultrapur® 0.2M HBr.

Chemical separation of lead from others elements was carried out in a class 10000 laminar-flow hood using only reagent produced from ultrapure® acid (Merck) and 18.2 MΩ.cm⁻¹ ultrapure water (Milli-Q ultrapure water system, Merck Millipore). Pb was separated from the matrix and interfering element by ion-exchange gravity chromatography, using 100 µl of anionic resin BioRAD AG1-X8 100-200 mesh loaded into a 1 mL pipet tips, based on a protocol adapted from Manhès et al. (1984). After 4 cleaning steps of the resin (1 mL of 0.25M HNO₃, water, 0.2M HCl, water) and a conditioning step of the resin with 1 mL of 0.5M HBr, the dissolved sample was introduced into the column. Then, the matrix elements were eluted with 5 mL of 0.5M HBr, and finally the Pb was eluted with 5 mL of 0.2M HCl.

The overall Pb yields after the purification were higher than 90%, while the total procedural chemistry blanks during the course of this study were less than 150 pg. These values are totally negligible in comparison to the amount of Pb present in the samples (higher than 1µg).

Lead isotopes analyses were performed using an HR-SF-ICPMS Thermo Scientific Element XR (PATERNSON analytical platform) using the standard-sample bracketing technique. The certified reference material NIST981 was run before and after each sample in order to correct all the Pb isotopic ratios for the mass bias using an exponential law with the values recommend by Doucelance and Manhes, 2001. Each run consists of 15 runs of 100 passes, of 10 ms per canal (i.e. 2 canals). The average $^{204}\text{Pb}/^{207}\text{Pb}$, $^{206}\text{Pb}/^{207}\text{Pb}$, $^{208}\text{Pb}/^{207}\text{Pb}$ ratios measured for certified reference materials were 0.065±0.002, 1.09±0.01, 2.35±0.05, (2SD, n=4) for NIST981 (common lead), and 0.00503±0.00001, 14.0±0.1, 0.197±0.002, (2SD, n=3) for NIST983 (radiogenic lead) and for international rock standards were 0.064±0.002, 1.21±0.01, 2.46±0.03, (2SD, n=3) for AGV2 and 0.064±0.001, 1.20±0.01, 2.48±0.01, (2SD, n=3) for BCR-2.
2.2.3 U-Th isotopes analyses by ICP-MS

The 234U/238U isotopes ratios as well as the 238U and 230Th content used for the calculation of the 238U/230Th were determined by isotope dilution mass spectrometry (238U/236U, 230Th/229Th).

Aliquots of the stock solutions (3M HNO$_3$) were taken up and mixed with a 233U-236U-229Th triple spike (mixture of certified reference materials 233U-236U enriched solution IRMM3636 with 229Th-enriched solution described in Essex et al. (2018)).

Chemical separation of U and Th from the other elements was carried out following the protocol described in Douville et al. (2010) in a fume-hood using UTEVA resin and high purity reagent made from distilled acids (evapoclean system for HCl, Savillex DST1000 system for HNO$_3$) and ultrapure water. Column were cleaned and conditioned using 3M HNO$_3$. Samples were introduced into the column. Matrix elements were discarded using 4 mL 3M HNO$_3$. Th was then eluted using 4 mL 3M HCl, and finally U was eluted using 5 mL 1M HCl. After separation, Th fractions were spiked with IRMM3636 solution.

U and Th analyses were performed using a QQQ-ICPMS Agilent Technologies 8800® (PATERSON analytical platform). The instrumental mass bias correction was performed using the certified 233U/236U ratio of the IRMM3636 solution. In order to assess the precision and the accuracy of our measurement (Supplementary Table 1), we prepared solutions from Harwell Uraninite (HU-1) which is known to be close to secular equilibrium with respect to 234U/238U = (54.903±0.011) × 10$^{-6}$) and to 230Th/238U = (1.6953±0.0003) × 10$^{-5}$ (Cheng et al., 2013).

2.2.4 Th-230, Ra-226 and Pb-210 analyses by gamma spectrometry

The activities of 238U-series nuclides were determined in the U mill tailing samples at the IRSN/LUTECE laboratory using either (i) a High Purity coaxial Germanium detector (EGPC
or a well-type HP Ge detector (GWL-220-15, ORTEC®). The first detector displays a better resolution (0.75 and 1.75 keV at the photopeaks 122 keV of 57Co and 1332 keV for 60Co), two times lower than the well-type detector, while for the latter a significant higher efficiency was obtained for low energy rays (i.e. the peak of 210Pb at 46.5 keV) which was therefore appropriate for the analysis of low-weight solid samples. These two detectors were calibrated according to the international IAEA standards RGU-1 and RGTh-1, two silica-diluted ores of U and Th respectively, as it was performed previously (Mangeret et al., 2018, Mangeret et al., 2020, Supplementary Table 1). The 230Th activities were measured at 67.7 KeV, 226Ra activities were measured from the 214Pb rays at 295.2 and 351.9 keV and the 214Bi ray at 609.3 keV. 210Pb activities were determined from the ray at 46.5 keV. The samples have been sealed (to prevent any loss of gaseous 222Rn) 3 weeks before the analysis in order to reach the complete regrowth of both 214Bi and 214Pb. From 39 to 94 g of sample were used for analysis performed by the coaxial detector, while lower amounts (from 1.4 to 2.6 g) of sample were used for analysis with the well-type detector.

2.4 In situ analysis

In order to identify radiogenic Pb-bearing phases, two U mill tailings (Gabon and JOU-97) containing the highest level of radiogenic Pb were selected for further in-situ analysis using secondary electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) techniques. For this study, around a hundred milligrams of U mill tailing samples were embedded in an Epoxy resin (modified recipe of EMbed-812 kit, EMS, Hatfield; with BDMA replacing the DMP-30 in order to reduce the resin viscosity) and degassed under vacuum before being transferred into a 10 mm diameter stainless steel ring holder. The resin polymerization was reached after 48h at 60°C in an oven. The samples sustained several
polishing steps (1) using a 5 µm Si-C disk, followed by (2) a 3 µm and then a 1 µm diamond powder onto soft-disks. The samples were finally coated with a thin layer of C.

2.4.1 SEM analyses

In order to identify the Pb-rich phases, the secondary electron microscope (SEM) Hitachi S3500N (LUTECE platform, IRSN, Fontenay-aux-Roses) was used to localize the phases that host heavy elements using the SEM-Back Scattered Electron (BSE) detector under a voltage of 25 kV accelerating voltage. Then, the SEM-Energy Dispersive X-ray Spectroscopy (EDS) analysis was performed with two EDS Brücker 5030 XFlash SDD detectors working under a voltage of 25 keV at a working distance of 16.8 mm in order to characterize the elemental composition of the phases, especially with respect to Pb and U. The SEM-EDS data were acquired at 8 µs/pixels at 100 kcps/s using the Esprit software 1.9 for a pixel size of 0.3 µm.

