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Purpose: Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting
tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury
after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced
lung focal lesions following stereotactic radiation injury in mice. However, the effect of radiation on EC senescence remains
unclear because it depends on dose and fractionation, and because the senescent phenotype is heterogeneous and dynamic.
Methods and Materials: Using a systems biology approach in vitro, we deciphered the dynamic senescence-associated tran-
scriptional program induced by irradiation.
Results: Flow cytometry and single-cell RNA sequencing experiments revealed the heterogeneous senescent status of irradi-
ated ECs and allowed to deciphered the molecular program involved in this status. We identified the Interleukin-1 signaling
pathway as a key player in the radiation-induced premature senescence of ECs, as well as the endothelial-to-mesenchymal tran-
sition process, which shares strong hallmarks of senescence.
Conclusions: Our work provides crucial information on the dynamics of the radiation-induced premature senescence process,
the effect of the radiation dose, as well as the molecular program involved in the heterogeneous senescent status of ECs. � 2021
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Introduction
Senescence is characterized by a durable cell cycle arrest
and a persistent pro-inflammatory phenotype known as
the senescence-associated secretory phenotype.1,2 Senes-
cence occurs during the aging process but also occurs
prematurely in response to stress, as a variable process
depending on both the cell type and the stressor.3,4 Radi-
ation can induce premature senescence, and interest in
research into the role of senescence in the benefit-risk
ratio after radiotherapy is growing.5 Radiation-induced
cellular senescence is a double-edged sword, acting as
both a tumor suppression process limiting tumor prolif-
eration and a crucial process contributing to normal tis-
sue injury.

Ionizing radiation promotes senescence in most cell
types, including endothelial cells (ECs).6-9 Using
p16INK4-LUC knock-in mice, a study recently reported
that lung stereotactic body radiation therapy leads to
senescence.10 Stereotactic body radiation therapy induces
acute and very long-term p16INK4 activation in the irra-
diated lung target volume associated with fibrosis and a
panel of heterogeneous senescent cells including pneu-
mocytes, macrophages, and ECs, suggesting that these
senescent cell types could contribute to radiation injury.
Moreover, a study on hemithorax irradiation in mice
treated with ABT-263, a Bcl-2 inhibitor, provided the
proof of concept that senolytic drugs could be a good
strategy for limiting radiation-induced normal tissue
injury, more precisely for reducing the level of senescent
type II pneumocytes.11

The role of the endothelium in radiation-induced nor-
mal tissue injury has been debated for many years,
mainly surrounding the existence—or not—of endothe-
lial apoptosis.12-14 Using VE-CADcre or creERT2 trans-
genic mice models allowing specific endothelial genetic
deletion, it was demonstrated that ECs contribute signifi-
cantly to radiation-induced normal tissue injury and to
the associated wound healing process.15-17 Thus, mice
with endothelial deletion of plasminogen activator inhib-
itor-1 (also known as SERPINE1), a strong mediator of
cell senescence, are protected from normal tissue
injury.12,16,18,19 However, the effect of radiation on EC
senescence remains unclear because it depends on several
parameters, such as the organ exposed, fractionation,
dose, and temporality of the observation. Because the
senescent phenotype is heterogeneous,20 dynamic,21 and
specific to cell types, the identification of EC dynamic
signatures to understand the senescence program is cru-
cial in developing specific therapeutic strategies for
senescence-associated vascular dysfunction. In this inter-
disciplinary work, we investigated in depth how ionizing
radiation modifies the kinetics of the senescence tran-
scription program in ECs.
Methods and Materials
Cell culture and irradiation procedure

We sourced primary human umbilical vein EC (HUVEC,
pooled donor), human lung microvascular EC, human der-
mal microvascular EC, human heart microvascular EC,
and human pulmonary artery EC from Lonza (Verviers,
Belgium). We isolated human intestinal microvascular EC
from surgically resected specimens of normal human
colon, as previously described.22 We cultured all cells in
EGM-2MV medium (Lonza) supplemented by 12 mg/mL
Bovine Brain Extract without heparin for HMVEC-L
(Lonza).

