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Abstract 

 
To assess flooding risk, hydraulic models are used but they contain many uncertainties related to the lack of 
knowledge of input parameters. To quantify the uncertainties and evaluate the most influential parameters of 
the model, Uncertainty Quantification (UQ) and Global Sensitivity Analysis (GSA) can be used. In order t o 

implement these methods, model inputs must be independent, which is not often the case.  This research aims 
to propose a methodology to deal with dependent inputs in UQ and GSA for hydraulic models and to reduce 
the computational times. To do so, a 2D hydraulic model of the Loire River built with TELEMAC-2D was used. 

The study methodology is carried out in the following steps: the uncertain model inputs (hydraulic and breach 
parameters) and the outputs of interest (the water level at given points) are set. The inputs margins and 
dependencies are defined by a statistical analysis using a real dataset of the Loire River. The dependency 

structure between inputs is represented by copulas. Since UQ and GSA require many simulations, kriging 
metamodels are used to increase the number of experiments in a short time period. Finally, UQ and GSA are 
carried out by considering the inputs dependent or not. The outputs distribution slightly differs if the inputs are 

considered independent or not. The number of influencing parameters increases when inputs are considered 
dependent. Some parameters, usually considered as not influencing, may actually be significantly impacting 
on the outputs. These results suggest that dependencies should not be overlooked in 2D hydraulic models. 
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1. INTRODUCTION  
 

 In France, 17.1 million inhabitants are exposed to different consequences of flooding by river overflow. 
These different types of flooding can be related to each other,  e.g., runoff contributes to river overflow, a 
marine flood can cause or aggravate a river overflow, a structure failure can cause or aggravate a river 

overflow or a marine flood, and conversely a river overflow of a level exceeding the protection level of the 
structure can cause its partial or total failure. These floods can be assessed by numerical modelling. However, 
the models have numerous uncertainties linked to the input parameters of the model. Indeed, the choice of 

hydraulic parameters such as roughness coefficients, hydrograph parameters and breach parameters (e.g. 
location or geometry) is a major source of uncertainty that has a strong impact on the water level at a given 
location. Thus, methodologies have been developed to better understand the impact of uncertain input 

parameters on the overtopping generated and to improve the quantification of the flood risk by considering the 
uncertainties. Hence, uncertainty quantification (UQ) and global sensitivity analysis (GSA) are used. 
Traditionally, to perform these kinds of analyses, model input parameters are supposed to be independent, 

which is not always true, especially in hydraulic studies. Therefore, this study aims to propose a complete 
methodology to analyse uncertainties in hydraulic models by taking into account the dependencies between 
model inputs. 

 To manage uncertainties in hydraulic models, Bacchi et al. (2018) highlights that the following methods 
based on statistical techniques can be used (Faivre et al., 2013; Saltelli et al., 2008). Where UQ aims to 
describe the set of possible outcomes considering the input system as not perfectly known and GSA attempts 

to measure the extent to which model outputs are affected by changes in model inputs and it is also used to 
rank parameters. 
 Moreover, to handle UQ with inputs that are considered independent, classical methods such as Monte 

Carlo are commonly used. To deal with dependent inputs, methods including copula (joint distribution defined 
in a d-dimensional space [0,1]𝑑 with uniform marginal distributions (Nelsen, 2007), where 𝑑 is the number of 

parameters in the given copula) can be used. To do this, inputs are randomly sampled inside marginal 
distributions, taking into account the dependency structure, i.e. the copula. These mathematical objects are 
often used in flood frequency multivariate analyses and some authors (Balistrocchi et al., 2014; Domeneghetti 

et al., 2013; Vorogushyn et al., 2011) use copula approaches to model the dependence structure between 
hydrograph parameters. With respect to GSA, new methods have been recently developed to consider 
dependencies between inputs (Da Veiga et al., 2009; Jacques et al., 2006; Li and Mahadevan, 2016; McKay, 



 

  

                                                                                                                    
 

1995), as the one of Owen and Prieur (2017) and Iooss and Prieur, (2017) who introduced the Shapley 

effects. 
 These methods require many simulations and can be computationally time consuming especially when 
2D models are used. Thus, alternative methods, such as metamodel approaches, can be used to significantly 
reduce the computational time (Richet and Bacchi, 2019). 