2.4.2 SIMS analyses

The SIMS analyses of Pb-rich phases were performed using a CAMECA IMS 4F-E7 instrument (PATERSON Platform, IRSN, Fontenay-aux-Roses) in order to localise the radiogenic (uranogenic) Pb-bearing phases (i.e. 206Pb-rich, 208Pb-poor) at the grain scale. For this preliminary study, only images were acquired, not isotope ratios, as the isotopic difference between the common Pb and the radiogenic Pb is very high. A homemade three holes sample holder were especially designed in order to introduce 3 samples (hosted in 1 mm diameter rings) at the same time in the analysis chamber (pressure of 5×10^{-9} mbar) of the instrument. Analysis were performed with a 1 nA, 12 kV O_2^- primary beam projected on a ~ 1 µm area which scan the area of interest (raster of 250 µm x 250 µm for JOU-97 and 500 x 500 µm for Gabon). The positively charged secondary ions or molecules were accelerated at 10 kV into the mass spectrometer, measured with a mass resolution of 400 by ion counting in
monocollection mode and sequentially converted into an image with a lateral resolution of around 1 μm. Each analysis was preceded by a 5-min pre-sputtering performed with a ~100 nA primary beam. The analysis of JOU-97 sample consisted in 65 integration cycles of 1 s for \(^{23}\text{Na},^{24}\text{Mg},^{27}\text{Al},^{28}\text{Si},^{39}\text{K},^{40}\text{Ca},^{56}\text{Fe}\) (major elements) and 300 integration cycles of 5 s for \(^{204}\text{Pb},^{206}\text{Pb},^{207}\text{Pb},^{208}\text{Pb}\), and of 2 s for \(^{238}\text{U}\). The analysis of Gabon sample consisted in 80 integration cycles of 1 s for major elements and 700 integration cycles of 10 s for Pb isotopes and \(^{238}\text{U}\). The mass calibration of the instrument was performed using enriched material, such as for instance a Si-rich plate, a Pb-rich metal plate having a common Pb isotopic composition, or a U-doped resin.

3 Results and discussion

3.1 Elemental content of U mill tailings

The major elements contents (Al, Mg, Fe, Ca, Na, K, Ti, Mn, P) of U mill tailings from France are close to the average value reported for the upper continental crust (UCC) (Rudnick and Gao, 2014; Fig. 2). However, the major elements contents of the U mill tailings from Gabon show a strong depletion of Mg, Ca, Na, and Mn (in a lesser extent for Al, K, Fe, Ti, P) compared to UCC, which is probably due to the low content of these elements in the mineralized quartzite sediment (Gauthier-Lafaye et al., 1986; Bankole et al., 2020).

The Ba content of U mill tailings is similar to UCC. This suggests either that the potential addition of radiobarite (precipitated during the treatment of the liquid effluent with BaCl\(_2\)) into the U mill tailings had only a minor impact on the bulk Ba content of U mill tailings or that the Ba content of U-ores was lower compared to the UCC.
The neutralized acid mill tailings show a high enrichment in S with values that range from 20 to 60 times higher than the one for the UCC, while the alkaline U mill tailings do not display a S enrichment or depletion. This demonstrates the impact of the addition of S during the milling via sulphuric acid leaching and the precipitation of secondary sulphate on the U mill tailings composition. The lack of S enrichment in U mill tailings from Mounana, Gabon could be related to the lack of neutralization process (the addition of Ca-carbonate or lime allows the precipitation secondary CaSO₄ into the U mill tailing). The low S content of Le Bosc (LOD-FS, LOD-MA) alkaline mill tailing samples could be explained by the lack of sulfuric acid involved in the treatment of the U-ores. All U-mill tailings of this study exhibit a strong U enrichment with values that range from 10 to 200 times higher than the UCC’s one. This U enrichment is consistent with the uncomplete U extraction (i.e. extraction yields < 100%) from the U-ore (Fig. 2). U mill tailings display also a high enrichment in Pb with values that range from 6 to 80 times higher than the UCC’s one. Except some particular U mineralization (e.g. parsonsite which is a hydrated phosphate of U and Pb related to weathering processes) that contains high common Pb concentrations, the Pb enrichment is generally related to the accumulation of stable radiogenic Pb produced by the U-ore. In addition, the U mill tailings show no Th (²³²-Th) enrichment, which suggests that the U-ores were not enriched in Th (²³²-Th).

Detailed information about element concentrations can be found in table 2.

3.2 U-238 decay chain disequilibrium in U mill tailings

In a closed system the secular equilibrium (activity ratios equal to one) of the U-238 decay chain is reached in about 2 million years (i.e. ~ 8 times of the longer half-life decay product:
^{234}U. Any deviation from the secular equilibrium can be used to highlight physicochemical processes that led to the gain or loss of the chain radionuclides.

3.2.1 ($^{234}\text{U}/^{238}\text{U}$) activity ratio

The ($^{234}\text{U}/^{238}\text{U}$) activity ratios of the studied U mill tailings of this study range from 1.27 (LOD-FS and BZN samples) to 1.87 (Gabon sample) (Fig. 3a; Table 3). The U mill tailings samples from Lodève and from Mounana have higher ($^{234}\text{U}/^{238}\text{U}$) ratios compared to the values from the corresponding U-ores reported by Richter et al. (1999) (respectively 0.94 and 0.99). Overall, the U mill tailings of this study have significantly higher ($^{234}\text{U}/^{238}\text{U}$) activity ratios compared to the average value ($\langle^{234}\text{U}/^{238}\text{U}\rangle = 1.00 \pm 0.10, 2\sigma, n=181$) recorded in worldwide U-ores of various deposit types (Richter et al., 1999; Uvarova et al., 2014; Keatley et al., 2021) and to typical values (0.99±0.19, 2σ, n=335) of natural weathered materials (Suhr et al., 2018 and references therein) or weathered profiles developed on U mineralized area that show ($^{234}\text{U}/^{238}\text{U}$) ranging from 0.89 to 1.20 (Shirvington et al., 1983; Lowson et al., 1986; Ahamdach et al., 1991). In addition, U mill tailings have also higher ($^{234}\text{U}/^{238}\text{U}$) activity ratios compared to the average value for U-ore concentrate (0.97±0.09, 2σ, n=56; Kayzar-Boggs et al., 2021) that derived from the U-rich leachate during the milling process. Due to the high atomic mass, the high ($^{234}\text{U}/^{238}\text{U}$) activity ratios of U mill tailings cannot be explained by U isotope fractionation (kinetic or at equilibrium) during mining and milling processes or mill tailing disposal.

