IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Combined exposures to stable and radioactive substances for ecological risk assessment

Rodolphe GILBIN, Laureline FÉVRIER, Catherine LECOMTE, Frédéric ALONZO, Béatrice GAGNAIRE, Jean-Marc BONZOM, Olivier ARMANT, Karine BEAUGELIN, Hugo LEPAGE, Jacqueline GARNIER-LAPLACE

Rodolphe GILBIN

rodolphe.gilbin@irsn.fr

Research Department on Transfers and Effects of Radionuclides on ecosystems IRSN / PSE-ENV / SRTE Cadarache, France

Introduction

- Exposure in ecosystems: Many substances (stable or radioactive) at potential risk
- Ecotoxicity of substances: approach by 1 (substance, organism) to determine toxic effects
- Protection target for ecological risk assessment: species assemblages, ecosystem structure and function sensitivity to all variables (contaminants and other environmental factors)

1- Introduction

Joint exposure to stable and radioactive substances

Example of stable and radioactive substances present in releases from nuclear fuel cycle facilities		Vandenhove <i>et al.</i> (2012) STAR D 4.1		
1	Substances Stables	Radioactives		
U mining	As, Cd, Cr, Cu, Pb, Zn	U and daughters		
(ex. Canada, Germany, Brazil, France)	Ba, Fe, Al, F, Cl			
Nuclear Fuel Production	F, NH ₄ , K, SO ₄ , As, Cl, Cr, Cu, Fe, Zn	¹⁴ C, ³ H, ⁹⁹ Tc, α, β		
Electric power production	NH ₄ , B, Cu, Zn, LiOH Morpholine, hydrazine 	^{110m} Ag, ¹⁴ C, ⁵⁸ Co, ^{134/7} Cs, ³ H, ¹³¹ I, ⁵⁴ Mn, ^{124/5} Sb, ^{123m} Te		
Spent fuel reprocessing	TBP, NO ₃ , hydrazine, NH ₄ ,	¹⁴ C, ³ H, ⁸⁵ K, ⁶⁰ Co,		
(ex. AREVA-NC La Hague)	SO₄, Fe, K, Ba, Al, F,	^{134/7} Cs, I, ¹⁰⁶ Ru, ⁹⁰ Sr,		
	Co, Cd, Ni, Cr, Hg, Pb, Zr	⁶⁰ Ni, ²³⁸⁻⁴¹ Pu, ¹⁰⁶ Rh, ¹²⁵ Sb, ²⁴¹ Am, ²²⁴⁴ Cm, U		
Waste disposal	•••	•••		
NORM	metals, hydrocarbons	natural RNs		
(coal, petrol, gaz, minerals extraction;				
Hospitals, R&D				
Accidents Other industries, gariculture, non-point sources	•••	····		
Rodolphe GILBIN - CERAD Workshop - Multiple Stressors Risk Assessment of Mixtures	s Exposure 06/02/2019 © IRSN	IRSN ³		

2

Example : routine releases of NPPs in the Rhône river

Beaumelle et al. (2017), Environ. Poll. 231:1421-32

IPOTOMUS project (in progress)

2- Cumulative Risk Assessment Methods : Species Sensitivity Distribution (SSD)

- (xxx) : EC10, NOEC **Cumulated Distribution Function (CDF) of** tentially Affected Fraction of Species (PAF) for G species X laevis (54300) 0,9 chronic (or actue) ecotoxicological data S fontinalis (9225 0,8 (NOEC, EC10...) for *all** species 0,7 M mogurnda (810 Expresses the fraction of species potentially 0,6 M splendida (810 affected (PAF) by the exposure to a given 0,5 aequinoctialis (112 stressor C reinhardtii (28) 0,4 Hviridissima (18) Widely used to account for the 0,3 D magna (14) variation in species sensitivity 0,2 M macleayi (De Zwart & Posthuma, 2005) Hazteca 0. PAF=5% dubia & to derive maximum acceptable concentration 0.1 10 100 1000 10000 100000 HC5 of a substance level (Concentration, dose(rate))
- (e.g. HC5 : Hazardous Concentration that affect 5% of species)
- Consistent benchmark derivation for substances

Rodolphe GILBIN - CERAD Workshop - Multiple Stressors Exposure 06/02/2019 © IRSN Risk Assessment of Mixtures

SSDs recommended to provide an integrated indicator of the potential ecological risk of a mixtures: msPAF (multi-substance Potentially Affected Fraction of species) (De Zwart and Posthuma, 2005)

