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Abstract

Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the
role of dose rate. Motivated by a virtual workshop on the “Effects of spatial and temporal variation in dose delivery” organ-
ised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring
dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for
requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular,
animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each
type of study are discussed, and a focus is made on future research needs.

Keywords Ionising radiation - Dose rate - Low-LET - Recommendations - Radiobiology - Epidemiology

Introduction

In the current system of radiological protection, risk to a spe-
cific organ or tissue is considered to depend on the absorbed
energy averaged over the target mass exposed. The biologi-
cal outcome of the exposure is determined not only by the
total absorbed dose but also by the time frame of the dose
delivery, and by the type of ionising radiation responsible for
the energy deposition (radiation quality). To account for the
effects of dose and the temporal variation in dose delivery,
a single dose and dose rate effectiveness factor (DDREF) is
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currently applied for the purposes of radiological protection.
However, the evidence base for this judgement continues to
be debated, as reflected by previous and ongoing work per-
formed in Task Group 91 of the International Commission
on Radiological Protection (ICRP) (Riihm et al. 2015, 2016;
Wakeford et al. 2019).

The EU MELODI (Multidisciplinary Low Dose Initia-
tive) platform is considering inhomogeneity in dose delivery,
both at the temporal and spatial level, as a priority research
area. Mechanisms responsible for biological effects of differ-
ent dose rates or of inhomogeneous spatial dose deposition
are not fully characterised. At the cellular level, such effects
are investigated with in vitro studies, but when it comes to
how they finally affect human health risk (both cancer and
non-cancer diseases), few relevant experimental models or
validated datasets exist (https://melodi-online.eu/). To cover
the topic of the effects of spatial and temporal variation in
dose delivery, a digital workshop was conducted in Novem-
ber 2020 evaluating what is known on the effect of dose
rate, among other aspects. This publication builds on the
outcomes of this meeting.

The present paper summarises current evidence for the
influence of dose rate upon radiation-related effects. End-
points considered include molecular, cellular, organism,
and human studies. Emphasis will be placed on dose rates
relevant for radiological protection settings. We focus on
low linear-energy-transfer (LET) external exposures, since
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for internal contamination with radionuclides, a decrease in
dose rate with time will occur to varying extents due to the
physical and biological half-lives of the involved radionu-
clides, complicating the interpretation of results.

The manuscript structure includes the history of low-dose
rate definition, ongoing work on DDREF under ICRP TG91,
presentations of experimental work (in vitro and in vivo),
and epidemiological studies. Limits and advantages of
each approach are discussed, and a focus is made on future
research needs.

The dose rate concept
Definition of low-dose rate

The United Nations Scientific Committee on the Effects
of Atomic Radiation (UNSCEAR) first defined low-dose
rate (LDR) with respect to radiation-related cancer in its
1986 Report (UNSCEAR 1986). For all types of radiation,
LDR were <0.05 mGy/min (3 mGy/h) and high-dose rate
(HDR) were >0.05 Gy/min (3000 mGy/h), with dose rates
in between defined as “intermediate dose rates”. These def-
initions were reiterated in the UNSCEAR (1988) Report.
The UNSCEAR (1993) Report, Annex F comprehensively
discussed how dose rates might be classified according to
a number of approaches: microdosimetric considerations,
cellular experiments, animal experiments, and human epi-
demiology. UNSCEAR (1993) concluded that information
on LDR relevant to assessing radiation carcinogenesis in
humans could be obtained from animal experiments. On the
basis of animal studies, UNSCEAR (1993) was of the view
that following exposure to low-LET radiation, a dose rate
effectiveness factor should be applied to reduce the excess
cancer risk per unit dose if the dose rate was <0.1 mGy/
min (when averaged over about an hour), whatever the total
dose received.

Of interest is the position adopted by ICRP in Publi-
cation 60, the 1990 Recommendations (ICRP 1991). In
ICRP Publication 60, in the context of stochastic health
effects, an LDR was defined as <0.1 Gy/h (equivalent to
1.67 mGy/min), a dose rate that was a factor of 33 larger
than the < 0.05 mGy/min defined by UNSCEAR in its 1988
Report, but no explanation was provided as to how this
value was derived or why it differed substantially from the
definition then recently adopted by UNSCEAR (1988). The
ICRP Publication 60 definition of an LDR as <0.1 Gy/h con-
trasts with that of < 0.1 Gy/day adopted by the UK National
Radiological Protection Board (NRPB) in 1988 in its report
NRPB-R226 (Stather et al. 1988) and referred to in the
UNSCEAR 1993 Report (UNSCEAR 1993). A definition
of an LDR as < 0.1 Gy/day is equivalent to <0.07 mGy/
min, which is very close to the definition given in the
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UNSCEAR 1988 Report of <0.05 mGy/min. The ICRP
2007 Recommendations, ICRP Publication 103 (ICRP
2007), although frequently referring to LDR in the context
of a low-dose rate effectiveness factor, does not define the
range of dose rates considered to be LDR. However, the
recently published ICRP Publication 147 (Harrison et al.
2021a, 2021b) states that a DDREF should not be applied
to reduce solid cancer risks if the dose rate for low-LET
radiation exceeds 5 mGy/h, implying a definition of LDR of
0.1 mGy/min when averaged over approximately 1 h, which
is the definition of LDR as restated in the UNSCEAR 2019
Report (UNSCEAR 2019) and in the 2020/2021 Report
(UNSCEAR 2021) defines a low dose rate for hight-LET
radiation as "no more than one high-LET track traversal per
cell per hour".

The above definitions of LDR have been established with
respect to stochastic effects, especially cancers. We note,
however, that ICRP Publication 60 mentions in the context
of deterministic effects that dose rates lower than 0.1 Gy/
min of low-LET radiation “result in progressively less cell
killing until a dose rate of about 0.1 Gy/h or less is reached
for mammalian cells” (ICRP 1991).

Low-dose rate in the current system of radiological
protection

In the current scheme of radiological protection rec-
ommended by ICRP, following the definitions used by
UNSCEAR, for an exposure to a low dose (convention-
ally < 100 mGy of low-LET radiation) or for an exposure
at an LDR (<0.1 mGy/min of low-LET radiation when
averaged over about 1 h, i.e., approximately 5 mGy/h), the
excess risk of adverse stochastic health effects (cancer in
the exposed individual and hereditary disease in the subse-
quently conceived descendants of the exposed individual)
is taken to be directly proportional to the dose of radiation
received with no-threshold dose below which there is an
absence of excess risk. This is the linear no-threshold (LNT)
dose-response model.

For low-level exposures (low doses or LDR), the cur-
rent ICRP recommendations incorporate a DDREF, which
reduces the risk per unit dose when risk estimates derived
from exposures to moderate-to-high doses received at
an HDR are applied to exposures to low doses or LDR.
Risk estimates for solid cancers obtained from the Japa-
nese atomic-bomb survivors are halved (corresponding
to a DDREF of 2) when applied to low-level exposures.
A DDREF is not applied to leukaemia, because a linear-
quadratic dose—response model is used (rather than linear
dose-response models used for solid cancers), which is
implicitly consistent with a reduction of risk at low levels
of exposure (Cléro et al. 2019).
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The DDREEF can be considered a combination of a low-
dose effectiveness factor (LDEF) and a dose rate effective-
ness factor (DREF). The LDEF essentially addresses the
degree of upward curvature of the dose—response following
arange of doses received from acute exposures to low-LET
radiation, whereas the DREF compares the risk per unit dose
following high and LDR exposures. Here, epidemiological
evidence will be examined to assess the degree of support
for the application of a DREF (and specifically, a DREF
of 2) to the risk per unit dose obtained from the Japanese
atomic-bomb survivors to obtain the risk per unit dose
appropriate for LDR exposures.

Recent positions on DDREF

The numerical value of the DDREF is internationally
debated. ICRP, in its Publication 60, proposed a value of
2 for low-LET radiation (ICRP 1991). This value was also
adopted by UNSCEAR in 1993 (UNSCEAR 1993). While
ICRP has confirmed this value in their most recent general
recommendations in Publication 103 (ICRP 2007), other
expert bodies came to different conclusions. For example,
around the same time, the US National Academy of Sci-
ences proposed a value of 1.5 with a range from 1.1 to 2.3
(NRC 2006). While UNSCEAR did not apply a DDREF
in their analysis of solid cancers for the UNSCEAR 2006
Report, a linear-quadratic dose—response model was used,
which implicitly considers a reduction of risk at low doses
(UNSCEAR 2008). DDREF was not directly considered
in the report of the French Academy of Sciences, but vari-
ations of radiation effects with dose rate were considered
as an additional source of uncertainty in the assessment of
risks at low doses (Averbeck 2009; Tubiana 2005). Later,
the World Health Organisation applied no reduction factor
(i.e., a DDREF of 1) in its report on health risk assessment
after the Fukushima accident (WHO 2013); and the German
Radiation Protection Commission (SSK) opted to abolish
the DDREF, corresponding to an implicit value of 1 (SSK
2014). The historical development has been briefly reviewed
by Rithm et al. (2015). More recently, UNSCEAR empha-
sised that while the DDREF is a concept to be used for radio-
logical protection purposes, extrapolation of radiation risks
from moderate or high doses and HDR to low doses or LDR
may depend on various factors and, consequently, cannot—
from a scientific point of view—be described by a single
factor (UNSCEAR 2017). For use in probability of causation
calculations, values between 1.1 and 1.3 have recently been
proposed (Kocher et al. 2018), although the methodology
has been questioned (Wakeford et al. 2019).

To review the use of the DDREF for radiological protec-
tion purposes, ICRP has initiated Task Group 91 on Radia-
tion Risk Inference at Low-dose and Low-dose Rate Expo-
sure for Radiological Protection Purposes. Since 2014, this

group is reviewing the current scientific evidence on low
dose and LDR effects, including radiation-induced effects
from molecular and cellular studies, studies on experimental
animals, and epidemiological studies on humans. Results
of this activity have been published regularly in the peer-
reviewed literature (Haley et al. 2015; Riithm et al. 2015,
2016, 2017, 2018; Shore et al. 2017; Tran and Little 2017;
Wakeford et al. 2019; Little et al. 2020).

Experimental evidence of a dose rate effect
Experimental setup

The difficulty to study biological effects of different dose
rates is well illustrated in Elbakrawy et al. (2019), where
micronucleus formation was used as an endpoint. HDR
exposure is usually short (less than an hour), whereas LDR
exposures can last hours to reach the same dose. For this
reason, additional groups were added with HDR irradiation
performed in parallel at the start of LDR exposure or at the
end. When comparing LDR to HDR effects, they found a
difference between LDR and HDR when HDR is done at
the beginning of LDR exposure and no difference when per-
formed at the end.

As the time between point/period of exposure and bio-
logical endpoint measured impacts the result, performing
robust experimentations to understand dose rate effects is
challenging. Experimental setups should consider cumula-
tive doses, duration of exposure but also the delay between
the start and the end of exposure. For such reasons, experi-
mental design should be well conducted with an appropriate
statistical analysis and parallel controls always included.

Due to these difficulties in studying LDR, alternative
approaches to detect some differences might be necessary.
This includes increasing the dose, making the comparison
of LDR and HDR effects less relevant for considering radio-
logical protection. Another possible approach is to apply
an adaptive response scheme, where the modulation of the
response to a challenging dose due to a priming LDR treat-
ment is used to evidence LDR effects (Satta et al. 2002;
Carbone et al. 2009; Elmore et al. 2008).