During the milling process, U-ore are crushed and leached using alkaline or acid solution in order to dissolve the U-rich phases, leaving a leached ore residue corresponding to the U mill tailings. Acid-leaching experimental studies performed on U-bearing minerals (carnotite, uraninite, euxenite), using different acids (HCl, HNO$_3$, HF, HClO$_4$) have shown that the resulting leachates (liquid phase) have ($^{234}\text{U}/^{238}\text{U}$) < 1 (Kobashi et al., 1979), while the acid-
leaching residue (solid phase) have \((^{234}\text{U}/^{238}\text{U})\) activity ratio up to 400 in the smallest grain fraction (Sheng and Kuroda, 1984; Sheng and Kuroda, 1986a; Sheng and Kuroda, 1986b; Essien et al., 1990). However, another study performed on U-bearing minerals (uraninite, samarskite) with dilute HCl reported that the leachates from uraninite samples have \((^{234}\text{U}/^{238}\text{U}) > 1\) while the leachates from the samarskite sample has \((^{234}\text{U}/^{238}\text{U}) = 1\) (Kobashi and Tominaga, 1982). More recently, acid-leaching experimental studies have been performed on U-ores using sulphuric acid in order to reproduce an industrial U-ore leaching processing (Satybaldiyev et al., 2015; Keatley et al., 2021). In the flow-through experimental study performed by Satybaldiyev et al (2015) on uraninite with dilute sulphuric acid, the leachates collected containing most of the U were characterized by a \((^{234}\text{U}/^{238}\text{U}) < 1\) (0.92-1.00), which is related to the oxidation and the dissolution of uraninite. In the batch experimental study performed by Keatley et al., (2021) with diluted sulfuric acid of various vein-type U-ores including oxidized (e.g. autunite, torbernite) and reduced (e.g. uraninite, pitchblende, coffinite) U-bearing minerals, some of the leachates and residues have different \((^{234}\text{U}/^{238}\text{U})\) values (ranging from 0.83 to 1.12) compared to the bulk starting U-bearing phase, with both higher and/or lower values. In general, but not exclusively, the leachates from oxidised U-ores tend to exhibit lower \((^{234}\text{U}/^{238}\text{U})\) values, while leachates from the reduced U-ores tend to show higher \((^{234}\text{U}/^{238}\text{U})\) compared to their respective U-ores. Overall, these experiments of U-ore leaching suggest that a \(^{234}\text{U}-^{238}\text{U}\) radioactive disequilibria can be produced between the leachate and the ore residue. The various type of experimentally observed \(^{234}\text{U}-^{238}\text{U}\) disequilibria have been interpreted in terms of difference in oxidation states between \(^{238}\text{U}\) and \(^{234}\text{U}\), preferential leaching of \(^{234}\text{U}\) from damaged crystal lattice due to alpha-recoil displacement, \(^{234}\text{U}\) implantation into a U-poor acid-resistant phase from the adjacent U-rich acid soluble phase, incongruent dissolution area depleted in \(^{234}\text{U}\) (near grain boundary between U-rich phase and U poor phase).
Decays of ^{238}U yield alpha recoil of ^{234}Th which decay via beta decays to ^{234}Pa giving ^{234}U.

Emission of alpha recoiled nuclide forms ~20-30 nm-long damages in the crystalline lattice (Fleischer, 1980; Ordonez-Regil et al., 1989) and part of the alpha recoiled nuclides can be implanted into the outermost part of the adjacent crystal. Several authors reported that the residue of acid-leaching experiments of U-ores could have ($^{234}\text{U}/^{238}\text{U}$) > 1 suggesting that ^{234}U is recoiled from an acid-soluble U-rich phase to a neighbouring acid-resistant U-poor phase in the U-ore (Sheng and Kuroda 1984; Sheng and Kuroda 1986a,b; Essien, 1990). As a result, U-poor phase become enriched in ^{234}U through time with respect to ^{238}U, while the U-rich phase becomes depleted (Fig. 4.1). During dissolution via leaching, U-rich phases are preferentially removed, and thus the residue become enriched in ^{234}U (Fig. 4.2). Nuclides located into the alpha recoil tracks may have higher reactivity with fluid, leading to their preferential removal during acid leaching if the track has not been sufficiently annealed. However, the U mill tailings of this study exhibit ($^{234}\text{U}/^{238}\text{U}$) greater than one, which suggest that at least a fraction of the the recoil nuclides became trapped into the crystal lattice of the U-poor phase via track annealing process (Eyal and Fleischer, 1985; Lumpkin et al., 1989), thus preventing their mobility during acid-leaching.

In order to explain the range of ($^{234}\text{U}/^{238}\text{U}$) values in the mill tailings a mixing model was used (Langmuir et al., 1978) between a U-rich and U-poor phases in a ($^{234}\text{U}/^{238}\text{U}$) vs. ^{238}U diagram (Fig. 5). For the U-rich phase end-member (U-rich phases with their boundaries that are depleted in ^{234}U by α-recoil effect), the U content was set to 700 mg.g$^{-1}$, which is a typical average value for uraninite (Ecarpière, France: Horie and Hidaka, 2019; Worldwide: Alexandre et al., 2016), whereas the ($^{234}\text{U}/^{238}\text{U}$) ratio was set to 1, which is close to the average value for the U-ores (Richter et al, 1999 ; Uvarova et al. 2014 ; Keatley et al., 2001) and U-ore concentrates (Kayzar-Boggs et al., 2021) that derived from the U-rich leachate during the milling process. For the U-poor phase end-member, the ($^{234}\text{U}/^{238}\text{U}$) ratio was set to
400, which is the highest value reported for the acid-leach U ore residue (mixture of U-poor phases implanted with 234U and phases non-implanted with 234U, Sheng and Kuroda, 1986), while two different low level of U contents were used in order to encompass all the U mill tailing data with the mixing curves. The first one was set to 0.05 ppm of U which is an intermediate value between quartz (0.01 µg.g$^{-1}$; Gotze et al., 2004) and K-feldspar (0.09-0.26 µg.g$^{-1}$ of U; Arzamastsev et al., 2005), which are the two dominant phases in the U mill tailings (Somot, 1997; Ballini et al., 2020). The second was set to 0.6 ppm of U which is intermediate between the value used for quartz and K-feldspar and the value for the upper continental crust (3 µg.g$^{-1}$ of U; Rudnick and Gao, 2014). Mixing curves are drown in Figure 5 and validate the process that could explain the high (234U/238U) activity ratio described above. According to the mixing model, the variation of (234U/238U) activity ratios is dependent to U concentration in the U mill tailing. This concentration is related to the initial U content of the processed U-ore and to the U extraction yield reached during the milling process.