Confluent cells were x-ray irradiated using a medical lin-
ear accelerator (Elekta Synergy Platform, Elekta SAS, Bou-
logne-Billancourt, France; 4 MV; dose rate 2.5 Gy.min�1 in
air kerma free in air). The medium was changed before irra-
diation and every 7 days thereafter.
Senescence (C12FDG)/Generation (CellTrace) by
flow cytometry

Before irradiation, confluent monolayers of HUVECs were
washed twice with PBS 1X (with Ca2+ and Mg2+), then
stained for 20 min with 7.5 mM final of CellTrace Violet
(Thermo Fisher Scientific). Cells were then irradiated to 2, 4,
5, 6, 10, or 20 Gy + control (nonirradiated). Seven days after
irradiation, senescence experiments were performed follow-
ing the Debacq-Chainiaux et al protocol23 and detailed in
Appendix E1.
Single-cell RNA-Seq experiments

HUVECs were trypsinized and stained using Trypan blue to
ensure viability of 75% to 90%. Approximately 2 £ 104 cells
were resuspended for loading on a 10X Chromium Control-
ler (10X Genomics), and scRNA-Seq libraries were prepared
using a Single-Cell 30v3 Reagent Kit according to the manu-
facturer’s protocols. Two independent experiments were
performed including 4 experimental conditions: 0 Gy day 0,
control cells at the day of the irradiation; 0 Gy day 7; 5 Gy
day 7; and 20 Gy day 7 (ie, control and irradiated cells
7 days after irradiation). In total, 8 samples were included in
the study. Library quantification and quality assessment was
performed using the Agilent Bioanalyzer 2100 (Agilent
Genomics). Indexed libraries were equimolarly pooled and
sequenced on an Illumina NovaSEq 6000 sequencing system
with a minimum depth sequencing at 20,000 read pairs/cell.
Single-cell RNA-Seq outputs were processed using the Cell
Ranger software (10X Genomics). Analysis were performed
using the Seurat and Monocle packages in R as detailed in
Appendix E1.
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Other experimental procedures are detailed in Appendix E1.

Results
Radiation induces a profound senescent
phenotype in ECs

To fully decipher the radiation-induced molecular program
of ECs, the choice of EC type is crucial. We first compared
the response of 6 normal human EC types 7 days after radia-
tion exposure, using a custom TaqMan Low-Density Array
to measure the expression levels of 44 mRNAs involved in
senescence (see list of genes in Figure E1). Each EC type dis-
plays a specific mRNA signature (Fig. E2A), and the tran-
scriptional signature for EC senescence is different for 2
mesenchymal cell types (Fig. E3). For each EC type, we eval-
uated the concordance between their transcriptional
response to irradiation and the first principal component
scores of the 5 others. Because the first principal component
represents the direction along which the data exhibit the
largest variation, this procedure makes it possible to identify
the EC type able to summarize the major dispersion of the
response of other EC types. Our analysis strongly suggests
that HUVECs are the most informative cellular model for
the study of endothelial senescence among those tested
(Figs. E2B-D). Therefore, we studied radiation-induced
senescence in HUVECs and observed typical markers char-
acteristic of stress-induced senescence, ie, cellular hypertro-
phy, b-Gal expression in lysosomes, p21 overexpression,
and lamin B1 downregulation (Figs. 1A and 1B). Senescence
quantification by flow cytometry using C12FDG, performed
7 days after 20 Gy exposure, shows a 50% increase in senes-
cent cells (Fig. 1C). We jointly quantified senescence and
proliferation using C12FDG and CellTrace probes (Figs. 1D
and E4). Irradiation-induced dose-dependent C12FDG
cleavage is associated with an increase in cell size, which pla-
teaued at 6 Gy in correlation with a decrease in prolifera-
tion. Moreover, because senescent cells acquire a
senescence-associated secretory phenotype (SASP) charac-
terized by the secretion of multiple growth factors and cyto-
kines, we characterized the senescence-messaging secretome
(SMS) at 7 and 14 days after exposure to 2, 5, 10, and 20 Gy
(Fig. 1E). The secretion of CXCL1/GROa, IGFBP family,
IL6, IL8, MMP7, and PAI-1 increased dose dependently
(Fig. 1F). Moreover, we explored the ability of the SMS to
induce noncell-autonomous effects, that is, paracrine effects.
Radiation-induced SMS led nonirradiated HUVECs to
acquire strong hallmarks of senescence (Fig. 1G-I).