Dedicated infrastructures

In Europe, there are several facilities for in vitro and in vivo
exposures to low-dose rates. In the framework of the CON-
CERT EJP-WG Infrastructure activities, information on
some of them has been published in AIR? bulletins (https:/
www.concert-h2020.eu/en/Concert_info/Access_Infrastruc
tures/Bulletins).

Among European LDR exposure infrastructures, it is
worth mentioning the FIGARO facility, located at the
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Norwegian University of Life Sciences (NMBU), that allows
gamma irradiation of up to 150 mice at 2 mGy/h and larger
numbers at lower dose rates (AIR? No. 1, 2015). In addi-
tion, three facilities with similar features located at the UK
Health Security Agency (UKHSA, Harwell), Istituto Supe-
riore di Sanita (ISS, Rome, Italy), and Stockholm University
(Sweden) are available for irradiation of cells and/or small
animals in a dose rate range 2 uGy/h—100 mGy/h (AIR?
No. 11, 2016; AIR? No. 16, 2016). Another platform, the
MICADO’LAB, is located at the French Institute for Radio-
logical Protection and Nuclear Safety (IRSN, France). It has
been designed to study the effects on ecosystems of chronic
exposure to ionising radiation and is able to accommodate
experimental equipment for the exposure of different biolog-
ical models (cell cultures, plants, and animals at dose rates
ranging from 5 uGy/h to 100 mGy/h (AIR% No. 19, 2017).

Other interesting facilities where studies at extremely
low-dose rates have been carried out are Deep Under-
ground Laboratories (DULs) where dose rates are signifi-
cantly lower than on the Earth’s surface. Although the main
research activity in these infrastructures concerns the search
for rare events in astroparticle physics and neutrino phys-
ics, DULSs offer a unique opportunity to run experiments in
astrobiology and biology in extreme environments (lanni
2021) highlighting biological mechanisms impacted by dif-
ferences in dose rates. The large majority of data have been
collected so far in Italy at the Gran Sasso National labora-
tory (LNGS, AIR?, No. 3, 2015), and in the US at the Waste
Isolation Pilot Plant (WIPP). Recently, the interest in this
field has been shared by many other DULs where under-
ground biology experiments already started or are planned
(SNOLAB Canada, CANFRANC Spain, MODANE France,
CJML/JINPING China, BNO Russia, ANDES Argentina).
Compared to that at the Earth’s surface, inside DULSs, the
dose/dose rate contribution due to photons and directly ion-
ising low-LET (mostly muons) cosmic rays can be consid-
ered negligible, being reduced by a factor between 10* and
107 depending upon shielding. Radiation exposure due to
neutrons is also extremely low, being reduced by a factor
between 10% and 10*. One further contribution to the overall
dose/dose rate can come from radon decay products, but it
depends upon the radon concentration, which can be kept at
the same levels of the reference radiation environment by a
suitable ventilation system. Terrestrial gamma rays represent
the major contribution to the dose/dose rate inside the DULs
(Morciano et al. 2018b).

Dedicated cellular and animal models
MELODI embarked on a large effort beginning around 2008
to collect all archives and tissues from animal irradiation

studies done in Europe. The result of this was the Euro-
pean Radiobiological Archive (ERA) that is available to all
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investigators worldwide, and some of the animal studies
included in this collection and database include low-dose
rate studies (Birschwilks et al. 2012); www.bfs.de/EN/bfs/
science-research/projects/era/era_node.html. In the US,
the Department of Energy (DOE) collected archived tissue
samples and databases from long-term studies involving
approximately 49,000 mice, 28,000 dogs, and 30,000 rats.
Data from many of these studies are available on the web-
site janus.northwestern.edu/wololab. While many of these
experimental animal studies had been done at low-dose rates
and studies were published, the ability to re-analyse them
with new statistical and computational approaches allowed
for the assessment of the data from new perspectives.

Rodents are particularly radioresistant and wild-type
strains will not develop some pathologies of interest, such
as atherosclerosis. Therefore, to study some specific mecha-
nisms, the use of transgenic mice can be beneficial for under-
standing effects observed in humans. Most transgenic mouse
studies are limited by the fact that they are imperfect models
of the human situation. For example, animals with onco-
genic mutations develop caners, but they are often similar
but not identical to the human disease (Cheon and Orsu-
lic 2011). Another limitation is that most human disorders
that are modelled in transgenic situations have multi-genic
causes, but the creation of a transgenic mouse often assumes
that a single gene is responsible for the disease. In fact, the
transgenic model is a means of testing the molecular conse-
quences of a particular genetic alteration, but the mimicking
of disease may be limited. Limitations of models have been
pointed out for virtually all animal models that have been
studied (Shanks et al. 2009). Finally, one can argue that mice
(or indeed any experimental animal) may not adequately
model human diseases.

Similar limitations are present in cellular models. Any
in vitro experiment is limited by observable endpoints and
sensitivity of assays. Despite these limitations, valuable
insights can be generated from such experiments, if these
findings are not extrapolated beyond the context of the
model and experimental setup.

Dose rate effects at molecular and cellular level

The studies listed in Tables 1, 2, 3, 4 have been selected from
the literature to draw some conclusions about radiation biol-
ogy studies and are explained in some detail below.

Gene expression, protein modification, and cell cycle
effects

There have been several studies that have examined gene
and protein expression in animals prone to particular condi-
tions (either genetically engineered or having background
genetic mutations) using LDR exposures (Ina and Sakai
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2005; Ebrahimian et al. 2018a; Mathias et al. 2015; Ishida
et al. 2010). These all showed differences in gene expression
patterns between LDR and HDR exposed mice and differ-
ences in lymphocyte activation and cytokine expression. A
tissue-specific response has been identified among tissues
linked to the difference in DNA damage repair processes
(Taki et al. 2009). Changes in cell cycle progression have
also been reported to show dose rate effects with increases in
survival, accumulation of cells in G2 phase following LDR,
and delays of DNA synthesis (Matsuya et al. 2018, 2017).

In addition to mice, other animals and cultured cells have
been analysed for gene expression and protein modifications
after LDR exposures (see Table 1).

Alterations in several genes related to ribosomal proteins,
membrane transport, respiration, and antioxidant regula-
tion for increased reactive oxygen species (ROS) removal
were also observed in experiments carried out inside DUL
on mammalian cell cultures and organisms (Smith et al.
1994; Fratini et al. 2015; Van Voorhies et al. 2020; Liu
et al. 2020b; Zarubin et al. 2021; Castillo et al. 2015). In a
recent paper, Fischietti et al. (2020) reported that pKZ1 A1l
mouse hybridoma cells growing underground at the LNGS
display a qualitatively different response to stress; induced
by over-growth with respect to the external reference labora-
tory. Analysis of proteins known to be implicated in the cell
stress response has shown that after 96 h of growth, the cell
culture kept in the external laboratory shows an increase in
PARP1 cleavage, an early marker of apoptosis, while the
cells grown underground present a switch from apoptosis
toward autophagy, which appears to be mediated by p53.
This behaviour is not affected by a further reduction of the
gamma radiation dose by shielding. Interestingly, this effect
reverted when, after 4 weeks of underground culture, cells
were moved to the reference radiation environment for 2
more weeks, indicating a plasticity of cells in their response
to the low-radiation environment. Transcriptomic and meth-
ylation analysis are presently underway to understand the
genetic and epigenetic bases of the observed effects. Of cru-
cial importance is also trying to identify the component(s)
of the radiation spectrum triggering the biological response.

Overall, the data suggest that biological systems are very
good sensors of changes in environmental radiation expo-
sure, in particular regarding dose rate effects, and also sup-
port the hypothesis that environmental radiation contributes
to the development and maintenance of defence response
in cells and cultured organisms. Nevertheless, it should be
noted that extrapolation from experimental cell or animal
models to humans is very challenging, because it depends
upon many parameters, including the model, endpoints, and
radiation exposure type. More work is needed to determine
which models are best for certain human endpoints.

@ Springer

Mutation

Early studies were done by William and Leanne Russell
at Oak Ridge National Laboratory in the 1960s examining
the development of coat colour mutations in mice follow-
ing exposure to gamma rays (Russell 1963, 1965; Russell
et al. 1958). This work is now considered classic and helped
establish that LDR exposure (8 mGy/min or less) induced
fewer hereditary mutations in mice compared to the same
dose administered at HDR. Later, this work was confirmed
by Lyon et al. (1979) and Favor et al. (1987).

In contrast, an inverse dose rate effect for survival was
originally observed initially in both S3HeLa and V79 cells in
culture (Mitchell et al. 1979). This initial work was expanded
to include experiments on mutation induction by LDR car-
ried out in the 1990s. Among them, the work of Amundson
and Chen (1996) reported an inverse dose rate effect in syn-
geneic human TK6 and p53-deficient WTK1 lymphoblastoid
cell lines exposed to continuous LDR y-irradiation. These
data have been interpreted on the basis of the assumption
that at low-dose rates, cell cycling can cause mutated cells to
progress to resistant phases before they are killed, resulting
in previously resistant surviving cells progressing to a sensi-
tive part of the cycle, where they can undergo mutagenesis
(Brenner et al. 1996). Different results have been obtained by
Furuno-Fukushi et al. (1996), who using WIL2-NS human
lymphoblasts did not find an inverse dose rate effect.

The studies cited above, along with other published data
on HPRT mutation in various rodent and mammalian cells,
were re-analysed by Vilenchik and Knudson (2000). They
showed that for both somatic and germ-line mutations,
there is an opposite, inverse dose rate effect, with reduction
from low to very low-dose rate, the overall dependence of
induced mutations being parabolically related to dose rate,
with a minimum in the range of 0.1 to 1.0 cGy/min (60 to
600 mGy/h). They suggested that this general pattern could
be attributed to an optimal induction of error-free DNA
repair in a dose rate region of minimal mutability. This study
also predicts on a quantitative level that induction of DNA
repair and/or antioxidant enzymes by radiation depends not
only on the level, but also on the rate of production, of cer-
tain DNA lesions and ROS, with an optimal response to an
increase of 10-100% above the “spontaneous’” background
rates.