 In our previous studies, influence of levee breaches on flooded areas using HEC-RAS 1D (Pheulpin et 
al., 2019) and TELEMAC-2D (Pheulpin et al., 2020) models has been investigated. More recently, a 
methodology to perform a complete uncertainty analysis including UQ and GSA and taking into account the 

dependencies between the model inputs has been proposed here applied to a very simple case of flooding 
modelled using TELEMAC-2D (Pheulpin et al., 2022). 
 In this context, the objective of this work is to quantify the uncertainties in a 2D hydraulic model and to 

evaluate the effects of dependencies between some input parameters on the water level modelled of the Loire 
River between Given and Jargeau. This paper is divided into several parts: the second part presents the case 
study, the third part introduces the methodology and the fourth part shows the results of the UQ and GSA with 

dependent and independent inputs. 
 
2. THE CASE STUDY: LOIRE RIVER 

 
 The selected model represents the Loire River between Gien and Jargeau over 50 km. The Loire River is 
lined by numerous levees on both banks and more than 20 historical breaches are known in this study area 

(Figure 1). The model was built by IRSN with the open-source TELEMAC-2D computational codes. The model 
mesh is made of approximately 180,000 nodes and takes one hour on average for one run with 38 parallel 
processors.  

 

 
Figure 1. Modelling area of the Loire River. The 4 red points are the outputs of interest. 

 
 The boundary conditions used are an upstream hydrograph and a downstream calibration curve.  The 

upstream hydrograph is defined by the following three parameters: time to peak (tm), duration (d) and 
maximum flow (qmax) (Figure 2). The model has been calibrated for well-known flood events; the calibration 
parameters are the eight roughness (Strickler) coefficients (Ks) presented in Figure 2. 

 

 
Figure 2. Designed hydrograph parameters (left) and locations of the 8 roughness coefficients used to 

calibrate the model (right) 



          
 

 

 
  

To simulate breaches, three following breach parameters, introduced in Figure 3, are considered: final breach 
depth (cf), breach initiation parameter (also named control level), corresponding to the water level above the 
levee (cc) and breach opening time (do). A breach occurs when the water level above the levee reaches the 
control level (cc). 

 

 
Figure 3. Breach parameters considered 

 

 For this study, we only focus on four outputs points located in the floodplain (P1, P2, P3 and P4 in 
Figure 1) and we are interested in the maximum water level at these points as a variable of interest . 

 
3. METHODOLOGY 
 

3.1. Definition of uncertain inputs and dependencies 
 

Since the goal is to perform a large number of floods considering different combinations of randomly 

chosen parameters, it is therefore necessary to define the probability density function (PDF) of each input and 
the dependencies between some of these inputs. 

Regarding hydrograph parameters, a truncated GEV distribution is used for the maximum flow rate 

(qmax), and truncated log-normal distributions are used for the duration (d) and time to peak (tm). Concerning 
the dependencies between the hydrograph parameters, a Vine model is used (Mazo, 2014). The PDF and the 
dependencies of the hydrograph parameters are defined using the Loire River dataset (daily flow rate in Gien) 

(see Pheulpin et al., 2022 for further details). Regarding the Strickler coefficients (Ks), as calibration 
parameters have been defined and the PDF cannot be defined from a real dataset, triangular distributions are 
used. The mode of triangular distributions corresponds to the calibration values defined for each sector 

presented in Figure 2. Moreover, all roughness coefficients are considered independent.  
 Concerning the breach parameters, the PDF and the dependencies are more complex to define because 
data is missing. For the opening time (do), a uniform distribution is retained and for breach size parameter (cf) 

and control level (cc), triangular distributions are used. As we have no real data to evaluate the dependencies, 
no copula is used to model a possible dependency. 
 Finally, the inputs are randomly sampled within the PDF presented in Table 1 with or without using the 

copula mentioned here. Minimum and maximum boundaries are arbitrarily chosen. Among others, the 
minimum value of qmax corresponds to a 50-year return period flood. In fact, as we would like to simulate 
breaches, the water level above the levees, therefore the maximum flow, must be high enough to cause a 

dyke failure. The maximum valued of tm and do must always be under d. cc max. is selected in such a way as 
the dyke breaches with an overflow of 20 cm max. 
 