Radiation dose−dependent dynamic
modification of senescence-associated
transcription in EC

We then studied the dynamic molecular transcriptional pro-
gram associated with senescence after radiation exposure in
HUVECs, using 9 irradiation doses and 7 time points (Fig.
E5), with a specific dynamic molecular program for each
gene according to the radiation dose (Fig. E6). Replicative
senescence experiments show that radiation-induced senes-
cence shares a large panel of markers with 9 genes in com-
mon between “aging” HUVECs and irradiated HUVECs
21 days after 20 Gy exposure (Fig. E7). We developed math-
ematical methods suited to dynamic processes to compre-
hensively analyze the bivariate (dose and time) structure of
variance-covariance data and performed dimension reduc-
tion prior to a clustering schema by highlighting all main
modes of variability. More precisely, a bivariate smoothing
process was first performed to smooth the time- and dose-
dependent measurements for a bivariate functional object.
An example is shown for 5 genes, specifically CDKN1A,
TAGLN, SERPINE1, CDK1, and IL8 (Fig. 2A), and the pro-
cess was performed for all 44 genes (Figs. E8 and E9). Next,
a functional principal component analysis was performed to
determine the variance structure of the functional data and
showed that 4 harmonics explained 90% of the total vari-
ability (Fig. 2B). By using this functional data analysis
approach, we established day 7 as a transitional time point
in our experimental conditions. We then used Lin’s concor-
dance correlation coefficient as a similarity measure to
establish relevant gene clusters. We identified 4 clusters
according to the form of dynamic variation, which can be
summarized as “early downregulation,” “late upregulation,”
“downregulation,” and “early upregulation” (Fig. 3A). Four
genes (IGFBP5, SELP, CSF2, and CAV1) were identified as
outliers with respect to the similarity measure (Lin’s concor-
dance correlation coefficient) and were not included in the
cluster analysis (Fig. E10). Finally, we used text-mining bio-
informatics tools to build molecular networks for each clus-
ter (Fig. 3A) and for all data (Fig. 3B). Network inference of
the senescence-associated dynamic transcriptional program
in our experiments identified the IL-1−dependent signaling
pathway as a putative molecular hub, which controls molec-
ular entities from clusters 2, 3, and 4, and from a large panel
of SASP-associated secretory proteins.
Irradiation leads to a heterogeneous senescent
status in ECs