In human telomere reverse transcriptase (TERT)-immor-
talised fibroblast cells obtained from normal individuals,
Nakamura et al. (2005) demonstrated that the genetic effects
(HPRT mutation induction and size of the deletions induced)
of low-dose rate radiation were much lower in nonprolif-
erating human cells than those seen after high-dose rate
irradiation, suggesting that LDR radiation-induced dam-
age was repaired efficiently and correctly with a system that
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was relatively error-free compared to that repairing damage
caused by HDR irradiation.
Koana et al. (2007), investigated mutation induction in

5
(=]
Ql/
=
@ 2 Drosophila spermatocytes after low and high X-ray doses
=y 4 . . .
) e delivered at two different dose rates (0.05 Gy min and
9 = s 0.5 Gy/min). They obtained evidence of error-free DNA
5 E é repair functions activated by low dose of low-dose-rate
O = .. . .
E 3 %’ radiation (0.2 Gy; 0.05 Gy/min) able to repair spontaneous
DNA damage (detectable in the sham sample). This was not
e Q g p
g 5 ! observed at the higher dose rate. After a high-dose exposure
g = o ig T2 2
g § & “2EE278 g (10 Gy), a significant increase in the mutation frequency
= o < - @\ . . .
£ B é § g Eg g 2 with respect to the sham-irradiated group was observed,
Q « O = . .
§ R % SE87T g g independently on the dose rate (0.5 Gy/min or 0.05 mGy/
= wn = o .
E g ; Z2EEE § = min). The authors proposed the presence at low-dose rate of
ED % g o 9 ‘é —°§ = g Z a threshold between 0.2 and 10 Gy below which no increase
g 2 S5 - . . .
S § 2z 2 S5 EET % in mutation frequency is detected.
i=] Sa [ ° O > o = Q t . . .
o go2 252%5¢s8 Mutation experiments have also been carried out at the
=7 ER 1 ) . .
= 588 S 2E é 3 5% LNGS underground laboratory. The first evidence was
= 17) b= (<P . . . .
E é".E e g ES5ESZE obtained in yeasts, which showed a high frequency of

recombination when grown underground as compared to
above ground (Satta et al. 1995). Afterwards, using Chinese
hamster V79 lung cells, an increased mutation frequency at
the hprt locus was observed before (spontaneous level) and
after irradiation with challenging X-ray doses in cultures
kept for 10 months underground compared to those kept
above ground (Satta et al. 2002), suggesting more damage
at a very low-dose-rate exposure. Further long-term experi-
ments provided evidence against mutant selection and in
favour of the involvement of epigenetic regulation in the
observed increase of spontaneous Aprt mutation frequency
after 10 months of growth underground and other 6 months
above ground (Fratini et al. 2015). Biochemical measure-
ments of antioxidant enzymatic activity have shown that
cells maintained in the presence of “reference” background

doses of a radiomimetic chemical
agent (MMS) in terms of mitotic
intergenic recombination
chromosomal aberrations in painted
chromosomes 2, 8, and 14

(after 120 generation, i.e., 1 week)
dine kinase (TK) mutants, and of

Outcomes recorded, time post-expo-
Cell growth, frequency of thymi-

sure

Underground vs above ground environ- Susceptibility to treatments with high

el
= . S .
;1 radiation are more efficient in removing ROS than those cul-
_ =4 . tured in the underground environment.
%‘% g =) A summary of the experiments described here can be
=z = oo > .
'3 ) = found in Table 2.
S o= o
3 O - g 6= <&
= Z 5 SH¥Ed
2 =A SEc 8 E DNA and chromosomal damages
8 =) T Y To
T |28%F El:g
= = A A The dose rate effect on chromosomal aberrations (CA) after
ex vivo blood exposure is well known, since Scott et al.
8 (1970) reported fewer chromosomal aberration yield when
'g the dose rate decreases. More recent data (Bhat and Rao
z " 2003b) have confirmed the linear-quadratic response for
5 g chromosomal damage induction (micronuclei) after acute
2 § ;3 (high does rate) exposure (178.2 Gy/h) and the trend to a
2|2 £ linearity when the dose rate decreases to reach a linear dose
= < >
S| g 9 = response for the lower dose rate (125 mGy/h).
=] = 5] . . . . .
= S £ § However, the in vitro studies used to establish this dose
(o] . .
2 § ° § < rate effect have mainly been performed using a dose rate of
o E: @ f the order of Gy/min, which is much higher than that received

@ Springer
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in the environment or by workers, and is more in the area
of high- and medium-dose rate as defined by UNSCEAR.

In vitro experiments have shown an increase in radiation-
induced micronuclei frequency (2 Gy challenging dose) in
TK6 lymphoblasts after six months of continuous growth in
reduced environmental radiation background at the LNGS
underground laboratory as compared to the external refer-
ence laboratory at the ISS (Carbone et al. 2009).

In vivo experimental studies have measured dicentrics
and translocations produced in mice after much lower dose
rates starting from 1 mGy/day. One of them compares induc-
tion of chromosomal damage after exposure to~1 mGy/
day, ~20 mGy/day, ~400 mGy/day (16.7 mGy/h) with
890 mGy/min (53,400 mGy/h) as an acute group; cumulative
doses ranged from 125 mGy to 8 Gy. The dose rate effect on
both types of CAs was confirmed and a dose rate effect was
even measured when comparing translocations and dicen-
trics induced after 20 mGy/day and 1 mGy/day exposure
but also with a higher translocations yield after 1 mGy/d
exposure compared to the control group (Tanaka et al. 2013,
2014). This was also confirmed in another study (Sorensen
et al. 2000) comparing 50 mGy/day with 200 mGy/day
and 400 mGy/day (duration of exposure up to 90 days with
cumulative doses up to 3.6 Gy). No difference among the
chronically exposed group was identified but again a differ-
ence from the acute exposed group was detected.

The main limitation of both studies is that cumulative
doses and/or duration of exposures are different among the
groups. When the analysis was restricted to doses more com-
patible with what could be received in the whole exposure
time of an individual (between 0.3 and 1 Gy), then the dif-
ference in dose rate was not so important and, consequently,
it is very difficult to draw any conclusions on whether there
is or not a dose rate effect.

Some DDREFs have been derived from the above stud-
ies based on the modelling of dose rate relationship without
excluding the higher doses which drives the beta coefficient
of the curves. Based on Tanaka et al.’s (2013) data sets, the
DDEEF values calculated ranged from 2.3 (translocation for
100 mGy) to 17.8 (dicentrics for 1000 mGy).

Other in vivo studies do not find a dose rate effect. No
significant dose rate effect for micronuclei induction fre-
quency across the dose range has been observed as exam-
ined by Turner et al. (2015) in spite of approximately 300
times difference between the two dose rates compared of
1.03 Gy/min and 186 mGy/h, but these dose rates are much
higher than those used in Tanaka et al. (2013) and close to
the in vitro studies.

A summary of selected experiments can be found in
Table 3.

Loseva et al. (2014)

(Babini et al. 2022;
Rombouts et al. 2014;
Yentrapalli et al. 2013a,
2013b)

Reference

with a clear dose threshold (as for
the loss of vascular network forma-

measured endpoints, in some cases
tion capability)

dividing fibroblasts causes prema-
mechanisms leading to alterations
in the proliferative status or the
vascular network formation
Strong dose-dependence in the

ture senescence
(proteomic profile similar to replica-

tive senescent fibroblasts)
onset of the senescent status,

shorten
the life span, modify the sustaining

Chronic exposure above 5 mGy/h in
Different dose rates accelerate the

Definitive findings

cular network formation, transcrip-
tomic and proteomic profiles

Combined experimental and model-
ling approaches

Proliferation and senesce, proteomic
profile

Cell proliferation, senescence, vas-

Outcomes recorded,
time post-exposure

Doses: 14.4 Gy and 43.2 Gy (chronic expo-

sure for 120 days)
Doses: from~2 X 10* mGy to~7 x 10°> mGy,

Dose rates: 5 and 15 mGy/h
(depending on the end point)

Dose rates: 1.4, 2.1 and 4.1 mGy/h

Chronic exposure for up to 16 weeks

y-irradiation
y-irradiation

Type of animal, strain/age, or in vitro Irradiation details

cell type
Human umbilical vein endothelial

VH10 normal human fibroblasts
cells (HUVECs)

Table 4 (continued)
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Epigenetics and ageing

Epigenetics is the study of the mitotically and/or meiotically
heritable changes in gene activity and transcript architecture,
including splicing variation, that cannot be explained solely
by changes in DNA sequence. Epigenetic alterations include
DNA methylation, chromatin remodelling, histones’ modifi-
cations, and microRNA-regulated transcriptional silencing.
Their impact appears to be greater with low-dose rates than
acute exposure. Genetic and epigenetic mechanisms appear
to have their common origin in the radiation-induced ROS
and/or reactive nitrogen species. Both mechanisms contrib-
ute to the complex response to radiation exposure and under-
lie non-linear phenomena (e.g., adaptive responses), particu-
larly relevant at low doses/LDR (Vaiserman 2011; Schofield
and Kondratowicz 2018; Belli and Tabocchini 2020).

Kovalchuk et al. reported different patterns of radiation-
induced global genome DNA methylation in C57/Bl mice
after whole-body exposure to 50 mGy/day over a period of
10 days or an acute X-ray irradiation of 500 mGy. This was
found in the liver and muscle of exposed male and female
mice, with hypomethylation induced in the muscle of both
males and females, but not in the liver tissue. Sex- and
tissue-specific differences in methylation of the p16INKa
promoter were also observed (Kovalchuk et al. 2004). A role
of DNA hypermethylation was suggested to be involved in
adaptive response induced by long-term exposure to low-
dose y-irradiation of human B lymphoblast cells. A novel
mechanism of radiation-induced adaptive response was
proposed involving the global genomic DNA methylation
which is crucial for cell proliferation, gene expression, and
maintenance of genome stability, but also important for
maintenance of chromatin structure and regulation of cel-
lular radiation response (Ye et al. 2013).

Other laboratory and field studies have demonstrated
changes in overall DNA methylation and trans-generational
effects in organisms, including C. elegans and zebrafish,
exposed chronically to ionising radiation (Kamstra et al.
2018; Horemans et al. 2019).

Post-translational modifications on histone proteins
controlling the organisation of chromatin and hence tran-
scriptional responses that ultimately affect the phenotype
have been observed in fish (zebrafish and Atlantic salmon).
Results from selected loci suggest that ionising radiation can
affect chromatin structure and organisation in a dose rate-
dependent manner, and that these changes can be detected in
F1 offspring, but not in subsequent generations (Lindeman
et al. 2019).

A peculiar aspect of low dose/LDR exposure is that
related to the ionising radiation background. Experiments
carried out in DULSs using cultured cells or organisms sug-
gest that very low levels of chronic exposure, such as the
natural background, may trigger a defence response without

genetic change, therefore mediated by epigenetic mecha-
nisms (Fratini et al. 2015; Morciano et al. 2018a, 2018b).
This explanation is consistent with the hypothesis of the
epigenetic origin of responses such as adaptive response and
non-targeted effects.

Chronic radiation exposure of primary human cells to
gamma-radiation between 6 and 20 mGy/h over 7 days has
been demonstrated to reduce histone levels in a dose rate-
dependent manner (Lowe et al. 2020). This is linked to the
induction of senescence, which is a key cellular outcome of
LDR radiation exposure (Loseva et al. 2014). Since senes-
cence is linked to many age-related pathologies, includ-
ing cardiovascular disease, the increase of senescent cells
with a tissue following chronic radiation exposure would
be expected to cause premature ageing. However, there is
contradictory evidence. First, some animal experiments
have shown (albeit rarely) that lifespan has been extended by
chronic radiation exposure, albeit at much lower dose rates
than these in vitro experiments. Second, the development of
an epigenetic clock to measure biological age using changes
in DNA methylation (Horvath 2013) has demonstrated that
cells cultured while being exposed to dose rates between
1 mGy/h and 50 mGy/h do not show any difference in epi-
genetic age (Kabacik et al. 2022).

Studies specifically showing dose rate dependence of epi-
genetic effects are summarised in Table 4.

Discussion

Dose rate effects are evident when examining gene expres-
sion and protein modifications; nevertheless, a comparison
of such studies demonstrates that there are broad differences
in gene and protein expression depending upon cell type,
radiation conditions, culture conditions, and others. This
suggests that the endpoints of gene/protein expression may
be sensitive markers of radiation effects, but that they are
influenced by many factors making broad application of
the results difficult. In addition, most changes are observed
shortly after exposure and cannot necessarily be linked to
adverse health effects among humans. Similarly, no clear
response can be highlighted from epigenetic studies. In vitro
and in vivo studies have investigated the dose rate effect on
mutations, allowing meta-analyses to be conducted, which
broadly support an inverse dose rate response.