3.2. Simulations with TELEMAC-2D 
 
 Once the input distributions and dependencies were chosen, numerous TELEMAC-2D simulations were 

run. However, in order to perform our uncertainty analysis, a large dataset is required and as one simulation 
with TELEMAC-2D lasts one hour on average, thousands of simulations would take too much time to run. To 
overcome this difficulty, only 200 runs using TELEMAC-2D were made and metamodels were used to 

generate much larger datasets. 
We created an experimental design of 200 combinations of parameters. Here, inputs are randomly 

sampled within uniform distributions (use of the min. and max. limits presented in Table 1) and without taking 



 

  

                                                                                                                    
 

into account the dependencies for now. To run the 200 calculations successively and to extract the maximum 

water level at the 4 points of interest (cf. Figure 1), we used the IRSN computational tool Funz 
(https://funz.github.io/) which can be coupled with the software TELEMAC-2D. The 200 runs with TELEMAC-
2D lasted 194 hours (with 38 processors). 

 

Table 1: Inputs distributions and copula. cc is in meters below or above the levee crest and cf corresponds to 
the proportion of the levee that breaks (0 means that there is no breach while 1 means that the levee breaks 

on all its height). 

Inputs Units PDF Distribution parameters Copula 

Ks 1 to 8 - triangular 
min 10 

- 
max 40 

d h 
truncated log-

normal 

mean(log) 4.91 

Vine model 

sd(log) 0.83 
min 151 
max 14,000 

tm h 
truncated log-

normal 

mean(log) 3.83 
sd(log) 0.72 

min 30 
max 150 

qmax m
3
/s truncated GEV 

location 1548 
scale 578 
shape 0.15 

min 4600 
max ∞ 

do h uniform 
min 0 

- 
max 150 

cc m triangular 
min -0.2 

- 
max 0.2 

cf - triangular 
min 0 

- 
max 1 

 

3.3. Metamodels building 
 
 Metamodels are currently used for UQ and GSA approaches because they allow to reduce the 

computation time while preserving the statistical outputs of the initial model. For our analysis, a kriging 
metamodel was chosen (Gratiet et al., 2015) for its good predictive capabilities already demonstrated by 
Marrel et al., (2008). The methodology used for the development and validation of the metamodels is fully 

detailed in previous studies (Roustant et al., 2012; Saltelli, 2002; Wahl, 2004). 
 Four metamodels were built, one for each output, following these three main steps: 

1. Construction of a learning basis with 200 combinations of 14 input parameters and four outputs (cf. 

part 3.2); 
2. Use of the learning basis to build the 4 kriging metamodels with the R package DiceEval; 
3. Validation of the metamodels using k-fold cross-validation and leave-one-out cross validation 

methods (cf. Pheulpin et al., 2020 for more details) and check for accuracy using the R-squared. 
 

3.4. Uncertainty Quantification (UQ) 

 
 To perform the UQ, two new experimental designs of 10,000 simulations each are built from the 
metamodels. Input parameters are randomly sampled from the distributions introduced in Table 1. They are 

considered independent for one design and dependent for the second design. Then, using the four 
metamodels, the outputs are calculated. Finally, the uncertainties can be quantified using histograms, 
boxplots, empirical cumulative distribution functions, etc.  

 
3.5. Global Sensitivity Analysis (GSA) 
 

The Shapley effects (Iooss and Prieur, 2017) were used to perform the GSA because they are suitable 
for dependent inputs. These indices range from 0 to 1 and the closer they are to 1, the more influential 
the inputs are. As the sum of the indices of all inputs is equal to 1, the indices allow to directly estimate 

the share of variance of the output explained by a given input.  To compute the Shapley sensitivity 
indices, the R package sensitivity (Iooss et al., 2020) has been used. 
 

 
 



          
 

 

 
4. RESULTS AND DISCUSSION 

 
As explained above, to conduct UQ and GSA, four metamodels were built and validated. The Table 2 

shows the validation criteria computed with the cross-validation method. The metamodels well represent the 
models as the quality criteria are good enough, so they can be used for UQ and GSA. 