An in-depth analysis of the flow cytometry experiments
shows the heterogeneous status of senescent cells (Fig. E11).
Dynamic analysis indicates that day 7 after irradiation could
be a pertinent point at which to observe the transition of the
temporal dynamic, so as to explore radiation-induced senes-
cence fate and decipher cell trajectories using computational
pseudotime analysis tools (Fig. 2B). To fully characterize the
radiation-induced molecular landscape of senescence in
HUVECs, we performed single-cell RNA-Seq experiments
(Fig. 4A). HUVECs were exposed to 5 Gy or 20 Gy doses
and analyzed 7 days after irradiation. Two nonirradiated
cell control groups were also included, that is, cells analyzed
the day of the irradiation (0 Gy day 0) and cells analyzed
7 days after irradiation (0 Gy day 7, 5 Gy day 7, and 20 Gy
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Fig. 1. Irradiation induces a senescence-messaging secretome capable of activating a senescence-associated transcriptional
program in nonirradiated endothelial cells. (A) Representative images of human umbilical vein endothelial cells (HUVECs)
7 days after 20 Gy. Beta-gal and lysosomes detected using C12FDG and Lysotracker counterstained with DAPI. (B) p21 and
Lamin B1 representative immunostaining. Beta-gal and hypertrophy detected using C12FDG and CellMaskTM. (C) The senes-
cence/proliferation rates were monitored using C12FDG cleavage detection and CellTrace Violet by flow cytometry, and repre-
sentative flow cytometry dot plots were obtained 7 days after 5 or 20 Gy. In control cells, the decrease in CellTrace
fluorescence indicates cell division. Irradiated cells incur a stable CellTrace Violet fluorescent signal as well as an increase of
C12FDG cleavage. (D) Quantification of proliferation and senescence in HUVECs, 7 days after radiation exposure (results are
from 4 independent biological replicates). (E) Scheme of experiments: HUVECs were irradiated at 2, 5, 10, and 20 Gy, and cell
supernatants were collected 7 or 14 days after irradiation (with a cell medium change at day 7). (F) The dose-dependent secre-
tion of a panel of cytokines was measured by multiplex assays (n=3 biological replicates; mean § SD are plotted; one-way
ANOVA with *P < .05, yP < .01, zP < .001, and xP < .0001). (G) The gene expression profile of 44 genes involved in the senes-
cence-associated transcriptional program in non-irradiated HUVECs exposed with control conditional medium (7 days’ secre-
tion from nonirradiated HUVECs) or a different percentage of cell supernatants collected from HUVECs 7 days after
radiation exposure at 20 Gy. The senescence transcriptional program was analyzed at 48 hours and 72 hours after conditional
medium incubation in non-irradiated HUVECs. (H) Representative phase microscopy images of nonirradiated HUVECs
exposed with control conditional medium or exposed with 75% cell supernatants collected from HUVECs 7 days after radia-
tion exposure at 20 Gy. (I) Volcano plot (72 hours after incubation) showing differentially expressed genes in nonirradiated
HUVECs exposed with control conditional medium or exposed with conditional medium from irradiated cells (25%, 50%, and
75% samples are pooled). Abbreviations: HUVEC = human umbilical vein endothelial cell; IR = irradiated; non-IR = non-irra-
diated.
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day 7). Two independent experiments were conducted and,
after quality control, preprocessing, and batch correction,
56,904 cells were included in the analysis (16,289 cells for 0
Gy day 0; 14,664 cells for 0 Gy day 7; 10,467 cells for 5 Gy
day 7; and 15,484 cells for 20 Gy day 7) (Fig. 4B). Although
we performed only 2 biological replicates, we obtained an
extremely consistent matrix allowing a robust analysis of
the effects of irradiation on endothelial cells.These results
confirm the heterogeneous status of senescent cells 7 days
after irradiation (Figs. 4B-D). We used a panel of 5 key
genes involved in senescent status (CDKN1A, TAGLN,
SERPINE1, IL8, and CDK1) to understand the data’s struc-
turation (Fig. 4C), and the results revealed that, after 20 Gy
exposure, all cells expressed high levels of CDKN1A and a



C D K N 1 A

Smoothing 3D
surface bivariate

f(Dose, Time)

Fo
ld

 C
ha

ng
e

Day post-irradiation

15

10

5

0
0 5 10 15 20

Fo
ld

 C
ha

ng
e

Day post-irradiation

150

100

50

0
0 5 10 15 20

Fo
ld

 C
ha

ng
e

Day post-irradiation

15

10

5

0
0 5 10 15 20

Fo
ld

 C
ha

ng
e

Day post-irradiation

20

15

10

5

0
0 5 10 15 20

Fo
ld

 C
ha

ng
e

Day post-irradiation

1.5

1.0

0.50.5

0.0
0 5 10 15 20

2D projection /
normalization of the

Smoothing 3D
surface

Harmonic 2 (16% Variability)Harmonic 1 (63% Variability)

Dose in Gy Time in Days

Dose in Gy Time in Days

Harmonic 4 (4% Variability)Harmonic 3 (6.5% Variability)