The study of LDR with in vitro models is limited as such
models can only be exposed for durations from minutes to
weeks and late endpoints might be affected by too many
parameters. The impact of dose rate generally observed
shortly after exposure might not be reflected on later
endpoints.

@ Springer
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Conclusions from dose rate effects at molecular and cellular
level

For chromosomal aberrations, a dose rate effect is well
described but only clear for cumulative doses over 0.5 Gy
when an increase in aberrations is observed. An inverse dose
rate effect has been reported consistently for limited end-
points including mutations and cell survival.

Overall, evidence from studies at cellular and molecular
level suggests potential positive cellular effects and minimal
adverse genetic effects at low-radiation dose rates, as long as
a total cumulative dose remains low.

Dose rate effects on lifespan, cancer, and non-cancer
endpoints

Many endpoints are impossible to study in vitro; therefore,
it is necessary to use animal models to observe specific end
points and systematic effects. Here, we describe radiation
dose rate and its effects on lifespan, cancer, and non-cancer
endpoints. Again, key studies we have considered are sum-
marised in Table 5.

Lifespan and cancer-related end points

The development of a meta-analysis of animals from large-
scale databases permitted a reassessment of the DDREEF as
had been reported by the BEIR VII Committee in the US
(Haley et al. 2015). It determined that the values used were
based on the use of low doses without direct comparisons
of dose rate, so were considered inaccurate. These studies
used lifespan as an endpoint. More recent comparisons used
rodents in a large-scale multi-year single study that were
exposed to protracted vs acute exposures. Considering can-
cer mortality, the authors concluded that the ratio of HDR to
LDR (<5 mGy/h) gamma dose-response slopes, for many
tumour sites was in the range 1.2-2.3, albeit not statisti-
cally significantly elevated from one (Tran and Little 2017).
These studies used non-cancer and cancer causes of death in
their determinations. Based on the work of Tanaka et al. and
Zander et al. (see Table 5), animals exposed to LDR lived
longer cancer-free than similar mice exposed to the same
dose at HDR. Causes of death were similar for control and
gamma-exposed animals, although the time to expression
of cancer in these animals was more rapid in the gamma-
exposed animals than in the controls (Zander et al. 2020).
Interestingly, animals sham-irradiated with 120 fractions
(i.e., taken to the chamber but not irradiated) had a signifi-
cant increase in lymphoma incidence over other sham-irradi-
ated animals (i.e., fewer trips to the chamber), and also when
compared to non-sham-irradiated animals; this suggests
that controls must be carefully considered and any radiation

@ Springer

effect may be minimal compared to such environmental fac-
tors. Animals exposed to 120 fractions of radiation were not
included in this analysis. They had an apparently a lower
incidence than the sham-irradiated, but more work is needed
to understand this. This study highlights the necessity to
have suitable control groups. LDR studies with large num-
bers of animals were also performed at the IES facility in
Aomori Prefecture in Japan. A comparison of males revealed
that mice exposed to LDR (0.4 Gy over 400 fractions for
22 h per day, 1.1 mGy/day) had similar causes of death as
animals that received high-dose-rate exposures (8 Gy over
400 fractions for 22 h per day, 21 mGy/d) (Tanaka et al.
2007, 2017; Braga-Tanaka et al. 2018a). Female mice, on
the other hand, had some dose rate-specific differences noted
in the digestive system and circulatory system, which were
higher in the animals receiving the higher dose rate than
those exposed to a lower dose rate. A comparison of their
studies to those by Zander et al. (2020) revealed remarkable
similarities in both sexes except in digestive system, res-
piratory system, and non-neoplastic endpoints. It is possible
that differences in ventilation, bedding, and diet could have
contributed to these differences.

Studies carried out on flies in parallel above ground (at
the reference laboratory at L’Aquila University) and below
ground (at the LNGS underground laboratory) have shown
that the maintenance in extremely low-radiation environ-
ment prolongs the life span, limits the reproductive capacity
of both male and female flies, and affects the response to
genotoxic stress. These effects were observed as early as
after one generation time (10-15 days) and are retained in
a trans-generational manner (at least for two more genera-
tions) (Morciano et al. 2018a). It is interesting to note that
organisms well known to be radioresistant can sense such
small changes in the environmental radiation.

Developmental and morphometric endpoints were also
investigated in DULs. Data so far obtained on lake white-
fish embryos have shown a significant increase in body
length and body weight of up to 10% in embryos reared
underground, suggesting that incubating embryos inside
the SNOLAB can have a subtle yet significant effect on
embryonic growth and development (Thome et al. 2017;
Pirkkanen et al. 2021). Experiments were also performed
using the nematode Caenorhabditis elegans at WIPP have
shown that worms growing in the below normal radiation
environment had faster rates of larval growth and earlier egg
laying; furthermore, more than 100 genes were differentially
regulated, compared to normal background radiation levels
(Van Voorhies et al. 2020).

Based on these studies, it is clear that at least some exam-
ined dose rate effects are evident at the whole organism
level.
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Non-cancer endpoints: inflammation and other systemic
effects

The influence of LDR exposures on inflammatory
responses was studied using two different animal models:
ApoE—/— mice that develop atherosclerosis at a high fre-
quency (Mitchel et al. 2011, 2013; Mathias et al. 2015; Ebra-
himian et al. 2018b) and MRL-Ipr/lpr mice (Ina and Sakai
2005) that develop a systemic lupus erythematosus-like syn-
drome. While one can argue that both mouse models have
only a moderate relationship to human disease, the effects of
radiation exposures particularly at low doses were interest-
ing. In all cases, exposure of animals to LDR radiation expo-
sure demonstrated enhanced life expectancy, in most cases
accompanied by either a reduction in pro-inflammatory
responses (Mathias et al. 2015) or by an enhanced expres-
sion of anti-inflammatory effects (Ebrahimian et al. 2018b).
These were evident at lower dose rates but not high-dose
rates when they were compared within the study. The protec-
tive effects of LDR exposures were not dependent on p53
(Mitchel et al. 2013). Taken together, these results suggest
that LDR radiation can inhibit inflammatory responses under
the appropriate conditions.

Non-cancer endpoints: cataract

Acute exposure to ionising radiation has provided clear evi-
dence of an increased incidence of cataract. However, lim-
ited studies have been carried out specifically to address the
effect of dose rate on radiation-induced cataract. The most
comprehensive study to date (Barnard et al. 2019) exposed
C57BL/6 mice to gamma-radiation at 0.84, 3.7, or 18 Gy/h,
and found an inverse dose rate response in cataract formation
in the lens of the eye. This supports previous epidemiologi-
cal evidence as reviewed in Hamada et al. (2016).

Discussion

In addition to studies described here, there are other non-
cancer effects of ionising radiation, particularly cardiovas-
cular disease, that have been well studied using acute radia-
tion exposure. However, specific experiments to establish the
effect, if any, of dose rate have yet to be addressed.

Animal research is always dependent on control stud-
ies, ensuring that sham-irradiated animals are appropriately
tested and that accurately matched controls are being exam-
ined. Numerous and extensive studies have documented the
impact of the mouse strain on results, since strain-specific
differences in pathology (particularly cancer type) and even
radiation sensitivity have been noted in the literature (Rein-
hard et al. 1954; Lindsay et al. 2007). Cross-comparisons of
animals from one study to another may be limited by these

concerns. In addition, long-term low-dose experiments often
require very large animal populations to identify signifi-
cance of potentially small effects. In addition, LDR studies
require not only large numbers of animals but also housing
of animals sometimes for years to reach cancer and lifespan
endpoints.

Despite these limitations, animal studies have the
advantage of examining the total body experience, keep-
ing cells in the context of the tissue, including immune,
circulatory, and other systems of the body. This allows for
studies on multiple impacts on endpoints and not just sin-
gle-cell impacts examined in cells in culture. The ability
to manipulate specific genes through transgenic mice pro-
vides a mechanism by which one can examine the impact
of under- or over-expression of these genes. Animal stud-
ies also have the advantage (over human epidemiologic
work) of having carefully controlled conditions to allow
for the best assessment of radiation effects.

Conclusions from animal studies

There have been several large-scale animal studies exam-
ining dose rate effects. In general, animals exposed to the
same dose of radiation at LDR survived longer than those
exposed HDR. In addition, the major cause of death in
these animals was cancer induction (Tran and Little 2017),
although the type of cancer differed in different mouse
strains. Studies of inflammatory responses suggest that
LDR radiation exposure may inhibit inflammation under
appropriate conditions, which, along with an adaptive
response, could explain the extended lifespan seen at low-
dose rates. Cataract induction (much like results shown for
mutations in cellular studies) points to the existence of an
inverse dose rate effect.

While radiation exposure has been shown to modulate
cancer induction differently in male and female mice (with
certain cancers predominating in each sex depending in
part on mouse strain), there were few dose rate-specific
differences observed in cancer induction between the two
sexes. Some non-cancer endpoints, such as digestive sys-
tem disorders and respiratory disorders, were shown to
have sex-specific differences with LDR exposure.

Dose rate effects in human populations
Cancer risk epidemiology

To date, most epidemiological studies have focused on
risk of cancer after exposure to ionising radiation. These
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studies of exposure to ionising radiation have included per-
sons who have experienced a wide range of doses received
at a wide range of dose rates (McLean et al. 2017; Kamiya
et al. 2015). On the one hand, there are the Japanese sur-
vivors of the atomic bombings of Hiroshima and Naga-
saki and patients treated with radiotherapy, who received
a range of doses at an HDR, and on the other hand, there
is the general population chronically exposed to a range of
LDR of terrestrial gamma and cosmic background radia-
tion. In addition, there are other groups, such as patients
undergoing exposure to radiation for medical diagnostic
purposes and workers who have experienced a series of
low-level exposures in their workplaces.

A-bomb survivors

The Japanese atomic-bomb survivors are usually adopted
as the reference group for HDR exposures, because the
Life Span Study (LSS) cohort has been the subject of care-
ful study and there is little ambiguity in considering a
group that has experienced an excess risk of cancer as a
result of receiving moderate-to-high doses during a brief
exposure to radiation of a few seconds.

More specifically, because of the atomic-bomb explo-
sions over Hiroshima and Nagasaki, radiation exposures
of the inhabitants of both cities were due to prompt and
delayed radiation, primary and secondary radiation, and
gamma and neutron radiation. At a distance of 1000 m
from the hypocentre in Hiroshima, for example, the high-
est contribution to kerma free-in-air (2.77 Gy) was from
delayed gamma radiation (gamma radiation produced by
the decay of fission products in the rising fireball), which
lasted for about 10 s and, consequently, resulted in a dose
rate of 0.277 Gy/s. The second highest contribution to
kerma free-in-air (1.38 Gy) was from prompt second-
ary gamma radiation (from prompt neutrons produced
during the explosion that resulted in additional gamma
radiation when they were transported through the atmos-
phere and interacted with air and soil), which lasted for
about 0.2 s and, consequently, resulted in a dose rate of
about 6.9 Gy/s. The third highest contribution to kerma
free-in-air (0.24 Gy) was from prompt neutrons (which
were produced during the explosion and transported
through the atmosphere to the ground), which lasted for
only about 10 ps and, consequently, resulted in an HDR
of 2.4 x 10* Gy/s. Finally, the fourth highest contribution
to kerma free-in-air (0.07 Gy) was from prompt primary
gamma radiation (which was produced during the explo-
sion), which lasted for only about 1 us and, consequently,
resulted in a HDR of 7 x 10* Gy/s. Table 6 summarises
these dose and dose rate contributions for distances from
the hypocentre of 1000 and 2000 m. Similar values for
kerma free-in-air hold for Nagasaki. Kerma is calculated

@ Springer

here as sum of the kerma from gamma radiation and neu-
tron radiation; for details, see Riithm et al. (2018).