 
Table 2. Metamodels validation criteria. RMSE is the Root Mean Squared Error and MAE is the Mean 

Absolute Error.  
Output RMSE MAE R² 

P1 0.109 0.084 0.947 

P2 0.046 0.036 0.981 

P3 0.118 0.095 0.948 

P4 0.180 0.140 0.910 

 
4.1. Uncertainty quantification 
 

 To carry out the UQ, 10,000 simulations considering all inputs being independent and 10,000 others 
considering the hydrograph parameters being dependent, have been achieved. The Figure 4 illustrates the 
densities of the maximum water levels of the four outputs of interest (P1 to P4 illustrated in Figure 1). We do 

not report a significant difference between the case where all inputs are independent (in red) and the one 
where they are not (in blue), except for the output P4 where there is a slight difference in the center of the 
distribution. 

 Regarding the output P1, numerous simulations do not generate overflow as the median of the maximum 
water level is close to 0. For the other outputs, the ranges are more extended. For instance, the maximum 
water level varies from 0 to 4 meters in the point P4. 

 

 
Figure 4. Maximum water level distributions at the 4 output points considering independent inputs (in red) or dependent 

inputs (in blue) 

 
4.2. Global sensitivity analysis 
 

 Shapley effects, presented in Figure 5, were used to perform the GSA. They were computed using the 
10,000*2 simulations (for independent and dependent inputs) coming from the metamodels. In case of 
independent parameters (in red), there is a strong influence of the maximum flow (qmax) and a lower 

influence of some roughness coefficients (Ks). The influent roughness coefficients (Ks6, Ks7 and Ks8) are the 
downstream ones, which seems usual because the downstream conditions regulate the upstream zone. If the 
hydrograph parameters are considered as dependent (in blue), the flood duration (d) and the time to peak (tm) 

also seem to have an influence on the outputs. Finally, in case of independent inputs or not, there is no 



 

  

                                                                                                                    
 

influence of breach parameters. The breaches are too small compared to the flood magnitude. The Shapley 

effects are similar for all outputs except for the first one (P1). In this case, the rugosity coefficient Ks8 has as 
much influence or more than the maximum flow qmax. 
 

 
Figure 5. Shapley effects for the 14 uncertain inputs, considering independent inputs (in red) or dependent 

inputs (in blue) 
 
4.3. Simplistic probabilistic hazard assessment 

 
 To make a first assessment of the probabilistic hazard, the maximum water level was computed for 
different return periods from 100 to 1,000 years by considering the 70% confidence interval of the maximum 

flow GEV distribution and the variability of other inputs. For this, for each return period, a thousand values of 
qmax are sampled within the 70% confidence interval of the GEV distribution and the other values are 
sampled inside their probability distributions (Table 1). The dependences are considered or not. The results 

for the P4 output  are presented in Figure 6. It should be noted that this method is still exploratory. The results 
show that considering a 70 % confidence interval, the outputs can vary by an average of 30 cm in height, 
depending on the return period. The differences between the case with independent inputs and the one with 

some dependent inputs are very weak compared to the thickness of the confidence interval. 
 

 
Figure 6. Maximum water levels with 70 % confidence interval, at the point P4 for different return periods. 

 



          
 

 

 
4.4. Discussion 

 
 As the simulated flood have a return period of 50 years or more, the flow rates used in this study are 
particularly high, so the breach effects are insignificant or marginal. Indeed, the breach dimensions considered 
are too small to have a major influence on the flood magnitude. Thus, for this kind of study, where all the 

floodplain is massively inundated, the consideration of the realistic breaches is not meaningful.  
 Regarding hydraulic parameters, the GSA with dependent inputs shows that the three hydrograph 
parameters have a major effect. It indicates that the hydrograph shape should not be neglected. The rugosity 

coefficients and particularly those downstream also have a significant influence on the outputs. Usually, the 
rugosity coefficients are dependent on the maximum flow rate. But, as there are calibration coefficients, it is 
complex to model this dependency as we have no real data of rugosity coefficients. 