20

10

0
0 10

0.1

0.2
0

–0.2
20

15
10

5
0 0

5
10

15
20

Dose in Gy Time in Days

0.2
0

–0.2
20

15
10

5
0 0

5
10

15
20

Dose in Gy Time in Days

0.2
0

–0.2
20

15
10

5
0 0

5
10

15
20

0.05
0

20
15

10
5

0 0
5

10
15

20

0.06 0.05

0

–0.05

–0.1

0.05 0.1

0.05

–0.05

–0.1

0

0

–0.05

–0.1

–0.15

0.04

0.02

0

20

20

10

0
0 10 20

20

10

0
0 10 20

20

10

0
0 10 20

20

10

0
0 10 20

TA G L N S E R P I N E 1 I L 8 C D K 1
0 Gy
1 Gy
2 Gy
3 Gy
4 Gy
5 Gy
6 Gy
10 Gy
20 Gy

A

B

Fig. 2. Irradiation dose dependently induces a dynamic senescence-associated transcriptional program in endothelial cells.
Human umbilical vein endothelial cells were irradiated at 1, 2, 3, 4, 5, 6, 10, and 20 Gy, and TLDA analyses were performed at
different time points, that is, 1, 2, 3, 4, 7, 14, and 21 days post radiation exposure. Results presented are from 2 independent
experiments, each performed with 2 biological replicates. (A) For each gene, a classical 2-dimensional to a smoothing 3-dimen-
sional (surface) bivariate f(Dose, Time) process was constructed; examples are shown for CDKN1A (p21), TAGLN, SERPINE1,
IL8, and CDK1. All other genes are shown in Figures E8 and E9. For classical representation, results present the fold change (x-
axis) with 0 Gy day 1 as a reference at 1 according to time (y-axis) and for each dose. For the 3-dimensional smoothing surface,
the results present the fold change (y-axis) with 0 Gy day 1 as a reference at 1 according to time (x-axis) and for each dose (z-
axis). The 2-dimensional projection plot of the 3-dimensional smoothing surface presents the dose (x-axis) according to time
(y-axis). (B) Plots of the first 4 main functional components (harmonics), describing the variability modes of the 3-dimensional
dose-time gene kinetics. These 4 harmonics will be used for the similarity distance-based clustering method. The proportions
of explained variance are given between brackets. Abbreviations: 2D = 2-dimensional; 3-D = 3-dimensional.

Volume 112 � Number 4 � 2022 Radiation-induced endothelial cell senescence program 979
low expression of CDK1. Among the 20 Gy-exposed cells,
we identified a subcluster of cells expressing high levels of
SERPINE1, CXCL8/IL8, and TAGLN (Fig. 4E). The
HMGB2 downregulation and CD9 upregulation previously
demonstrated as key molecular entities in replicative senes-
cence were also identified in our work (Figs. E12 and
E13).24,25 To take the study even further, we next used pseu-
dotime analysis and found a node that addresses the cellular
fate associated with either a “low senescent” or “high senes-
cent” status in the 20 Gy-exposed cell group (Fig. 4F). A
high senescent status is characterized by high levels of SER-
PINE1, IL8, and TAGLN (cluster 4) (Figs. 4G and 4H). An
extensive trajectories analysis revealed the top 10 genes,
explaining the global trajectory, mainly composed of genes
involved in the cellular proliferation status, such as MKI67,
TOP2A, CENPF, and ASPM (Fig. 5A). When we focused
our attention on cluster 4 (high senescent status), we identi-
fied the von Willebrand factor as the first candidate explain-
ing the trajectory toward a high senescent status (Fig. 5B).
The top 300 ranking is given in Table E1. The same analysis
strategy was used for the 44 genes of the signature (Fig.
E14). When we combined the 44 genes measured in our
study and the top 50 genes explaining the trajectory from
the RNA-Seq experiments, we could visualize changes for
those genes through pseudotime as well as modules of genes
that have similar expression patterns (Fig. 5C). These results
revealed that a high senescent status is associated with a
decreased expression of the von Willebrand factor, suggest-
ing a putative endothelial-to-mesenchymal transition
(EndoMT) process. To go further, we analyzed the
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Fig. 3. Global network inference of the senescence-associated dynamic transcriptional program in human umbilical vein
endothelial cells. (A) A similarity distance-based clustering method revealed 4 main clusters (1 to 4) of mRNA expression vari-
ation, and a network inference with a text mining-based tool was constructed for each cluster. (B) Global network inference of
the senescence-associated dynamic transcriptional program in endothelial cells was inferred in order to identify putative key
nodes.
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expression of 2 endothelial markers (CD34 and von Wille-
brand factor), 2 mesenchymal markers (TAGLN and VIM),
and the 2 main cytokines from the SASP. The results clearly
showed that a high senescent status (IL8 and IL6 high) is
associated with both a decreased expression of endothelial
markers and an increased expression of mesenchymal
markers (Fig. 5D).
IL-1−dependent signaling pathway is involved in
the radiation-induced EC SASP and radiation-
induced senescence