Furthermore, the survivors experienced an exposure that
was effectively a uniform whole-body exposure to gamma
radiation (although there was a generally small component
of exposure to high-LET neutrons that needs to be borne in
mind), so that all organs/tissues were exposed at doses that
are approximately equal (although smaller for organs/tissues
that are deeper within the body).

Finally, a survivor located at 1000 m distance from the
hypocentre at time of bombing had experienced a mean dose
rate of 2.4 x 10° Gy/s (8.6 x 10° mGy/h) if the dose rates
of the four components given in Table 6 were weighted by
their corresponding free-in-air kerma values. Similarly, a
survivor at 2000 m had experienced a mean dose rate of
5.2% 10! Gy/s (1.9 108 mGy/h). If the contribution from
prompt neutrons is multiplied by a factor 10 to account for
an increased relative biological effectiveness of neutrons as
compared to gamma radiation, these mean dose rates trans-
late to 8.8 x 10* Gy/s (3.2 x 10! mGy/h) and 6.9 x 10! Gy/s
(2.5% 10® mGy/h) at 1000 m and 2000 m, respectively.

Medically exposed cohorts

Medical exposures for diagnostic purposes involve doses that
are much lower than the (usually localised) doses received
during radiotherapy. While the doses received from discrete
external exposure radio-imaging procedures are likely to be
low, a series of diagnostic exposures, such as computed
tomography (CT) scans, could produce cumulative doses
that are > 100 mGy (Rehani et al. 2019). It is important to
consider that the highest doses may be confined to tissues
that are in the vicinity of that part of the body under scrutiny,
and the individual exposures could be temporally separated
by periods of days. Nonetheless, dose rates during exposure
are likely to be moderate-to-high. This potential mix of low
dose and HDR effects could lead to difficulties of interpreta-
tion, because the two effects described by the two factors,
LDEF and DREF, cannot be distinguished.

Considering that the typical tissue dose received during
a CT-scan is about 10 mGy and although an examination
lasts between 5 and 20 s or so, the vast majority of the dose
is delivered as while passing through the ring (under the
direct beam), which usually takes less than 1 s. The dose
rate is therefore of the order of 10 to 20 mGy/s. Obviously,
precautions should be taken as this estimated dose rate is
variable depending upon the patient's corpulence, the loca-
tion of the organ/tissue, and, of course, the scanner settings
(current, tube voltage and rotation speed of the X-ray tube,
table movement speed, collimation, and filtration) among
other considerations.

Studies of those being treated with radiotherapy pose
rather more problems of interpretation, because the exposure
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is generally more localised and being used to treat diseased
tissue. This results in high doses to tissues where the radia-
tion is being directed and a gradient of doses to normal tis-
sue away from the focus of treatment, producing a range of
doses to healthy tissues being exposed, mainly from scat-
tered radiation.

A classic radiotherapy treatment corresponds to a dose of
2 Gy per fraction (perhaps 20 or more fractions) localised as
much as possible to the tumour, with a treatment duration
typically around a few minutes depending on the treatment
technique. The mean dose rates delivered by the linear accel-
erators used for radiotherapy treatment are limited to 6 Gy/
min and can reach dose rates of up to 24 Gy/min for flatten-
ing filter free photon beam. Also, some recent techniques in
development of FLASH radiotherapy produce dose rates that
are still higher, at mean dose rates in excess > of 40 Gy/s.
Flash radiotherapy is based on a series of very short pulses
(with a duration of a few microseconds) delivered over a
total duration of some milliseconds. Therefore, within one
of these pulses, the dose rate can reach extreme values of
several 10° Gy/s (Esplen et al. 2020). The competing effects
of cell killing at high doses and HDR will depress the risk
per unit dose of cancer, which is why comparisons between
effects in patients receiving high-level exposure as therapy
and those in groups exposed at lower levels need to be con-
ducted with considerable care. A further complication is that
the disease being treated with radiotherapy and other thera-
pies in the treatment regimen (chemotherapy, for example)
could affect the risk posed by radiation exposure.

Long-term health effects of radiotherapy have been dem-
onstrated for both cancer (Berrington de Gonzalez et al.
2013) and non-cancer diseases, especially diseases of the
circulatory system (Little 2016). For lower doses associ-
ated with medical exposure, induction of DNA damage by
a CT-scan examination has been demonstrated (Janosikova
et al. 2019). Several epidemiological studies investigated the
effects of radiation exposure due to CT scans in childhood.
Even if the estimated risks are influenced by potential biases
and are associated with large uncertainties, accumulated

Table 6 Dose and dose rate contribution (based on kerma free-in-
air) of various radiation sources after the explosion over Hiroshima,
at ground ranges (distances from the hypocentre of the explosion) of

results show that CT exposure in childhood appears to be
associated with increased risk of (at least, certain types of)
cancer (Abalo et al. 2021). Nevertheless, all these results
derived from medical studies relate to radiation exposures
at high- or very-high-dose rate.

Occupationally and environmentally exposed cohorts

Many studies have been published dealing with exposure of
various groups of individuals to low-dose rates of ionising
radiation. Among these are occupationally exposed cohorts
such as, for example, air crew (Hammer et al. 2014), West-
ern nuclear workers (Leuraud et al. 2015; Richardson et al.
2015), Russian Mayak workers (Sokolnikov et al. 2015,
2017; Kuznetsova et al. 2016), Chernobyl emergency work-
ers (Ivanov et al. 2020a), and others (Shore et al. 2017).
Table 7 summarises the typical cumulative doses and dose
rates for these cohorts. Groups of individuals exposed to
high natural background radiation have also been investi-
gated, especially in Kerala, India (Nair et al. 2009; Jayalek-
shmi et al. 2021), and Yangjiang, China (Tao et al. 2012), as
well as those exposed to man-made contaminations, such as
the Techa River population in the Southern Urals of Russia
(Krestinina et al. 2013; Davis et al. 2015) and the inhabitants
of buildings containing ®°Co contaminated steel in Taiwan
(Hsieh et al. 2017).

Occupational exposures are predominantly received at
an LDR, albeit that cumulative doses can be moderate or
even high, but consisting of a series of many discreet, small
doses received over a working lifetime (Wakeford 2021).
Of particular importance are the studies of the workers at
the Mayak nuclear complex in Russia and the International
Nuclear Workers Study (INWORKS). INWORKS is an
international collaborative study of mortality in nuclear
workers from the UK, France, and five sites in the USA
(Leuraud et al. 2015; Richardson et al. 2015). These are
powerful studies involving large numbers of workers, some
of whom have accumulated moderate-to-high doses, and the
findings of these studies can offer substantial information on

1,000 and 2,000 m (Rithm et al. 2018). Similar orders of magnitude
hold for exposures due to the explosion over Nagasaki

Radiation source Estimated Dose (Gy) Resulting dose rate  Dose (Gy) Resulting dose rate  Resulting dose rate
duration of at (Gyl/s) at (Gyl/s) (mGy/h)
exposure 1,000 m 1,000 m 2,000 m 2,000 m 2,000 m ?

Delayed gamma radiation 10s 2.77 0.277 0.040 4.0x10.73 1.44%10.4

Prompt secondary gamma radiation 0.2 s 1.38 6.9 0.035 0.17 6.12x10.3

Prompt neutrons 10 ps 0.24 2.4x10.* 0.0004 40 1.44%10°

Prompt primary gamma radiation 1 ps 0.07 7.0x10.* 0.002 2.0x10.3 7.20x 10°

4 Dose rates in mGy/h are also given, to facilitate comparison with data shown in Fig. 1, although due to the brief nature of the exposure, the

rate measure per hour is misleading
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dose rate effects when compared with those of the Japanese
atomic-bomb survivors.

Shore et al. (2017) made a detailed examination of the
excess relative risk (ERR) per unit dose (ERR/Gy) reported
by LDR studies (mainly occupational) for solid cancer (all
cancers excluding leukaemia, lymphoma, and multiple mye-
loma) in comparison with the ERR/Gy found in equivalent
analyses of the LSS cohort of the Japanese atomic-bomb
survivors. Although the results of the Mayak workforce pro-
vided support for a DREF of 2, the other occupational stud-
ies did not indicate that a reduction in ERR/Gy to account
for lower dose rates was required. In particular, the ERR/Gy
estimate for INWORKS was compatible with a DREF of 1.
When excluding studies with mean doses above 100 mSv
(therefore excluding the Mayak worker cohort and the Ker-
ala study), then the estimated DREF was compatible with a
value of 1 (Shore et al. 2017).

Recently, Leuraud et al. (2021) made a detailed com-
parison of the ERR/Gy estimate for solid cancer obtained
from INWORKS and from the LSS, selecting subgroups
from these studies that were as closely aligned as possible.
The ERR/Gy estimates for INWORKS and the LSS were
very close, confirming that INWORKS offers little support
for any reduction in ERR/Gy for solid cancer derived from
the Japanese atomic-bomb survivors when applied to LDR
exposures. However, the potential influence of baseline can-
cer risk factors upon radiation-related risks must be borne
in mind when making such comparisons (Wakeford 2021).

Preston et al. (2017) conducted a similar exercise for
Mayak workers, comparing the ERR/Gy for mortality from
solid cancers excluding lung, liver, and bone cancers (the
cancers expected to be associated with plutonium deposi-
tion) in the Mayak workforce with that obtained from the
LSS cohort members exposed as adults. The ratio of the
Mayak and LSS risk estimates pointed to a DREF of 2-3.
Similar conclusions were reached by Hoel (2018).

Another recent synthesis considered cancer in epidemio-
logical studies with mean cumulative doses below 100 mGy;
therefore excluding, for instance, the Mayak worker cohort
and the Kerala natural background radiation cohort (Haupt-
mann et al. 2020). When focusing on adulthood exposure,
the meta-analysis included only LDR studies. The meta-
analysis of these studies produced an ERR at 100 mGy of
0.029 (95% C10.011 to 0.047) for solid cancers (based on 13
LDR studies) and of 0.16 (95% CI 0.07 to 0.25) for leukae-
mia (based on 14 LDR studies). The authors concluded that
these LDR epidemiological studies directly support excess
cancer risks from low doses of ionising radiation, at a level
compatible with risk estimates derived from the Japanese
atomic-bomb survivors (Hauptmann et al. 2020).

A further strand of evidence on the DREF and DDREF
comes from consideration of the findings of studies of those
exposed to radiation in the environment. Foremost among
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these studies are those of residents of areas of high natural
background gamma radiation in Yangjiang, China (Tao et al.
2012), and Kerala, India (Nair et al. 2009; Jayalekshmi et al.
2021), and of riverside communities along the Techa River,
which was heavily contaminated by radioactive discharges
from the Mayak installation in the late-1940s and 1950s
(Davis et al. 2015; Krestinina et al. 2013). The Yangjiang
and Kerala studies offer little evidence for an excess risk of
solid cancer resulting from high natural background gamma
radiation. In particular, the latest findings from Kerala (Jay-
alekshmi et al. 2021) suggest that the ERR/Gy for the inci-
dence of all cancers excluding leukaemia following chronic
exposure to LDR gamma radiation may be significantly less
than that following acute exposure during the atomic bomb-
ings of Japan, although some criticisms have been expressed
about the quality of the data used in the Kerala study (Hen-
dry et al. 2009). Also, it is puzzling that the latest analy-
sis of cancer incidence in Kerala (Jayalekshmi et al. 2021)
includes 135 cases of leukaemia, but that no quantitative
findings for leukaemia are presented.