3.2.2 (230Th/238U) activity ratio and U extraction yield

The (230Th/238U) activity ratios of U mill tailings range from 6.6 (Gabon sample) to 65 (ECA-85 sample) (Table 3; Fig. 3a). For comparison, the U mill tailings from Australia display also (230Th/238U) values higher than 1, that range from 2.5 to 10 (Lowson and Short, 1986). In addition, the worldwide U-ore concentrates, resulting from selective U extraction from the U-ore exhibit (230Th/238U) activity ratio values much lower than 1 (Keatley et al., 2021). The high (230Th/238U) activity ratio values in the U mill tailings reflect the preferential U extraction from the ore while the others 238U-decay products mainly remain in the U mill tailing (Landa, 1999).

3.2.3 210Pb, 226Ra and 230Th disequilibrium
The \(^{226}\text{Ra} / ^{230}\text{Th} \) and \(^{210}\text{Pb} / ^{226}\text{Ra} \) were also investigated by gamma spectrometry. \(^{226}\text{Ra} / ^{230}\text{Th} \) activity ratios range from 0.60 to 3.13 (Fig. 3b, Table 3). Four U mill tailings samples (LOD-FS, LOD-MA, JOU-97 and BZN) have \(^{226}\text{Ra} / ^{230}\text{Th} \) activity ratios close to secular equilibrium (i.e. 0.95-1.05), which suggest that \(^{226}\text{Ra} \) and \(^{230}\text{Th} \) were not significantly fractionated during the U-ore treatment and/or subsequent U mill tailing management. However, two others U mill tailings samples (Jouac-DT, Gabon) have \(^{226}\text{Ra} / ^{230}\text{Th} > 1 \), while ECA-85 sample has \(^{226}\text{Ra} / ^{230}\text{Th} < 1 \). For Gabon sample, the \(^{226}\text{Ra} \) and \(^{230}\text{Th} \) disequilibrium points out the selective migration of Th due to the acidity of non-neutralized barren solutions and accumulation of \(^{226}\text{Ra} \) in the samples thanks to the precipitation of Ba-Pb-Ra sulfates (Pagel and Somot, 2002). For JOU-DT sample, as suggested by Somot et al., (2002), the \(^{226}\text{Ra} \) and \(^{230}\text{Th} \) disequilibria suggests the selective migration of \(^{226}\text{Ra} \) via slightly-acidic rain water. The slight disequilibrium of \(^{226}\text{Ra} \) and \(^{230}\text{Th} \) for ECA-85 samples implies either an addition of \(^{230}\text{Th} \) or a loss of \(^{226}\text{Ra} \) probably during the milling process or subsequent management steps. However, the lack of detailed information concerning the milling process and the geochemical composition of liquid effluent or underground mine waters that were occasionally added to the mine tailings in the pond/pile (Somot, 1997), as well as the sampling area and method, prevent us to decipher precisely the origin of this disequilibrium.

The \(^{210}\text{Pb} / ^{226}\text{Ra} \) activity ratios of the studied U mill tailings are all lower than 1 (Fig. 3, Table 3). This low activity ratio could be explained by the loss of \(^{222}\text{Rn} \) leading thus to a lower production of \(^{210}\text{Pb} \) compared to the activity of \(^{226}\text{Ra} \). A large quantity of \(^{222}\text{Rn} \) nuclides is produced in the U mill tailings disposal and migrate into the cover materials, designed to prevent significant radon fluxes to reach the atmosphere (Ferri et al., 2002, Saâdi et Guillevic, 2016). The \(^{210}\text{Pb} / ^{226}\text{Ra} < 1 \) recorded in the U mill tailing of this study are
therefore likely due to continuous 222Rn loss in these porous and permeable types of materials either in the disposal or during the samples storage in the laboratory.

3.3 Pb isotope signature of U mill tailings

3.3.1 Bulk samples

The Pb isotope signature of Th-poor U-ores (France: Cathelineau et al. (1990); Gabon: Gancarz, (1978); Gauthier-Lafaye et al., (1996)) is characterized by higher ($^{206}\text{Pb}/^{207}\text{Pb}$) and lower ($^{208}\text{Pb}/^{207}\text{Pb}$) ratios compared to the common Pb isotope signature of the Present Day Average Crust (PDAC; $^{206}\text{Pb}/^{207}\text{Pb} = 1.20$; $^{208}\text{Pb}/^{207}\text{Pb} = 2.47$; Stacey and Krammers, 1975; Fig. 6). The U mill tailings have $^{204}\text{Pb}/^{207}\text{Pb}$, $^{206}\text{Pb}/^{207}\text{Pb}$, $^{208}\text{Pb}/^{207}\text{Pb}$ ratios that range from 0.00396 to 0.06111, from 1.86 to 7.15 and from 0.22 to 2.39, respectively (Table 4; Fig. 6). Similarly to U-ores, the U mill tailing samples show a wider Pb isotopic range compared to the whole range reported for common Pb in chemical or natural materials in the environment, excluding U-ores (IUPAC, Berglund and Wieser, 2011), with higher ($^{206}\text{Pb}/^{207}\text{Pb}$) and lower ($^{208}\text{Pb}/^{207}\text{Pb}$) ratios compared to the values reported for the PDAC. This suggests that the radiogenic signature of the U-ores is preserved in the U mill tailings.

All the U mill tailings from France display a negative linear correlation and plot along a line that link the PDAC to the range of highly radiogenic Pb composition of the U-ores from France (Fig. 6). Moreover, the U mill tailings from Gabon do not plot on this trend and exhibit a Pb isotopic composition intermediate between the PDAC and the U-ores from Gabon.

The various proportion of mixing between two components are represented by a line in a Pb-Pb isotopic diagram, suggesting that the U mill tailings are mixture between (1) phases that
have common Pb composition coming from either the U-ore host rock or from the reagent used for the U extraction and (2) phases that have a radiogenic Pb isotope composition of the U-ore (Gabon or France).