Because the literature showed that a combination of IL-1A
and TGFB2 is a powerful inductor of EndoMT in vitro by
autocrine/paracrine activities,26,27 we analyzed the expres-
sion of these markers at the single-cell level. The results of
IL-1A, TGF-B2, and IL1R1 analyses strongly suggest a puta-
tive crucial role of the IL-1−dependent signaling pathway in
the radiation-induced senescent phenotype of ECs
(Fig. 6A). A subnetwork related to the IL-1 signaling path-
way identifying all molecular relationships with a broad
representation of deregulated genes observed in irradiated
HUVECs was built and highlighted in blue (Fig. 6B). To
validate the role of the IL-1 pathway in radiation-induced
endothelial senescence, we silenced IL1R1 in ECs before
irradiation and analyzed the effects on senescence (Fig.
E15A). The IL1R1 knockdown led to approximately 20%
fewer senescent cells 7 days after irradiation (Fig. 6C).
mRNA level of IL1R1 return to a control level 7 days after
irradiation (Fig E15B) explaining probably the statistically
significant but relatively modest effect on senescence level.
However, interistingly, TLDA experiments showed that
IL1R1 silencing led to a reduced senescence-associated
molecular profile, 3 and 7 days after irradiation (Figs. 6D
and 6E).
Discussion
We developed a step-by-step approach to provide rational
evidence that HUVECs are an excellent in vitro model to
study stress-induced senescence. To our knowledge, our
results are the first based on an unbiased systematic com-
parison of EC types according to their response to radia-
tion-induced senescence. We demonstrated that irradiated
HUVECs recapitulate the overall endothelium
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transcriptional program and strongly suggest that radiation-
induced premature senescence in HUVECs can be used to
explore senescence-associated endothelial dysfunctions in
the pathological aging process. We deciphered the dynamic
transcriptional program of radiation-induced EC senescence
and showed noncell-autonomous effects, which strongly
suggest that the endothelium can affect the senescent phe-
notype of other cell types by paracrine effects in vivo.
Ritschka et al recently reported that transient exposure to a
senescence-messaging secretome induces plasticity and pro-
vides regenerative signals, whereas prolonged exposure sub-
sequently blocks growth-promoting signals, resulting in
paracrine senescence responses and decreased regenerative
capacity.28 Moreover, radiation-induced EC senescence pro-
motes a pro-atherosclerotic phenotype and monocyte adhe-
sion by an epigenetic activation of CD44 expression,
suggesting the ability of senescent ECs to control
inflammation.9