Independent Action (IA)

- stressors considered independently
- PAF calculation for each stressor
- msPAF computed as following :

$$msPAF_{IA} = 1 - \prod_{i=1}^{n} \left(1 - PAF_i\right)$$

IRS

Case study : NPPs routine releases

Annual released quantities (Qi) under normal operating conditions (EDF, 2013)

Q _i (kg or GBq)	Bugey	Tricastin	Cruas	St-Alban	
Cr			1		
Cu	17	2	15 100	1	es
Ni			1		anc.
Pb		1	1		osta
Zn	7	9	6 600	4	sub
Boric acid	9 000	9 050	13 700	3 730	ble
Chlorides	44 200	13 900		33 000	stal
Sulfates	142 000	98 000	3 967 000		
Ag-110m	0.47	0.05	0.13	0.01	
<mark>C-14</mark>	38.00	45.00	47.00	31.00	
Co-58	0.45	0.06	0.13	0.04	S
<mark>Co-60</mark>	0.10	0.16	0.18	0.07	JCe
Cs-134	0.02	0.03	0.04	0.01	stai
Cs-137	0.02	0.04	0.04	0.01	qn
H-3	44 300.00	51 300.00	58 300.00	55 600.00	e S
I-131	0.02	0.03	0.03	0.01	tiv
Mn-54	0.02	0.04	0.04	0.01	oac
Ni-63	0.13	0.07	0.19	0.14	adi
<mark>Sb-124</mark>	0.05	0.03	0.03	0.01	2
Sb-125	0.08	0.09	0.09	0.03	
Te-123m	0.01	0.04	0.04	0.01	

Rodolphe GILBIN - CERAD Workshop - Multiple Stressors Exposure 06/02/2019 © IRSN Risk Assessment of Mixtures

IRSN

average annual conc. (C_i) \leftarrow

- 4 NPP considered
- 2 dilution scenarios
- mean flow rate
- minimum flow rate

$$C_i = \frac{Q_i F_{rel}}{V_{tot} F_{riv}}$$

8 contrasted scenarios (dilution, mixture composition)

Annual released quantities (Qi) under normal operating conditions (EDF, 2013)

Q _i (kg or GBq)	Bugey	Tricastin	Cruas	St-Alban	
Cr			1		
Cu	17	2	15 100	1	S
Ni			1		- Duc
Pb		1	1		osta
Zn	7	9	6 600	4	sub
Boric acid	9 000	9 050	13 700	3 730	ble
Chlorides	44 200	13 900		33 000	stal
Sulfates	142 000	98 000	3 967 000		
Ag-110m	0.47	0.05	0.13	0.01	
C-14	38.00	45.00	47.00	31.00	
Co-58	0.45	0.06	0.13	0.04	v
Co-60	0.10	0.16	0.18	0.07	
Cs-134	0.02	0.03	0.04	0.01	stal
Cs-137	0.02	0.04	0.04	0.01	q
H-3	44 300.00	51 300.00	58 300.00	55 600.00	U D
I-131	0.02	0.03	0.03	0.01	tiv
Mn-54	0.02	0.04	0.04	0.01	090
Ni-63	0.13	0.07	0.19	0.14	adi
Sb-124	0.05	0.03	0.03	0.01	2
Sb-125	0.08	0.09	0.09	0.03	
Te-123m	0.01	0.04	0.04	0.01	

Average SSD derivation (for CA approach)

Statistically relevant groups = similar slopes (Bartlett test)

3 msPAF calculations
 CA Conc. Addition
 IA Independent Action
 CA&IA 4 CA groups, then IA

msPAF calculation results

- very low risk level : msPAF<<5% except 1 case (Cruas with CA)
- No difference between CA and CAIA
- Surprisingly, CA not always conservative

due to the differences in SSD slopes

7 Use of both concepts (CA and IA) to provide a "prediction window"

Rodolphe GILBIN - CERAD Workshop - Multiple Stressors Exposure 06/02/2019 © IRSN Risk Assessment of Mixtures

msPAF calculation results

Contribution of the different stressors to the overall msPAF ? eg. contrasted cases of Bugey and Cruas (mean flow)

Stressors combination and ranking

7 Different ranking as a function of the considered model (CA or IA)

IRSN

Conclusion (1/2)

Rodolphe GILBIN - CERAD Workshop - Multiple Stressors Exposure 06/02/2019 © IRSN **Risk Assessment of Mixtures**