The proportion of radiogenic Pb from the U-ore hosted in each U mill tailing was estimated using the approach (i.e. k factor) described in Gourgiotis et al. (2020). The Pb isotopes composition of the PDAC has been used for the geochemical background end-member. The $^{206}\text{Pb}/^{207}\text{Pb}$ ratio of the radiogenic end-member used for U mill tailings from France (19.55) has been determined by the intercept ($1/\text{intercept}$) in a $^{207}\text{Pb}/^{206}\text{Pb}$ vs. $^{204}\text{Pb}/^{206}\text{Pb}$ diagram (Fig 6b). Similarly, the $^{208}\text{Pb}/^{207}\text{Pb}$ ratio of the radiogenic end-member has been calculated by the intercept in a $^{208}\text{Pb}/^{207}\text{Pb}$ vs. $^{204}\text{Pb}/^{207}\text{Pb}$ diagram and was found to be 0.10. For U mill tailing from Gabon, the Pb isotopes composition of the radiogenic end-member was calculated for a Th-free U phase that crystallized 2.05 Ga ago (Gancarz, 1978; $^{206}\text{Pb}/^{207}\text{Pb} = 7.9$ and $^{208}\text{Pb}/^{207}\text{Pb} = 0$). The estimated proportion of radiogenic Pb range from 14% to 66% for U mill tailings from France and is 95% for U mill tailing from Gabon.

3.3.2 Radiogenic-Pb bearing phases in the U mill tailings

The samples having the highest ($^{206}\text{Pb}/^{207}\text{Pb}$) and lowest ($^{208}\text{Pb}/^{207}\text{Pb}$) ratios (GABON and JOU-97) were selected in order to determine the radiogenic Pb bearing phases. The aim of this preliminary study is to determine if the radiogenic Pb is associated to the remaining U bearing phases (probably partially altered) in the U mill tailings or if the “radiogenic Pb” is associated to neo-formed phases. Thanks to isotope imaging by SIMS, the radiogenic Pb was identified when ^{206}Pb isotope signal was higher than the ^{208}Pb signal (Figs. 7 and 8).

Some preliminary results show that in JOU-97 sample, the radiogenic Pb was mainly identified in U-rich phases and in a lesser extent in micrometric-sized U-poor phases that potentially host Si, Al, Mg, Fe, K, Ca and Pb or S (interference of S on Pb for their respective
Kα rays) based on SEM-EDX spectrum of 18 to 27 μm² areas (Supplemental figure A1).

However, the precise identification of the mineralogy of these phases is difficult to assess due to the small size of the particles, as the area taken into account for SEM-EDX spectrum could potentially involve neighbouring phases that do not host radiogenic Pb. In Gabon sample, the radiogenic Pb was encountered in U-rich and in U-free S-rich phases that could be either Pb-sulphide or Pb-sulphate. The radiogenic Pb is therefore hosted for both samples in primary U-rich phases that remain after the milling process. For GABON sample the radiogenic Pb is also encountered in U-free S-rich phases that could be either (i) remaining Pb-sulphide (galena) related to natural hydrothermal alteration of U-rich phases (Gauthier-Lafaye et al., 1996) or (ii) neo-formed Pb-Ba-Ra sulphate related to the milling process involving sulphuric acid (Pagel and Somot, 2002; Schmandt et al., 2019; Rollog et al., 2020).

For JOU-97 sample the radiogenic Pb is also encountered in association with micrometric-sized U-poor phases that could potentially be either clay minerals or oxyhydroxides related to (i) the weathering of minerals from the mineralized granites or (ii) the rapid diagenesis of neutralized U mill tailing after deposition in the disposal (Somot et al., 2000; Somot et al., 2002, Cook et al., 2018; Ballini et al., 2020; Chautard et al., 2020; Ram et al., 2021b). Moreover, U-rich phases without or with minor radiogenic Pb content were also identified (Fig. 7), suggesting U or Pb mobility (Syverson et al., 2019; Ram et al., 2021a; Ram et al., 2021c; Ram et al., 2021d).

3.4 Tracking the presence of U mill tailing in the environment

In the context of U mines environmental impact assessment, U mill tailings are one of the source to be considered for the release of radionuclides into the environment. Transfer of radionuclides related to U mining or milling activities into the environment, where they can
accumulate (e.g. wetlands, lake sediments, soils), could occur via particulate or dissolved
species transport (Bollhoefer et al., 2006; Sinclair et al., 2006; Strok and Smo isl 2010;
Smodis 2014; Morin et al., 2016; Liu et al., 2017; Stetten et al., 2018; Dang et al., 2018, Liu
et al., 2018; Yin et al., 2019; Yin et al., 2020; Wang et al., 2019; Mangeret et al, 2020,
Paradis et al, 2020; Gourgiotis et al. 2020; Wang et al., 2021; Yin et al., 2021).

The U mill tailings are radioactive materials that have higher content of U (30-600 ppm) and
Pb (60-800 ppm) compared to the average value encountered in the environment (3 and 10
ppm, respectively). Therefore, the transfer of U and Pb from U mill tailing into the
environment, via solid particles or dissolved species, would contribute to the U and Pb
content in the local geochemical background. However, U-ores outcrops potentially occurring
outside of the U mine sites present also similar geochemical signature with even higher
content of U and Pb. Moreover, weathering and erosion of the local bedrock that is often
granitic in the case of the French U-mines areas can also play an important role in increasing
these concentration levels. Indeed, high U contents have already been documented in sites
non-impacted by mining activities, such as Alpine soils (up to 4000 ppm) and lacustrine
sediments (up to 400 ppm) (Regenspurg et al., 2010; Lefebvre et al., 2021a, b) as well as
ground and surface waters (Owen and Otton, 1995) where the surrounding bedrock consists
mainly of crystalline rocks that commonly contain trace amounts of U (Bernhard, 2005).

The U mill tailings of this study have a Pb isotope signature with high $^{206}\text{Pb}/^{207}\text{Pb}$ and low
$^{208}\text{Pb}/^{207}\text{Pb}$ ratios, similar to their related U-ores (Fig. 6). Therefore, for an environmental
sample displaying a radiogenic isotope signature, it is not possible to decipher the origin of
this signature between (1) the natural weathering of U-ore, (2) the U-ore mining activities and
(3) the U milling activities, by using only stable Pb isotopes.