 About the UQ, it seems that the integration of the Vine model has no effect on the output densities. With 
or without dependencies, the outputs distributions are the same. This observation is available for this case 
study and for these points of outputs. For instance, in the basic case study presented in Pheulpin et al., 2022 

the dependence had a significant effect on the output distributions. 
 The method used to build the probabilistic hazard assessment curves is very simplistic and will be 
improved in a near future. In fact, uncertainties on the metamodels are not considered as well as the 

uncertainties of other than the maximum flow rate inputs. 
 
5. CONCLUSION AND PERSPECTIVES 

 
The objective of this work is to quantify the uncertainties in a 2D hydraulic model and to evaluate the 

effects of the consideration of the dependency between some input parameters on the results. The method is 

applied to the 2D hydraulic model of the Loire River between Gien and Jargeau with a focus on hydraulic and 
breach parameters. First, a statistical analysis of the inputs was made (search for probability distributions of 
inputs and dependencies between inputs through copulas) and a learning basis of 200 runs was built using 

the coupling tool Funz/TELEMAC-2D. Then kriging metamodels were built to perform more simulations with a 
low computation time. Finally, UQ and GSA were treated using the metamodels and considering independent 
inputs or not. 

For this study case, the UQ results show a few differences between the case with dependent inputs and 
the one without. For the concerned outputs the consideration of the dependence between hydrograph 
parameters is not meaningful but we have to be careful because the results could be different for other 

outputs. 
The GSA shows more differences if the dependence is considered or not. When the hydrograph 

parameters are considered dependent, the three hydrograph parameters have a strong influence on the 

results, unlike the case of independent parameters where only the maximum flow rate have influence. 
Regarding the breach parameters, they have no influence on the outputs because breaches are insignificant 
compared to the flood magnitude. 

The simplistic probabilistic hazard assessment curves are a first result providing water levels with 
uncertainties for given return periods. However, to increase their accuracy, these curves should integrate the 
uncertainties on the other parameters and on the metamodels. 

In a near future, this methodology will be applied to other hydraulic models where breaches have more 
influence on the water levels in the flooding plain. We would like to improve some points: to take into account 
the shapes of the hydrographs and not only use triangular hydrographs as input data, to integrate the dike 

fragility curves as input data for the model and to take into account other types of breaches and not only 
breaches by overflow. 
 

6. ACKNOLEDGEMENTS 
 
 This study was conducted within the NARSIS project, which has received funding from the European 

Union’s H2020-Euratom Programme under grant agreement No. 755439. We also would like to thank Yann 
Richet from IRSN for building the coupling tool Funz/TELEMAC-2D. 
 

7. REFERENCES 
 
Bacchi, Duluc, C.-M., Bardet, L., Bertrand, N., Rebour, V., 2018. Feedback from uncertainties propagation 

research projects conducted in different hydraulic fields: outcomes for engineering projects and 
nuclear safety assessment, in: Advances in Hydroinformatics. Springer, pp. 221–241. 

Balistrocchi, M., Ranzi, R., Bacchi, B., 2014. Multivariate statistical analysis of flood variables by copulas: two 

italian case studies. 3rd IAHR Europe Congress, Book of Proceedings  12. 
Da Veiga, S., Wahl, F., Gamboa, F., 2009. Local Polynomial Estimation for Sensitivity Analysis on Models 

With Correlated Inputs. Technometrics 51, 452–463. https://doi.org/10.1198/TECH.2009.08124 



 

  

                                                                                                                    
 

Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., Brath, A., 2013. P robabilistic flood hazard 

mapping: effects of uncertain boundary conditions. Hydrology and Earth System Sciences 17, 3127–
3140. https://doi.org/10.5194/hess-17-3127-2013 

Faivre, R., Makowski, D., Mahévas, S., Iooss, B., 2013. Analyse de sensibilité et exploration de modèles: 
application aux sciences de la nature et de l’environnement. Analyse de sensibilité et exploration de 

modèles 1–352. 
Gratiet, L.L., Marelli, S., Sudret, B., 2015. Metamodel-based sensitivity analysis: polynomial chaos expansions 

and Gaussian processes. Ghanem R., Higdon D., Owhadi H. (eds) Handbook of Uncertainty 