Hernandez-Segura et al reported the importance of
dynamic variations in fibroblasts and in the cell-specific het-
erogeneity of the senescence program.21 Our in vitro results
confirm that time series measurements provide crucial
information and that biomathematical network-based clus-
tering analyses reveal putative molecular hubs able to limit
the progression of senescence. A panel of several molecular
hubs has been extracted from our analysis, including the
SIRT1, SP1, SMAD7, and IL-1 signaling pathways. More-
over, scRNA-Seq experiments revealed that radiation expo-
sure induces a heterogeneous senescent status and that
transcriptional heterogeneity is a hallmark of senescence.
To our knowledge, only 1 work had addressed the heteroge-
neity of the senescent status of EC using such an approach.
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Zirkel et al performed scRNA-Seq experiments to compare
proliferating and arrested replicatively senescent HUVECs,
showing that HMGB2 depletion within the nucleus is an
early molecular event leading to chromatin remodeling and
thus replicative senescence.25 We also showed that HMGB2
loss is a marker of a radiation-induced senescent status (Fig.
E12), supporting the results of Zirkel and colleagues and
showing that HMGB2 depletion is shared by premature and
replicative senescence. Moreover, scRNA-Seq results also
showed that senescence is associated with both a decrease in
endothelial marker expression and an increased mesenchy-
mal marker expression. EndoMT is a process whereby an
EC undergoes a series of molecular events that result in a
mesenchymal cell phenotype involved in fibrotic
disorders.29,30 It was recently demonstrated that EndoMT is
involved in radiation-induced normal tissue injury, such as
radiation induced lung fibrosis31 and proctitis,22 and that
conditional endothelial deletion reduces the frequency of
EndoMT as well as the severity of radiation-induced normal
tissue damage.15 Radiation-induced EC senescence and the
radiation-induced EndoMT phenotype share a large panel
of characteristics suggesting that, in some circumstances,
this could be the same phenomenon. Rieder and colleagues
showed that human intestinal microvascular ECs undergo
an EndoMT and contribute to fibrosis in human and experi-
mental preclinical models of chronic inflammation.27 They
demonstrated in vitro that EndoMT is provoked by a
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combination of TGF-b1, IL-1b and TNF-a with the power-
ful effect of IL-1.

In our work, we identified CD9 as a putative strong
molecular player in radiation-induced EC senescence (Fig.
E13). CD9, a cell surface glycoprotein belonging to the tetra-
spanin family, was recently shown as a regulator of replica-
tive EC senescence through a PI3K-AKT-mTOR-p53-
dependent pathway.24 The silencing of CD9 in HUVECs as
well as treatment with rapamycin, an mTOR inhibitor,
reverse the senescent phenotype of ECs and reduce IL-1 and
IL-6 production. Moreover, rapamycin was shown to inhibit
EndoMT in HUVECs in vitro32 and reverses the protein
expression patterns of EndoMT in vivo,33 arguing again that
EndoMT could be a “senescent-like” phenotype. Rapamycin
limits radiation-induced lung fibrosis after fractionated total
thoracic irradiation in mice, reducing inflammatory
cytokine expression and the level of senescent type II
pneumocytes.34

Our results open a wide array of molecular strategies to
try to limit radiation-induced senescence. In our work, we
wanted to prove that targeting one molecular node could
affect senescence and the SMS. The rationale for targeting
the IL-1 signaling pathway was to find a putative molecular
hub that controls EndoMT as well as a large panel of SASP-
associated secretory proteins without affecting the molecular
entities associated with cell cycle progression. Here, by tar-
geting IL1R1, we demonstrated that the IL-1 signaling path-
way affects the SASP of ECs as well as the degree of
senescence, showing that IL-1 could be a good therapeutic
target to limit senescence and non-cell-autonomous para-
crine effects. IL-1a and IL-1b KO mice exhibit a prolonged
ovarian lifespan by reducing the expression of inflammatory



984 Benadjaoud et al. International Journal of Radiation Oncology � Biology � Physics
genes.35 In vitro, inhibition of the IL-1 signaling pathway by
different strategies reduced senescence-associated IL-6/IL-8
secretion in HCA2 primary foreskin fibroblasts.36 Recently,
in a mouse model of vascular radiation injury, Christersdot-
tir et al showed that the IL-1 receptor antagonist Anakinra
reduced arterial inflammation, suggesting that this inhibitor
could be a treatment to prevent late radiation-induced vas-
cular diseases.37 The effect of eliminating senescent ECs in
other physiopathological situations is currently being
debated in the community, and this question must also be
addressed in depth after radiation exposure as a cure for
cancer.38
Conclusions
Our work is a comprehensive study deciphering the
dynamic of the radiation-induced senescence program,
including both dose-effect and time parameters. The next
step will be to understand the effect of the heterogeneous
status on endothelial dysfunction in vivo, and more gener-
ally on normal tissue injury. Given the prolonged life expec-
tancy of cancer survivors treated with RT alone or in
combination with immunotherapy,39 it will be important to
better understand senescence-associated long term effects.
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