Previous studies have shown that ($^{234}\text{U}/^{238}\text{U}$) ratio could be used to track the impact of U mill
tailings in the environment, as the water that interacted with U mill tailings (Zielinsky et al.,
27

1997; Ketterer et al., 2000; Bush and Morrisson, 2012; Kamp and Morrison, 2014; Wang et al., 2021) could have high U content associated to a ($^{234}\text{U}/^{238}\text{U}$) near to unity, which contrast with the groundwater ($0.5<^{234}\text{U}/^{238}\text{U}<30$; Osmond and Cowart, 1992) and the dissolved load of major rivers (1.3 ± 0.5, 2σ; Suhr et al., 2018) that have a lower U content associated usually with a ($^{234}\text{U}/^{238}\text{U}$)$>1$. The U mill tailings of this study show a disequilibrium with higher ($^{234}\text{U}/^{238}\text{U}$) activity ratios compared to (1) U-ores, (2) the average weathered solid products, excluding U-ores ($^{234}\text{U}/^{238}\text{U}$) = 0.99$\pm$0.19 (Suhr et al., 2018) or to the range covered by weathered U-mineralizations (0.89-1.20; Lowson et al., 1986).

In this study we propose to use the U-Pb isotopic composition of U mill tailings which is unique as it combines both (1) the highly radiogenic Pb signature related to U-ores and (2) the high disequilibrium with ($^{234}\text{U}/^{238}\text{U}$), related to the milling process of U-ores. Thus, this signature is distinct compared to (1) U-ores, which exhibit radiogenic Pb isotopes signature, but are on average at secular equilibrium with respect to ^{234}U-^{238}U, and (2) weathered solid products which exhibit mostly small or moderate disequilibrium associated to a common (weathered crust, excluding U-ores) or radiogenic (weathered U mineralizations) Pb isotopes signature.

The impact of a contamination from U mill tailings in the environment on the U-Pb signature of a contaminated sample was investigated with a mixing model (Langmuir et al., 1978) between the U mill tailings from this study and the PDAC (Stacey and Krammers, 1976; Rudnick and Gao, 2014) at secular equilibrium. The mixing curves are plotted in the figure 9. The results of this model show that only a fraction of 5 wt. % of U mill tailings added to a sediment is sufficient in most cases to get a material with a distinct U-Pb isotopic signature compared to the natural range, with both $^{206}\text{Pb}/^{207}\text{Pb} > 1.6$ and ($^{234}\text{U}/^{238}\text{U}$) > 1.2. It is worth mentioning that combining Pb isotopes to U isotopes is more relevant than to ($^{230}\text{Th}/^{238}\text{U}$) activity ratio which can exhibit important variations due to chemical fractionation. Higher
238U mobility compared to that of 230Th can lead to (230Th/238U) values similar to that observed in uranium mill tailings. Chemical fractionation can also influence (210Pb/226Ra) and (226Ra/230Th) activity ratios altering the initial U mill tailing signature limiting thus their use as a relevant tracer of U mill tailings. Finally, regarding elemental composition, we believe that S concentration seems to be a promising tracer to highlight the impact of acid U mill tailings or tailing activities on the environment.

4 Conclusions

The goal of this study was to identify relevant tracers that can be used for environmental impact assessment studies involving U mill tailings. The results put in light the U series disequilibrium in the U mill tailings, especially with higher (234U/238U) compared to most of the solid weathered products and high (230Th/238U) activity ratios related to the selective U extraction during the milling process. This high (234U/238U) activity ratios were likely acquired by the removal of labile U-rich phases by dissolution, while the neighbouring milling-resistant U-poor phases that are enriched in recoiled 234U remain in the U mill tailings. This study also suggest the conservation of the specific Pb isotopic signature of U-ores into the U mill tailings with higher 206Pb/207Pb and lower 208Pb/207Pb compared to common lead. This specific Pb signature have been encountered in the U mill tailing into the remaining U-rich phases, (remaining or secondary) S-rich phases and potentially in association with clay minerals or oxyhydroxides. As a consequence, we recommend to use stable Pb isotopes combined with (234U/238U) activity ratios as multi-tracking tool providing a relevant fingerprinting for the impact of U milling activities on the environment.

5 Acknowledgements
We would like to warmly thank Gilles Alcade, Olivier Diez and Cyrielle Jardin for their helpful contributions on elemental analysis.

This is PATERSON, the IRSN mass spectrometry platform, contribution n°12.

6 Figures

Figure 1: a) Geological map of France (1/1000000 series, © BRGM) and b) modified geological map of Gabon (only indicating the Paleoproterozoic Francevillian Group that host the U deposits; Bankole et al., 2020) showing the localization of the former uranium mines and the U mill Tailing Management Facilities (France: Programme MIMAUSA database; Gabon: Ossa et al., 2021). The names of the Tailing Management Facilities are reported for sites where U mill tailing samples were analysed in this study.
Figure 2: Major and trace elements patterns of U mill tailings from France and Gabon normalized to the Upper Continental Crust values from Rudnick and Gao (2014). The selected elements are ordered from the most (Al) to the less (U) abundant in the upper continental crust.

Figure 3: (a) \(^{230}\text{Th}/^{238}\text{U} \) vs. \(^{234}\text{U}/^{238}\text{U} \) and (b) \(^{210}\text{Pb}/^{226}\text{Ra} \) vs. \(^{226}\text{Ra}/^{230}\text{Th} \) activity ratio diagrams. (a) Data from ICPMS measurements and (b) data from gamma spectrometry measurements. The gray dashed lines represent the secular equilibrium value for each activity ratio. The light gray field represents the \(^{234}\text{U}/^{238}\text{U} \) activity ratio values recorded in
worldwide U ores from different types of U deposits (Richter et al., 1999; Uvarova et al., 2014; Keatley et al., 2001; Kayzar-Boggs et al., 2021). The values recorded in worldwide U ore concentrates (UOC) from different types of U deposits plot outside the diagram field with low (230Th/238U) ratios and are indicated with the arrow (Kayzar-Boggs et al., 2021).

Figure 4: Sketch showing the process suggested by Sheng and Kuroda (1986) that would produce the (234U/238U)>1 in the U mill tailings. The implantation of 234Th (which decay into 234U) from a U-rich phase into U-poor phase by alpha-recoil effect (Kigoshi, 1971) associated to the annealing of the alpha-recoil damage (Eyal and Fleisher, 1985; Lumpkin et al., 1990).
The size of alpha recoil damages (20-30 nm) is coming from (Fleischer, 1980; Ordonez-Regil et al., 1989). The \((^{234}\text{U}/^{238}\text{U})\approx1\) is derived from the average value \((0.97\pm0.09, 2\sigma, n=56)\) of U-ore concentrates (Kayzar-Boggs et al., 2021) that derived from the U-rich leachate during the milling process.