In contrast, analysis of the Techa River data for mortality
(Schonfeld et al. 2013), and incidence of (Davis et al. 2015),
solid cancers provides evidence for an excess risk related
to enhanced exposure to radiation as a result of radioac-
tive contamination, but the ERR/Gy estimates are similar
to those for the LSS and so do not indicate a DREF greater
than 1. This conclusion is supported by the study of Preston
et al. (2017), comparing solid cancer incidence and mortality
in the Techa River and LSS cohorts, which found that ERR/
Gy estimates for the two cohorts were very similar for both
solid cancer incidence and mortality.

Contamination of construction steel with cobalt-60 in
Taiwan in the early 1980s led to several thousand people
being exposed at an LDR to elevated levels of gamma radia-
tion over a period of about 10 years (Hsieh et al. 2017).
In a cohort of exposed people, indications of excess inci-
dence rates of leukaemia (excluding CLL) and solid can-
cers (particularly breast and lung cancers) that are related to
estimated doses from ®°Co have been reported (Hsich et al.
2017), but the precision of risk estimates is insufficient to
draw conclusions about an effect of dose rate.

Several large case—control studies have been conducted
recently of childhood cancer, in particular childhood leukae-
mia, in relation to natural background radiation exposure.
This interest principally arises because of the prediction of
standard leukaemia risk models derived from LSS data that
around 15-20% of childhood leukaemia cases in the UK
might be caused by background radiation exposure (Wak-
eford 2004; Wakeford et al. 2009) and that sufficiently large
case—control studies should be capable of detecting such
an effect (Little et al. 2010). However, the results of large
nationwide studies have been mixed and further work is
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Table 7 Summarises typical cumulative doses and corresponding
dose rates estimated for a number of cohorts (as given in (Riihm et al.
2018)), as compared to cumulative external doses and dose rates
for the general population taking into account a total exposure from

cosmic radiation and cosmogenic radionuclides of 0.39 mSv annual

effective dose (typical range: 0.3 — 1.0 mSv/y) and a total external
terrestrial radiation exposure of 0.48 mSv annual effective dose (typi-
cal range: 0.3 — 0.6 mSv/y) [taken from Table 31 of Annex B of the
UNSCEAR 2000 report (UNSCEAR, 2000)]

Exposed population

Cumulative dose

Corresponding dose rate

Remark

Reference

General population

Air crew

Nuclear workers

Mayak workers

Chernobyl workers

High radiation background,
Kerala, India

Techa population

Dwellings containing %°Co

contaminated steel, Taiwan

50 - 130 mSv

<200 mSv

20.9 mGy

510 (0 — 6800) mGy*

160 mGy

161 mGy

400 (0-9,000) mGy

48 (<1-2,363)mGy

0.07-0.2 uSv/h

2 (<6) uSv/h

0.4 uGy/h

<150 uGy/h?

320 uGy’/h

<1 uGy/h

External: 4.3 (<25) pGy/h
Internal: 14 (<340) pGy/h

Average about 0.5 to 1 pGy/h

Calculated from annual

effective dose from external

radiation sources, for world
population; cumulative
lifetime doses assume an
age of 80 years

Effective dose, mostly from
neutrons and protons
(which contribute about
60%-80% of the total effec-
tive dose depending on
flight altitude, latitude and
solar activity); Dose rate
estimate based on mean
annual effective dose and
assumed 900 flight hours
per year; cumulative dose
assumes 40 years of work

Colon dose; dose rate based
on mean reported cumula-
tive dose for those with
positive recorded dose,
average length of follow-
up, and assumed 2,000
working hours per year;

Personal dose equivalent
(Hp(IO)); Dose rate
estimated based on annual
dose and assumed 2,000
working hours per year

Personal dose equivalent
(H,(10)); first year after
the accident; dose rate
calculated based on indi-
vidual time of employment
and assumed continuous
exposure

Mean absorbed colon dose;
dose rate estimate based on
measurement of a randomly
selected subset of the
cohort

Red bone marrow dose (from
external and internal expo-
sure, where the internal
exposure is mainly from
Sr-90); dose rates for 1951
assuming chronic exposure

Dose cumulated between

1982 and early 1990s;
mean dose rate estimated
from period of habitation

(UNSCEAR, 2000)

(Frasch et al. 2014)

Mares et al. (2009)

Bottollier-Depois et al.
(2009), (Chen and
Mares, 2008)

Richardson et al. (2015)

Sokolnikov et al. (2015)

Ivanov et al. (2020a)

Nair et al. (2009)
Jayalekshmi et al. (2021)

Krestinina et al. (2013)
Davis et al. (2015)

Hsieh et al. (2017)

¢ Only external exposures have been included
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required before reliable conclusions can be drawn (Mazzei-
Abba et al. 2020).

A summary of the ERR/Gy estimates reported from
main studies of occupational and environmental exposure
to radiation at an LDR (and comparisons with the ERR/
Gy estimates from the LSS, where available) is provided in
Table 8. However, it must be borne in mind that differences
in baseline cancer rates in these populations may affect the
ERR/Gy estimates, as well as any effect of different dose
rates (see discussion further below).

Dose rates due to cosmic radiation for astronauts

For completeness and comparison with other situations
of human exposure discussed in this review, some typical
traits from space exposure are given below. This is despite
astronaut exposures being governed by mostly high-LET
radiation.

Recently, the radiation dose on the surface of the moon
was measured as part of the Chinese Chang’E 4 mission
which landed on the moon on 3 January 2019. The mission
included the Lunar Lander Neutrons and Dosimetry experi-
ment, which provided a mean dose equivalent rate from
galactic cosmic radiation (GCR) of 57.1+10.6 uSv/h. For
comparison, at the same time period, the dose equivalent
rate onboard the International Space Station (ISS) was 731
uSv/d or about 30 uSv/h when averaging over the contribu-
tions from the GCR and from protons in the South Atlantic
Anomaly (Zhang et al. 2020a).

As for Mars, data measured by the Mars Science Labora-
tory during a cruise to Mars indicate dose equivalent rates
of about 1.8 mSv/d (75 puSv/h) (Zeitlin et al. 2013), while
the Curiosity Rover measured dose equivalent rates of about
0.6 mSv/d (25 pSv/h) on the Mars surface (Hassler et al.
2014). Hence, a total mission to Mars (taking 180 d to Mars,
500 d on Mars, and another 180 d back to Earth) would
roughly accumulate 1 Sv (Hassler et al. 2014).

During a large solar particle event, dose rates can be
even higher, albeit only during a short period of time.
Based on measurements of the Cosmic Ray Telescope for
the Effects of Radiation (CRaTER), Schwadron and co-
workers estimated the dose rates obtained by astronauts
from solar energetic particles (SEPs). For the SEP event
that occurred in September 2017, they found that during
an extravehicular activity, an astronaut would have received
a dose of 170 mGy +9 mGy in 3 h (average of 57 mGy/h).
Extreme events could result in significantly higher dose
rates (Schwadron et al. 2018). This compares to dose rates
reported by Dyer et al. who estimated retrospectively that for
a hypothetical Concorde flight in 1956 during the event on
February 23, dose rates at an altitude of 17 km might have
been as high as 0.5 mSv/h, which is about a 100 times higher
than those at typical flight altitudes (Dyer et al. 2003).
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Epidemiology for non-cancer endpoints

Evidence for increased risks of incidence and mortality from
Diseases of the Circulatory System (DCS) and specific types
of DSC (particularly ischaemic heart disease, myocardial
infarction, and stroke) were observed in populations exposed
to HDR, especially in patients treated with radiation therapy
and survivors of atomic bombings at Hiroshima and Naga-
saki (Shimizu et al. 2010; Darby et al. 2005; McGale et al.
2011) about 10-20 years ago. ICRP Publication 118 (Stew-
art et al. 2012) classified DCS as tissue reactions, with a
suggested threshold due to acute and fractionated/prolonged
exposures of 0.5 Gy (absorbed dose to the brain and blood
vessels) for radiological protection purposes. In the last dec-
ades, several studies of populations exposed at LDR also
demonstrated associations between cumulated dose and
DCS risk, in the Mayak worker cohort (Azizova et al. 2018,
2015), in other groups of nuclear workers (Gillies et al.
2017a, b; Zhang et al. 2019; de Vocht et al. 2020), and Cher-
nobyl liquidators (Kashcheev et al. 2016, 2017). However,
uncertainties relating to the shape of the dose-response in
the low-dose region are considerable, and there are broader
issues concerning the interpretation of these epidemiologi-
cal studies (Wakeford 2019). Up to now, available data do
not allow a precise quantification of a potential modifying
impact of dose rate on the dose-risk relationships.

Excess risks of posterior subcapsular and cortical lens
opacities (cataract) at low-to-moderate doses and dose rates
have also been reported in Chernobyl liquidators, US Radi-
ologic Technologists and Russian Mayak nuclear workers
(Little et al. 2021). Nevertheless, determination of a poten-
tial modifying impact of dose rate on the dose—risk relation-
ship from these data is difficult to assess.

Discussion
Summary of results

At present, the results of epidemiological studies that relate
to dose rate effects for human health outcomes following
radiation exposure suggest a DREF in a range of 1 to 3.
Of the large occupational studies, INWORKS points to no
dose rate effect for solid cancer mortality after protracted
exposure to LDR in the workplace. Conversely, the Mayak
workers cohort provides some evidence of a lower ERR/
Gy estimate than directly predicted by the LSS data, by a
factor of around 2-3. The seemingly different conclusions
on DREF reached from a comparison of the ERR/Gy esti-
mates derived from the LSS with those from INWORKS
and Mayak is an important issue that remains to be resolved
(Wakeford 2021). Of environmental exposure studies, the
Techa River residents provide some evidence for a raised
ERR/Gy estimate for solid cancer (incidence and mortality)
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Table 8 Estimates of Excess Relative Risk per Gy (ERR/Gy) for studies of solid cancer (or all cancers excluding leukaemia) in cohorts with
low-dose-rate (LDR) radiation exposure and corresponding estimates from the Life Span Study (LSS) of atomic-bomb survivors

Study population Cancer grouping LDR cohort Corresponding LSS
(exposed adults)
ERR/Gy 95% CI ERR/Gy  95% CI
INWORKS (Leuraud et al. 2021) All solid cancer mortality 0.29 (0.03,0.58) 0.28 (0.16, 0.40)
Mayak workers (Preston et al. 2017) All solid cancers excluding lung, liver and 0.16 (0.07,0.26) 0.46 (0.18, 0.85)
bone cancer, mortality
Techa River residents (Preston et al. 2017) Solid cancer mortality 0.6 (0.04, 1.3) 0.5 0.4, 0.6)
Techa River residents (Preston et al. 2017) Solid cancer incidence 0.8 (0.1, 1.5) 0.6 (0.46, 0.65)
Russian Chernobyl liquidators (Ivanov et al. ~ Solid cancer mortality 0.67 0.2,1.2)" 0.23 (0.12,0.34)
2020a) (Ivanov et al. 2020b)
Russian Chernobyl liquidators (Ivanov et al. ~ Solid cancer incidence 048  (0.1,0.8)"
2020a)
Kerala, India (adults) (Jayalekshmi et al. Incidence of all cancers excluding leukaemia —0.05 (—=0.33,0.29) 0.34 (0.22, 0.45)
2021)
Yangjiang, China (adults) (Tao et al. 2012) Mortality from all cancers excluding leukae- 0.19 (—1.87,3.04) 0.49 (0.35,0.63)
mia and liver cancer
Taiwan dwellings (all ages) (Shore et al. Incidence of solid cancers 0.3 (-04,0.9) 1.24 (0.96, 1.53)

2017)

Meta-analysis of 22 LDR studies (Shore
etal. 2017)

Meta-analysis of 16 low-dose (< 100 mSv)
LDR studies (Shore et al. 2017)

Meta-analysis of 14 low-dose studies

(<100 mSv) (Hauptmann et al. 2020) adulthood exposure

Solid cancers (mortality +incidence) 0.15
Solid cancers (mortality)

Solid cancers (mortality +incidence) after 0.29

(0.06,0.23)  0.45

041  (0.12,0.71)  0.39

(0.11,0.47)  0.27/0.64 *

*Approximate confidence intervals; ERR excess relative risk, CI confidence interval

4Males/females

that is compatible with the LSS data, but with no indication
of a lower ERR/Gy estimate, although the power to reveal
a dose rate reduction factor of around 2 is limited. On the
other hand, the Kerala study does not indicate a raised risk
of solid cancer incidence from chronic exposure to raised
levels of natural background gamma radiation, and this find-
ing provides evidence of a lower ERR/Gy estimate for solid
cancer than the equivalent estimate derived from the LSS (or
that there is no increased risk from these levels of exposure).
Interestingly, recent meta-analyses of data restricted to low
cumulative doses (mean doses below 100 mSv) led to DREF
estimates close to 1.