2- Cumulative Risk Assessment Conclusion (2/2)

Negligible overall potential ecological risk in the context of routine effluents releases in aquatic ecosystems (except msPAF exceeding 5% in 1 case)

msPAF does not provides directly information about the contribution / ranking of each stressor

- ionizing radiation dominates the contribution to PAF (IA)
- stable chemicals (mainly Cu, Zn) dominates contribution to HU (CA)

Main limitations (and perspectives)

 Unsufficient ecotoxicity datasets for some substances cannot allow a robust SSDs derivation (only 8 among 22 stable chemicals considered)

→ In progress (**Ipotomus Project**): use of monitoring data (chemical, radioactive) and the Δ PAF approach (> chemicals considered: 84 among 1046)

- Limited ecological relevance (needs validation with field data)
- Do not consider realistic exposure conditions (bioavailability, competitions...)
- Do not consider potential interactions (synergism, antagonism)

Mixture Exposure and Ecological status

Example : releases from former U mines in France

3- Mixture exposure and diatom community diversity Example : Ritord, releases from former uranium mine sites

Herlory et al. (2013) Ecotoxicology

- Objective: to determine the **diversity and** quality of species assemblages
- Methodology: **Benthic diatoms** (community distribution and ecological preferences)
- Data set: 7-month monitoring (July-January), monthly sampling
 - environmental conditions, contaminants
 - biomass, photosynthesis, specificcomposition of diatom assemblies

3- Mixture exposure and diatom community diversity Example : Ritord, releases from former uranium mine sites

Environnemental conditions

T°, pH, conductivity, O₂, ORP (redox) Nutrients (Si, NO₂, NH₄, NO₃, _{SO4}, Cl) Carbon inorg. (TIC) et organique (TOC) Cations (Ca, K, Mg, Na) Metals diss and bioacc (U, Al, Ba, Fe, Mn)

 Specific composition of diatom assemblies

→ Specific identification and abundance (microscopy after cleaning)

Herlory et al. (2013) Ecotoxicology

12km (1m prof.), BV 17km² connects 2 ponds (Gouillet \rightarrow St Pardoux)

7 former mines, collect and treatment of effluents (Fanay-Augères, Silord) : BaCl₂ (²²⁶Ra ψ), Al₂(SO₄)₃ (Fe, U ψ)

4 stations :

- O S0 (upstream)
 - S1 (downs. Fanay)
 - S2 (mid-course)
 - ▲ S3 (downstream Silord)

3- Mixture exposure and diatom community diversity Example : Ritord, releases from former uranium mine sites

Herlory et al. (2013) Ecotoxicology

Environnemental conditions

- **SO (upstream) significantly different** from other stations (PERMANOVA)
- Effect of contamination (Axis 1): U and treatment effect (Ba, Al, Mn, pH)
- 'Season' effect (Axis 2): ICT, Cond, redox, T°, flux, O2

3- Mixture exposure and diatom community diversity

Example : Ritord, releases from former uranium mine sites

- No effect on specific wealth (S = 55 to 74), diversity (H'= 2,5 to 3,2), biomass or photosynthesis
- Differences in community composition (S0 differ from other stations, "indicator species")

-0.6

-0.7

Herlory et al. (2013) Ecotoxicology

FCRS (12%)

IRSN

3- Mixture exposure and diatom community diversity

Example : Ritord, releases from former uranium mine sites

- Diatom community composition differences attributed to the variables characterizing the effluents 'as a whole'
- U, but also Cl, Ba, Al, Mn ...
- Role of uranium vs. other environmental variables on Diatom community composition ?
- Interactions between substances?
- Actual exposure and bioavailability conditions (pH changes, condictivity, redox ...)?

pS : Spearman correlation (rank) between similarity matrices 'Specified composition' and 'Environmental conditions'

Herlory et al. (2013) Ecotoxicology				
Variable	ρs			
Corrélations individuel	lles			
Cl	0.466***			
<u>U_{diss}</u>	0.377***			
Ba _{diss}	0.321***			
ORP (redox)	0.294***			
Conductivity	0.273**			
Al _{acc}	0.258**			
Mn _{diss}	0.270**			
Ba _{acc}	0.250**			
TIC	0.151**			
Na	0.165**			
Fe _{acc}	0.249**			
NH ₄	0.176**			
Temperature	0.168*			
Mn _{acc}	0.188*			
Fe _{diss}	0.211*			
рН	0.165*			
Flow	0.088*			
TOC, SPM, O _{2,} Al	NS			