Quantification pp 1-37. https://doi.org/10.1007/978-3-319-11259-6_38-1 
Iooss, B., Prieur, C., 2017. Shapley effects for sensitivity analysis with dependent inputs: comparisons with 

Sobol’ indices, numerical estimation and applications. International Journal for Uncertainty 

Quantification 9. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2019028372 
Iooss, B., Veiga, S.D., Janon, A., Pujol, G., Broto,  with contributions from B., Boumhaout, K., Delage, T., 

Amri, R.E., Fruth, J., Gilquin, L., Guillaume, J., Gratiet, L.L., Lemaitre, P., Marrel, A., Meynaoui, A., 

Nelson, B.L., Monari, F., Oomen, R., Rakovec, O., Ramos, B., Roustant, O., Song, E., Staum, J., 
Sueur, R., Touati, T., Weber, F., 2020. sensitivity: Global Sensitivity Analysis of Model Outputs, R 
package. 

Jacques, J., Lavergne, C., Devictor, N., 2006. Sensitivity analysis in presence of model uncertainty and 
correlated inputs. Reliability Engineering & System Safety 91, 1126–1134. https://doi.org/10.1016 
/j.ress.2005.11.047 

Li, C., Mahadevan, S., 2016. An efficient modularized sample-based method to estimate the first-order Sobol׳ 
index. Reliability Engineering & System Safety 153, 110–121. https://doi.org/10.1016/j.ress.2016. 
04.012 

Marrel, A., Iooss, B., Van Dorpe, F., Volkova, E., 2008. An efficient methodology for modeling complex 
computer codes with Gaussian processes. Computational Statistics & Data Analysis  52, 4731–4744. 

Mazo, G., 2014. Construction et estimation de copules en grande dimension (Thèse de doctorat). Université 

de Grenoble. 
McKay, M.D., 1995. Evaluating prediction uncertainty. Nuclear Regulatory Commission. 
Nelsen, R.B., 2007. An introduction to copulas. Springer Science & Business Media. 

Owen, A.B., Prieur, C., 2017. On Shapley value for measuring importance of dependent inputs. SIAM/ASA 
Journal on Uncertainty Quantification 5, 986–1002. 

Pheulpin, L., Bacchi, V., Bertrand, N., 2020. Comparison Between Two Hydraulic Models (1D and 2D) of the 

Garonne River: Application to Uncertainty Propagations and Sensitivity Analyses of Levee Breach 
Parameters, in: Advances in Hydroinformatics. Springer, pp. 991–1007. 

Pheulpin, L., Bacchi, V., Bertrand, N., 2019. Analyse de sensibilité des paramètres de rupture des digues: 

application au cas de la Garonne, in: Digues Maritimes et Fluviales de Protection Contre Les 
Inondations 2019, Digues 2019. 

Pheulpin, L., Bertrand, N., Bacchi, V., 2022. Uncertainty quantification and global sensitivity analysis with 

dependent inputs parameters: Application to a basic 2D-hydraulic model. LHB. 
https://doi.org/10.1080/27678490.2021.2015265 

Richet, Y., Bacchi, V., 2019. Inversion Algorithm for Civil Flood Defense Optimization: Application to Two-

Dimensional Numerical Model of the Garonne River in France. Frontiers in Environmental Science 7, 
160. 

Roustant, O., Ginsbourger, D., Deville, Y., 2012. DiceKriging, DiceOpt im: Two R Packages for the Analysis of 

Computer Experiments by Kriging-Based Metamodeling and Optimization. Journal of Statistical 
Software 51, 1–55. 

Saltelli, A., 2002. Making best use of model evaluations to compute sensitivity indices. Computer physics 

communications 145, 280–297. 
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S., 2008. 

Global sensitivity analysis: the primer. John Wiley & Sons. 

Vorogushyn, S., Apel, H., Merz, B., 2011. The impact of the uncertainty of dike breach development time on 
flood hazard. Physics and Chemistry of the Earth, Parts A/B/C 36, 319–323. 
https://doi.org/10.1016/j.pce.2011.01.005 

Wahl, T.L., 2004. Uncertainty of predictions of embankment dam breach parameters. Journal of hydraulic 
engineering 130, 389–397. 

 