Limitation and advantages of low-dose-rate studies

Clearly, knowledge about the effect of dose rate improved
substantially over the last 2 decades, thanks to new published
results from populations exposed chronically to radiation.
Nevertheless, at low doses, the expected risks are small, and
difficult to demonstrate. There are still some limitations of
those studies addressing low levels of exposure to radiation:
accuracy of dose estimates (particularly when doses have
had to be reconstructed from historical data), the quality of
some cancer incidence data, lack of control of confounding

factors (such as smoking), and for many studies, there is still
limited statistical power to assess any dose rate effect. Issues,
such as improved dosimetry and better control of confound-
ing, must be addressed if the results of these studies are
to be properly interpreted. Nonetheless, the construction of
large studies such as INWORKS has notably improved the
situation in recent years, and efforts to expand these studies
to include more study subjects and extend follow-up will
inevitably increase power. A systematic analysis of potential
impact of biases (confounding and selection bias, sources of
dose errors, loss of follow-up and outcome uncertainty, lack
of study power, and model misspecification) concluded that
the recent epidemiological results showing increased cancer
risk at low doses were not likely to be due to methodological
bias (Berrington de Gonzalez et al. 2013; Hauptmann et al.
2020). Differences in the relative biological effectiveness
(RBE) of radiation between various exposure situations can
also play a role in the observed differences—there is some
evidence that low-energy photons (X-rays) are more effec-
tive than high-energy photons (gamma rays) at causing DNA
damage relevant to stochastic effects (NCRP 2018). Also,
it should be underlined that, with a few exceptions (Techa
River cohort, Taiwanese contaminated dwellings), most of
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the available data relate to adulthood exposure, and so data
on children are clearly lacking.

Excess relative risk versus excess absolute risk models

All results presented above have been obtained using excess
relative risk models. Wakeford (2021) points out that not
only ERR/Gy should be considered when comparing the
results of studies of low-dose rates with those of the Japa-
nese atomic-bomb survivors, but also Excess Absolute Risk
per unit dose (EAR/Gy). Comparison of ERR/Gy implicitly
assumes that it is valid to compare the proportional increase
in risk per unit dose between different populations, which
is correct if radiation interacts multiplicatively with those
other risk factors that are largely responsible for generating
baseline cancer rates, but if the baseline rates in the compari-
son populations differ and the interaction of radiation with
other risks is sub-multiplicative, then the ERR/Gy estimates
will differ as a consequence of the difference in the baseline
rates. This is reflected in the way excess radiation-related
risk is transferred from one population to another—in the
ICRP system, for most cancers, a 50/50 mixture of ERR/
Gy and EAR/Gy is assumed in the transfer of risk (ICRP
2007; Cléro et al. 2019; Zhang et al. 2020b), which is impor-
tant when baseline rates differ, as they do between the LSS,
Mayak and INWORKS cohorts. Consequently, a difference
in ERR/Gy between cohorts may be due to a difference in
dose rates to which the members were exposed, but it may
also be due to a difference in baseline cancer rates if the
interaction between radiation and other risk factors is sub-
multiplicative, as is the assumption of ICRP for most types
of cancer. Therefore, epidemiological findings in relation
to dose rates must be interpreted with substantial caution,
and should not depend solely upon comparisons of ERR/
Gy when baseline cancer rates differ between the popula-
tions under study (Wakeford 2021). This point has also been
highlighted in a recent UNSCEAR report, comparing the
application of different models to specific exposure situa-
tions (UNSCEAR 2020).

Conclusions from epidemiological studies

At high-dose rates, such as people exposed to radiation
from atomic bombs and therapeutic radiation, an increase
in cancer incidence is clearly observed, particularly for leu-
kaemia and also for some solid cancers. At low-dose rates,
knowledge about cancer risks substantially improved over
the last 2 decades. Recent epidemiological studies showed
an increased risk of leukaemia and solid cancers, even if
risk estimates are associated with large uncertainties (Rithm
et al. 2022). A dose-risk relationship is clearly demonstrated
for diseases of the circulatory diseases at high doses and
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high-dose rates. However, there are insufficient data at pre-
sent to conclude if non-cancer effects are affected by dose
rate.

Conclusions and future needs to understand
radiation dose rate effects

Summary of results and conclusions

The present article presents a comprehensive assessment of
radiation dose rate studies to date, including epidemiological
studies, and in vitro and in vivo experimental studies.

Figure 1 illustrates the dose rates covered in the studies
mentioned in this publication. Note the log scale of dose
rates and therefore huge range of dose rates considered.

Of importance is that no in vitro studies have been car-
ried out at the dose rate range corresponding to nuclear
worker level or LDR definition. Data from in vitro stud-
ies are all performed with dose rates higher than the
UNSCEAR LDR definition (0.1 mGy/min or 5 mGy/h) or
with extremely low-dose rates for experiments conducted
in DUL facilities. This representation also highlights the
fact that few data are available outside of epidemiology
for dose-rate levels pertinent for radiological protection.
At the upper end of the scale, the high-dose rate deliv-
ered by nuclear bombing is only partly covered by radio-
biology studies. Environmental and occupational human
exposures are all around or just above typical background
levels, whereas medical exposures are above 1 Gy/h, albeit
for short durations. Except for potential astronaut expo-
sure (not included in Fig. 1, for details), there are practi-
cally no situations of human exposure in the range around
1-1000 mGy/h. In vivo studies currently have the largest
representation of dose rate range.

In conclusion, dose rate effects have indeed been
observed. The most compelling evidence comes from:

1. In vivo experiments that generally show reduced inflam-
mation at low-dose rates, unlike higher doses that gener-
ate a pro-inflammatory response, particularly at higher
dose rates, which usually result in higher total doses.
However, it is worth noting that these have typically
been seen in models with already increased inflamma-
tion.

2. Invivo experiments, very-low-dose rates have generally
been shown to increase lifespan through a mechanism
thought to be via adaptive response; an inverse dose rate
response appears to exist for mutation and cataract for-
mation.

3. In vitro and in vivo experiments carried out below the
natural background radiation, where inverse dose rate
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Fig. 1 Representation of dose rate ranges (log scale in mGy/h) con-
sidered by the different studies presented separately for human,
in vivo and in vitro studies. The range of external dose rates received
in the general population is shown along with the average 2.4 mGy/h
exposure rate worldwide (blue dashed line) (UNSCEAR 2000). LDR
definition corresponds to 5 mGy/h and HDR to 0.05 Gy/min (solid
red lines). For epidemiological studies, average dose rates in spe-
cific situations are shown and represent radiation exposure above
background (white diamonds). In comparison, dose rates from the
LSS (given in terms of free-in-air kerma) are large and of the order
of 1.9%10° mGy/h-8.6x10° mGy/h, for atomic-bomb survivors
located at 2000 m and 1000 m distance from the Hiroshima hypo-

response has been observed for DNA-related end points
(i.e., mutation and DNA/chromosome damage).
Certain animal studies demonstrated increased cancer
incidence with high-dose rates compared to exposures at
low-dose rates when similar total doses were compared
particularly when total doses exceeded 0.5 Gy.
Changes have been observed in chromosome damage
and gene expression with increased dose rates; however,
these studies vary in their conclusions and are often dif-
ficult to distinguish dose rate from total dose effects.
Epidemiological studies, which show no or little reduc-
tion of the dose-risk relationship at LDR compared to
high-dose rates for cancers (results compatible with an
absence of reduction or a reduction by a factor of about
2). There are currently insufficient data to conclude
about an effect of dose rate on non-cancer risks.

centre at time of the incident, respectively (for details, see text). For
medical exposure situations, average dose rates to the tumours have
been considered for radiotherapy and to the area of the body explored
for CT-scan. Note that for exposures of atomic-bomb survivors and
patients due to diagnostic and therapeutic procedures, times of expo-
sure are short and, therefore, dose rates given in terms of mGy/h may
be misleading. For in vivo and in vitro studies, a range is shown that
is representative of the dose rates used in selected publications dis-
cussed. Data from experiments carried out in Deep Underground
Laboratories (DULSs) are also reported (grey bars between 1x 107
and 1x 107 mGy/h)

Perspectives and recommendations

Considerations and requirements for in vitro and in vivo
experiments to determine dose rate effects

Based on our experience and review of the literature, it was
possible to highlight some recommendations for conducting
dose rate experiments to provide informative data (Table 9).

One of the most important considerations in setting up
in vitro experiments is the selection of appropriate cells.
Although certain cell lines have been used in radiation
research for decades and have advantages such as unlimited
supply, they often have features that are not found in normal
human tissues. For example, many cell lines have lost p53,
a transcription factor central to DNA damage response, or
do not have normal cell cycle checkpoints, and, therefore,
lack relevance when attempting to elucidate a normal tissue
response to ionising radiation. As a result, we recommend
the use of primary human cells where possible. Although
this brings its own set of challenges, including differences
between donors, it also allows for factors including the age
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and sex of an individual to be considered in the assessment
of dose rate effect. This is vitally important for identifying
populations that may be of increased or reduced risk for
radiation effects and necessitates experiments being carried
out in cells isolated from multiple donors of varied back-
ground to observe any differences. As well as identifying
potential ‘at risk’ individuals, this approach will also give
more certainty to results seen to be consistent among all
donors. To observe a difference, which may only be small,
it is important to control for confounding factors, including
the cell state and the karyotype. This means that one must
take great care to ensure that cells are always at the same
level of confluence and proliferation (if possible, in a state
that reflects normal physiological conditions). This can be
aided by maintaining a consistent routine for cell culture and
harvesting samples. Since the level of damage inflicted on
cells from LDR radiation may be minimal compared to the
damage received from endogenous sources, any small effects
from very low doses may be masked by culturing cells under
standard culture conditions (21% oxygen) due to higher lev-
els of reactive oxygen species (ROS) present. Within the
body, normoxic conditions are around 3—-5% oxygen depend-
ing upon tissue. Therefore, reducing the oxygen concentra-
tion may be necessary to observe very small LDR effects
via in vitro experiments. Controlling the karyotype is also
very important when analysing the induction of DNA dam-
age. Indeed, deviations from normal karyotype may result
in variations in DNA contents impacting energy deposition
among DNA.