Figure 5: \((^{234}\text{U}/^{238}\text{U})\) vs. U diagram. Solid gray lines represent the mixing curves between a U-rich phase at secular equilibrium (black star, 700000 ppm of U) and two different U-poor phases (grey stars) that have different U contents (0.05 ppm and 0.6 ppm of U) and a \((^{234}\text{U}/^{238}\text{U})\) activity ratio of 400. The weight fractions of U-rich phase in the mix are represented with a black dot. The grey field correspond to the U-ores composition.
Figure 6: (a) $^{206}\text{Pb}/^{207}\text{Pb}$ vs. $^{208}\text{Pb}/^{207}\text{Pb}$ and (b) $^{207}\text{Pb}/^{206}\text{Pb}$ vs. $^{204}\text{Pb}/^{206}\text{Pb}$ diagrams for U mill tailings from France and Gabon. The dark gray circle represent the present day average crust (PDAC: Stacey and Kramers, 1975) and this circle includes the range of composition of chemical or natural materials encountered in the environment (Berglund and Wieser, 2011). Small blue circles represent the Pb isotope ratios for U oxides from France.
(L’Ecarpière: Cathelineau et al., 1990; Lodève: Lancelot et al., 1984; Piégut: Turpin and Leroy, 1987; Pen Ar Ran and Métairie Neuve: Ballouard et al., 2017; Margnac and Fanay U deposits: Leroy and Holliger, 1984). Large blue circles represent the theoretical $^{206}\text{Pb}/^{207}\text{Pb}$ ratios calculated for the first (Retail: 425 Ma) and the last (Bertholène: 40 Ma) U deposit in France reported in Cathelineau et al. (1990) using the Pb-Pb dating method (e.g. Patterson, 1956). Small orange circles represent the Pb isotope ratios for U oxides from Gabon (Gancarz et al., 1978). Large orange circles represent the theoretical $^{206}\text{Pb}/^{207}\text{Pb}$ ratios calculated for the U deposit in the Francevillian basin (Gabon) at 2050±30 Ma (Gancarz, 1978). The blue (France) and the orange (Gabon) areas represent the possible range of composition resulting from the mixing between a material having the composition of the PDAC and the respective U ores. The fraction of radiogenic Pb coming from the U ores in the U mill tailing (k factor, in grey) have been determined from the equation proposed by Gourgiotis et al. (2020). The Pb isotopic compositions used for the end-members are described in the text. (b) The dashed lines represent the linear regression of the six U mill tailings from France (orange) and from U mill tailings from Gabon and PDAC (blue). The apparent age of formation of U deposits was calculated using the respective intercept values.
Figure 7: (a) SEM-BSE imaging (U,Pb)-rich phases of JOU-97 sample. (b), (c), (d) SIMS mapping of 206Pb, 208Pb, 238U16O.
Figure 8: (a) SEM-BSE imaging of (U,Pb)-rich phases of GABON sample. (b) and (c) SEM-EDS mapping of Pb and S. (d), (e), (f) and (g) SIMS mapping of ^{28}Si, ^{206}Pb, ^{208}Pb, ^{238}U.^{16}O.

Figure 9: (^{234}U//^{238}U) vs ^{206}Pb//^{207}Pb diagram showing the specific signature of U mill tailings (UMT). Dashed lines represent mixing curves between each U mill tailings and a material having the composition of the present day average crust at secular equilibrium (U, Pb content: Rudnick and Gao, 2014; ^{206}Pb//^{207}Pb: Stacey and Krammers, 1976). The fraction of 5% of U mill tailings in the mix is represented with a black dot. The average (^{234}U//^{238}U) activity ratio of the weathered crust and dissolved load of major rivers comes from Suhr et al., (2018). (^{234}U//^{238}U) of the seawater (Osmond and Cowart, 1976). Field of weathered U-ores was drawn using the range of (^{234}U//^{238}U) reported in Lowson et al., (1986) and the range of ^{206}Pb//^{207}Pb for U-ores. The natural Pb isotopic variation (excluding U-ores) comes from Berglund and Wieser (2011).
Table 1: U mill tailings description. Information about the U mill tailings are coming from Somot et al., (1997), Pagel and Somot (2002), Ballini et al., (2020). The type of U deposit comes from the classification suggested by IAEA (2018). (I) and (II) correspond to the age of the main stage of U deposition from Cathelineau et al., (1990) and references therein, Horie and Hidaka (2019) and Gancartz, (1978). Abbreviations: TMF, for Tailing Management Facilities; FS, for faille sud; MA, for Mas d’Alary; DT, for Dong Trieu; SIMO, for Société Industrielle des Minerais de l’Ouest; SMJ, for Société des Mines de Jouac; COMUF, for Compagnie des Mines d’Uranium de Franceville.

<table>
<thead>
<tr>
<th>U mill tailings</th>
<th>TMF</th>
<th>U mineralization</th>
<th>U-ore milling process and effluent treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mining division</td>
<td>Deposit type</td>
</tr>
<tr>
<td>LOD-FS LOD-MA Le Bosc (Lodève)</td>
<td>Lodève</td>
<td>Tectonic-lithologic sandstone</td>
<td>Lodève basin</td>
</tr>
<tr>
<td>ECA-85 L’Ecarpière</td>
<td>Bretagne-Vendée</td>
<td>Granite related</td>
<td>Montagne massif</td>
</tr>
<tr>
<td>BZN Bellezane</td>
<td>La Crouzille</td>
<td>Granite related</td>
<td>Saint Sylvestre massif</td>
</tr>
<tr>
<td>JOU-97 JOU-DT Le Bernardan (Jouac)</td>
<td>Mailhac-sur-Benaize</td>
<td>Granite related</td>
<td>Western Marche massif</td>
</tr>
<tr>
<td>Gabon Mounana</td>
<td>Mounana</td>
<td>Tectonic-lithologic sandstone</td>
<td>Francevillian basin</td>
</tr>
</tbody>
</table>
Table 2: Major and trace element contents of U mill tailings from France and Gabon.