Another important consideration links the experimental
endpoint and selection of cell type. It is known that there
is great variation in the responses of different cell types to
many stimuli, including ionising radiation. Therefore, it is
important to select a cell type that reflects the output being
investigated and that any results are not extrapolated to other
cell types without empirical evidence being collected for
this cell type. To strengthen conclusions going forward,
it is important that any results from untargeted molecular
approaches, such as genomic or proteomic analysis, are vali-
dated by functional assays before accepting any conclusions
from the data.

Similar considerations must also be in place for selection
of appropriate animal models. Although there is place for
genetically altered and inbred strains, typically a more wild-
type model will allow for a more normal response and there-
fore place slightly fewer restrictions on the ability to general-
ise the results to a wider context. For mouse experiments, an
ideal setup would be to test a hypothesis on multiple strains
of both sexes and a range of ages to confirm reliability and
repeatability of the results. Clearly, consideration must be
given to the improvement of the hypothesis being tested and
balanced against the number of animals being used.
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As the flat and relative homogeneous nature of cell cul-
ture is a limitation of in vitro experiments, consideration
should be given to more complex cultures, such as orga-
noids, which have a more physiological response and have
been developed over the past years to be increasingly sophis-
ticated but also easy to handle.

Finally, the radiation exposure conditions must be consid-
ered—type, duration, dose rate, and total dose of radiation.
Although all types of radiation are important, in this review,
we have focused on low-LET and external exposures. Due
to the different type of damage received by individual cells,
comparing different qualities of radiation may not be pos-
sible and may reflect some of the conflicting conclusions
in the current literature. Therefore, we recommend com-
paring only similar exposures when drawing conclusions
on dose rate effect. Conclusions on dose rate effects also
require multiple different dose rates to be used to observe
trends. This introduces additional challenges such as varied
cumulative dose and/or time in culture and therefore cell
state. Ideally, cells should receive the same cumulative dose
and multiple controls will be required to ensure that any
results seen are not due to confounding effects in cell state.
For example, harvesting controls at different confluence
to reflect the irradiated cultures, or to investigate multiple
times post-irradiation to account for the repair of radiation-
induced damage. Most previous studies have used relatively
high-dose rates (see Table 9), potentially due to the diffi-
culty of seeing effects over confounding factors. To estab-
lish any LDR effects going forward, in vitro experiments
must include lower dose rates. By taking care to account
for other factors as described, this should provide reliable
data to allow for conclusion on dose rate effect—whether
positive or negative.

Although most of these points could be applied to any
in vitro or in vivo experiment, they are of even higher con-
cern in the area of LDR research, where current evidence is
at times contradictory and experiments require a high level
of accuracy to produce a consistent and reliable outcome.
Ultimately, the use of appropriate readouts, extensive use
of controls, and consistency will be key in cellular studies
to conclusively determine potential dose rate effects from
ionising radiation.

From the 2000s until now, much work has been done in
the field of low-dose radiation biology that requires more
study in animal systems: the roles of different genetic back-
grounds and modification of specific genes has been shown
to have a striking effect on the radiation response. New
modulators of radiation responses include epigenetic effects,
such as methylation and histone modification, in addition to
expression of non-mRNA RNAs, such as long non-coding
RNAs (IncRNAs) and miRNAs. Cytoplasmic effects of low
doses (such as gap junctions and mitochondria) have been
shown to be important. In many organ systems, stem cells
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Table 9 Recommendations for cell culture and animal experiments for dose rate analysis

Consideration

Recommendation

1.Cell/tissue/species type

a.Cell line or primary cell
or
b.Animal strain/model

c.Age/sex of donor/organism

2.Cell culture conditions

a.Confluence
b.Proliferation
c.Oxygen concentration
d.Routine

3.Animal experiments

a.Experimental design

b.Housing conditions
c.Other stress/variability

4.Ionising radiation exposure
a.Dose rate

b.Cumulative dose

c.Radiation type

5.Readout/endpoint

6.Molecular (‘omics’, genomic instability, chromosome aberration,
histone modifications)

7.Cancer (mutation/unrepaired DNA damage, inflammation, cell
death)

8.Non-cancer (inflammation, senescence, altered proliferation, epige-
netic age)

Conditions appropriate for experiment and measured endpoint are
essential. Investigators need to recognise the importance of experi-
mental systems and endpoints that are adequate for investigating the
question

Use normal primary cells for assessing normal tissue response; consider
cell/tissue-specific response; use appropriate genetic alteration

Use a variety, including multiple donors, to confirm consistency
of results (or determine factors that could lead to result in higher
response)

Culture conditions that are consistent and relevant to physiological
conditions appropriate for the endpoints

In vivo, cells will usually be confluent with low proliferation rates.
Awareness of the effects of culturing cells is essential

Use normoxic conditions for very low doses

Maintain consistency (e.g., timing of harvesting/media changes)

Ensure the model chosen is appropriate to the endpoint being investi-
gated

Include randomised, appropriate controls that are matched for exposure
conditions to irradiated samples. Sham-irradiated controls are needed
for all animal experiments

Consider best practice for animal welfare, plus variability introduced via
cage mates, enrichment, light, noise, etc.

Reduce sources of stress (e.g., handing and transport of experimental
animals)

Ensure consistency and appropriate controls

Use multiple dose rates to observe dose rate effects, including physi-
ologically relevant LDR

Include controls to distinguish dose-rate effect from total cumulative
dose received

Keep exposure type the same to be able to compare between studies
Select appropriately and use a variety to confirm effects
Validate molecular changes using appropriate functional assay

Consider sensitivity of assay, suitability to answer question, other
contributing factors

have also provided an impetus for new studies and new
hypotheses.

With the development of new technologies (single-cell
sequencing, genome-wide sequencing, and others), it is pos-
sible to gain much more information about the effects of
radiation exposure (and in particular LDR exposures) from
single-cell systems, examining the influence of microenvi-
ronment and cellular milieu on the endpoint in question.
New radiation possibilities have been introduced with spe-
cialised facilities that are capable of very low doses and very
LDR. As we understand processes in cells differently than in
the past, it is possible to probe these new functionalities for
the impact of low-dose and low-dose rate exposures.

To progress the area of dose rate research, systematic
experimental studies must be designed in coordination
with relevant in vivo and in vitro model systems exploit-
ing available facilities. From the comparison between the
human exposure scenarios and the currently available in vivo
and in vitro data (Fig. 1), it appears that there are dose rate
ranges that still need to be investigated. This is now possible
taking advantage of the existing irradiation infrastructures.
LDR facilities allow the exposure of a range of samples,
from cells to organisms, to external gamma irradiation.
Moreover, above-ground studies at increasing dose rate can
be complemented by experiments carried out in DULs. For
radiological protection purposes, it would be extremely rel-
evant to get data on the same organism(s) from a systematic
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investigation and comparison of doses and dose rates cover-
ing sub-background, background, and enhanced doses.

Considerations and requirements for epidemiological
studies to determine dose rate effects

Epidemiological studies with long-term follow-up are ongo-
ing among populations with either HDR (A-bomb survi-
vors, patients treated with radiation therapy, patients who
benefited from medical imaging) or LDR exposure (nuclear
workers, populations with environmental radiation expo-
sure). As these studies recruit more participants, have longer
follow-up and allow good-quality registration of disease
occurrence, more data will be generated which will provide
stronger statistical weight to findings on the effects of dose
rate.

Potential improvement includes better assessment of dose
rate patterns and use of elaborate modelling approaches
to better analyse the impact of dose rate on the estimated
dose-risk relationship. The use of real-time dose monitoring
may help in improving this issue, especially in occupational
exposure situations for which radiological protection is con-
tinually being improved. Situations of high environmental
radiation exposure may also prove to be a good setting for
investigating the effects of LDR in the future, if individual
dose assessment improves. Within this, specific attention
should be given to exposure during pregnancy and during
childhood.

As epidemiological data accumulates, we should be able
to better estimate DDREF, DREF, and LDEF, along with
EAR and ERR differences with dose rate. Across the field
of dose rate research, consideration must be given to dose
rate effects from different radiation qualities, particularly
high-LET sources, such as alpha particles. Also, dose rates
at the high extreme, such as flash radiotherapy, should be
investigated.

Future directions

After considering the current understanding of biological
effects of dose rate, we conclude by summarising the key
points that should be the centre of focus for future research
in the area. First, cellular models must be extremely well
planned to take into consideration the points highlighted
in Table 9, and also using lower dose rates that represent
environmentally relevant dose rates. Animal models should
consider a range of species and give special attention to vari-
ation in effect due to genetic background and age, including
embryonic development that thus far appears to be dose rate-
dependent. The future addition of existing large databases
from large-scale animal studies in Russia, Canada, Japan,
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and Korea to the developed US and EU databases would of
significant benefit to the field.

The focus of radiation research has been on cancer; how-
ever, evidence so far suggests that lower dose rates have
significant effects on non-cancer effects, including inflam-
mation, which has the potential to be either harmful or bene-
ficial. Uncertainty over the relative contribution of dose rate
effects to such endpoints as cardiovascular disease, central
nervous system disorders, cataracts, and the corresponding
mechanisms responsible require further delineation. These
non-cancer endpoints must be prioritised going forward.

Continued work on DDREF, DREF, and LDEF with
larger datasets from animals would be of value as they may
point to considerations for humans. DDREF applies to life-
time risk of cancer in humans in the calculation of radiation
detriment. It would be of interest that a specific attention is
given to cancer occurrence in animal experiments, to pro-
vide more directly comparable endpoints, since this remains
a major uncertainty for human epidemiological work. As
noted in this paper, there is huge value to having results from
carefully controlled studies for comparison.

Regarding epidemiology, conducting good-quality stud-
ies in populations with different radiation exposure pat-
terns is key to increasing our knowledge of the effects of
dose rate on health risks. Many studies are underway, and
the inclusion of new participants, the improvement of dose
reconstruction, and the extension of follow-up duration
will be key to improving the interpretation of results. In
addition, the initiation of studies on populations with spe-
cific exposure profiles (in utero and childhood exposures,
repeated medical exposures such as diagnostic imaging or
interventional procedures, new radiotherapy techniques)
will be very useful. Finally, integration of epidemiological
and radiobiological approaches, through the collection of
biological material in the design of studies, will be essen-
tial to improve our understanding of the effect of dose rate
in the future.

Finally, all these separate aspects must be brought
together in a concerted effort to better characterise the
role of dose rate at the molecular, cellular, organism, and
population levels.

Integrating epidemiology and radiobiology approaches
will be essential to make strong conclusions on the effect
of dose rate; they must complement each other. As so well
described by Morgan and Bair (2013): “Radiation biology
research can provide a mechanistic understanding of the
effects of low-dose radiation in cells, tissues, organs and
organisms. Many of the research tools and technologies
to address these issues that we could only dream about
in the past are now available and continue to evolve. It
is anticipated that using these we can provide a scientific
basis that combined with epidemiological studies, chem-
istry and physics will generate sufficient knowledge that
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can lead to a rational radiological protection policy to
realistically accomplish the objective of maintaining the
risks associated with ionising radiation exposures to ‘As
Low As Reasonably Achievable’ (ALARA).”
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