<table>
<thead>
<tr>
<th>Sample TMF</th>
<th>LOD-FS (Le Bosc (Lodève))</th>
<th>LOD-MA (Le Bosc (Lodève))</th>
<th>ECA-85 (L’Ecarpière)</th>
<th>BZN (Bellezanne)</th>
<th>JOU-97 (Le Bernardan (Jouac))</th>
<th>JOU-DT (Le Bernardan (Jouac))</th>
<th>GABON (Mounana)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major elements (wt. %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>16.57</td>
<td>15.43</td>
<td>12.98</td>
<td>14.34</td>
<td>10.85</td>
<td>15.25</td>
<td>6.14</td>
</tr>
<tr>
<td>$\text{Fe}_2\text{O}_3 (\text{T})$</td>
<td>6.18</td>
<td>6.72</td>
<td>3.69</td>
<td>2.53</td>
<td>2.68</td>
<td>3.86</td>
<td>1.00</td>
</tr>
<tr>
<td>MgO</td>
<td>3.81</td>
<td>3.72</td>
<td>0.86</td>
<td>0.52</td>
<td>1.41</td>
<td>1.51</td>
<td>0.20</td>
</tr>
<tr>
<td>CaO</td>
<td>6.45</td>
<td>7.21</td>
<td>6.71</td>
<td>2.36</td>
<td>4.05</td>
<td>4.60</td>
<td>0.10</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>2.72</td>
<td>2.90</td>
<td>1.48</td>
<td>1.89</td>
<td>1.28</td>
<td>1.62</td>
<td>0.11</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>5.65</td>
<td>4.82</td>
<td>3.64</td>
<td>5.34</td>
<td>4.07</td>
<td>5.78</td>
<td>1.39</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.65</td>
<td>0.62</td>
<td>0.35</td>
<td>0.25</td>
<td>0.16</td>
<td>0.26</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.13</td>
<td>0.17</td>
<td>0.03</td>
<td>0.06</td>
<td>0.08</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.15</td>
<td>0.13</td>
<td>0.34</td>
<td>0.26</td>
<td>0.14</td>
<td>0.17</td>
<td>0.02</td>
</tr>
<tr>
<td>S$_(\text{T})$</td>
<td>0.12</td>
<td>0.09</td>
<td>3.04</td>
<td>2.77</td>
<td>1.87</td>
<td>3.07</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Trace elements ($\mu\text{g/g}$):

	Ba	Pb	Th (ID)	U (ID)
	688	542	11.2	594
	652	443	10.8	321
	320	66	17.6	30
	480	418	15.3	169
	1193	76	8.8	101
	532	201	10.5	131
	592	805	21.0	71

Major elements were measured using ICP-OES technique, while S$_(\text{T})$ content was measured using a CHNS elemental analyser. Trace elements were measured using an ICPMS/MS with a standard calibration technique (Ba and Pb) or by isotope dilution (ID for U and Th).
Table 3: Activities of ^{238}U and activity ratios (AR) of long-lived radionuclides of U mill tailings from France and Gabon. U and Th isotopes were measured by ICP-MS. ($^{230}\text{Th}/^{226}\text{Ra}$) and ($^{210}\text{Pb}/^{226}\text{Ra}$) were measured by gamma spectrometry.

<table>
<thead>
<tr>
<th>Sample</th>
<th>^{238}U</th>
<th>^{238}U</th>
<th>$^{230}\text{Th}/^{226}\text{U}$</th>
<th>$^{230}\text{Th}/^{226}\text{U}$</th>
<th>$^{230}\text{Th}/^{226}\text{Ra}$</th>
<th>$^{230}\text{Th}/^{226}\text{Ra}$</th>
<th>%Pb \text{rad}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD-FS</td>
<td>590 ±1$^{+1}_{-5}$</td>
<td>7342 ±1$^{+9}_{-3}$</td>
<td>1.29 ±0.0$^{+3}_{-4}$</td>
<td>7.1 ±0.3</td>
<td>0.91 ±0.0$^{+5}_{-4}$</td>
<td>0.69 ±0.0$^{+2}_{-2}$</td>
<td></td>
</tr>
<tr>
<td>LOD-MA</td>
<td>319 ±1$^{+1}_{-3}$</td>
<td>3966 ±1$^{+3}_{-2}$</td>
<td>1.64 ±0.0$^{+4}_{-3}$</td>
<td>7.9 ±0.2</td>
<td>0.95 ±0.0$^{+4}_{-4}$</td>
<td>0.71 ±0.0$^{+1}_{-2}$</td>
<td></td>
</tr>
<tr>
<td>ECA-85</td>
<td>29.6 ±0.1$^{+1}_{-1}$</td>
<td>369 ±1$^{+7}_{-2}$</td>
<td>1.78 ±0.0$^{+2}_{-4}$</td>
<td>65.0 ±0.3</td>
<td>0.63 ±0.0$^{+3}_{-4}$</td>
<td>0.92 ±0.0$^{+4}_{-3}$</td>
<td></td>
</tr>
<tr>
<td>BZN</td>
<td>168 ±0.5$^{+0}_{-5}$</td>
<td>2086 ±7$^{+1}_{-2}$</td>
<td>1.29 ±0.0$^{+1}_{-4}$</td>
<td>15.4 ±0.2</td>
<td>1.00 ±0.0$^{+0}_{-4}$</td>
<td>0.83 ±0.0$^{+1}_{-2}$</td>
<td></td>
</tr>
<tr>
<td>JOU-97</td>
<td>100 ±0.7$^{+0}_{-7}$</td>
<td>1243 ±9$^{+1}_{-2}$</td>
<td>1.27 ±0.0$^{+2}_{-4}$</td>
<td>23.1 ±0.3</td>
<td>0.60 ±0.0$^{+0}_{-3}$</td>
<td>0.68 ±0.0$^{+2}_{-2}$</td>
<td></td>
</tr>
<tr>
<td>JOU-DT</td>
<td>129.7 ±0.5$^{+0}_{-5}$</td>
<td>1615 ±6$^{+1}_{-2}$</td>
<td>1.51 ±0.0$^{+1}_{-4}$</td>
<td>19.1 ±0.2</td>
<td>2.55 ±0.1$^{+0}_{-3}$</td>
<td>0.828 ±0.0$^{+0}_{-4}$</td>
<td></td>
</tr>
<tr>
<td>GABON</td>
<td>70.4 ±0.4$^{+1}_{-5}$</td>
<td>877 ±5$^{+1}_{-2}$</td>
<td>1.87 ±0.0$^{+5}_{-2}$</td>
<td>6.6 ±0.2</td>
<td>3.13 ±0.4$^{+0}_{-2}$</td>
<td>0.89 ±0.0$^{+1}_{-2}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Pb isotopes of U mill tailings from France and Gabon measured by HR-ICPMS. The fraction of radiogenic Pb (%Pb \text{rad}), the Pb from the U-ore, was calculated using the method described in Gourgiotis et al., (2020).
8 References

Morin, G., Mangeret, A., Othmane, G., Stetten, L., Seder-Colomina, M., Brest, J., Ona-Nguema, G., Bassot, S., Courbet, C., Guillevic, J., Thouvenot, A., Mathon, O., Proux,
O. and Bargar, J.R., 2016. Mononuclear U(IV) complexes and ningyoite as major uranium species in lake sediments. Geochemical Perspectives Letters, 2(1): 95+-.

Mechanism of uranium release from uranium mill tailings under long-term exposure to simulated acid rain: Geochemical evidence and environmental implication. Environmental Pollution, 244: 174-181.