BIO-ENV procedure, (Clarke and Ainsworth, 1993)

*** p \leq 0.001; ** p \leq 0.01; * p \leq 0.05

Mixture Exposure and Ecological status

Other examples on fish : Integrated Biomarker Response Approach

3- Integrated Biomarker Response approach

Responses on stickleback health

Le Guernic et al. (2016), Ecotoxicology 25(8):1478-99

Rodolphe GILBIN - CERAD Workshop - Multiple Stressors Exposure 06/02/2019 © IRSN Risk Assessment of Mixtures

3- Integrated Biomarker Response approach

Responses on stickleback health

Risk Assessment of Mixtures

3- Integrated Biomarker Response approach

Responses on fathead minnow

[Tritium] from 4 to 12000 Bq/L (max=0.15 μ Gy/h) - Chalk River Laboratory (CNL) 60 days contamination + 60 days depuration

Fathead minnow (Pimephales promelas)

> Redundancy Discriminant Analysis (RDA) with all biomarkers data

 → Positive correlation of responses (LMI, µN, comet, H2AX, muscle AChE, SOD, CAT, fatty acids) with tritium exposure (despite very low dose-rate estimates)

Lower correlation (few biomarkers) linked with metals (PC1)

3- Mixture exposure and 'ecological' survey (diatom, fish) Conclusion

Provides relevant (and direct) information on structure and/or function of communities/organisms

However, results interpretation is not straightforward:

- how to identify the contribution of stressors? presented examples (former U mines, 3H contamination): ionizing radiation may not be the main stressor
- How to link changes (diversity, biomarkers...) with ecological consequences?

How to go beyond a descriptive approach?

- CA or IA?
- Interactions between substances?

4- Beyond a descriptive approach

Exposure : Speciation and Bioavailability

- Generalization of BLM approach : WHAM-FTOX
- metal-organism binding on nonspecific sites; analogy with humic acids (WHAM)
- Advantage: model already parameterized and thermodynamically coherent

Toxic Function:

$$F_{TOX} = \sum \alpha_M v_m$$

 $lpha_M$: quantité de métal M accumulé (mmol.g^1) V_M : coefficient de toxicité

Toxic Response:
$$TR = \frac{F_{TOX} - F_{TOX,LT}}{F_{TOX,UT} - F_{TOX,LT}}$$

 $F_{TOX,LT}$: lower threshold (pas d'effet) $F_{TOX,UT}$: upper threshold (effet maximum)

Tipping & Lofst (2013) Aquat Tox 142-3:114

4- Beyond a descriptive approach SSD and msPAF: Integrated Approach for Ecological Risk Assessment

 Prediction of effects from laboratory data base (SSD)
 Measurement of the contamination pressure (Cd, Cu, Pb, Ni, Zn, ammonium, triclosan, ...)

- Bioavailability (available fraction, hardness correction)

- Mixed mixture model (CA ou IA)
- Fish species diversity (espèces de poissons, 700 sites, Ohio)
- msPAF vs. species abundance correlation (GLM)

4- Beyond a descriptive approach

Ecotoxicity: Interactions between stable and radioactive substances

- 16 reported studies (binary mixtures, 11 organisms)
- 13 Negative Interactions
 U + Se, Cd
 γ + Cd, Pb, Al
- 10 Positive Interactions
 β + Cu
 γ + Cd, Hg
 γ + organiques
 Pu + γ, Amiante, Be
- Exploratory studies (partial experimental design: doses, ratios, effect types considered)
- Not very informative about the mechanisms (toxicico-kinetic and toxic-dynamic interaction)

	RN	Ch.		=	` +	
U + métaux/métalloïdes						
Lemna aequinoctialis	U	Cu	Х			Charles et al. (2006)
Arabidopsis thaliana	U	Cd			Χ	Vanhoudt et al. (2010)
Caenorhabditis elegans	U	Cd	Х			Margerit et al (in prep)
Daphnia magna	U	Se	X			Zeman et al (2007)
Rayonnement + métaux						
Chlamydomonas reinhardtii	H-3	Cu			Х	Réty et al (2012)
Hordeum vulgare	Cs-137	Cd	Х	Х	Х	Geras'kin et al. (2005)
Souris	X-ray	Cd	Х		Х	Michel & Fritz-Niggli (1986
Salmo salar	Gamma-rays	Cd		Х		Mothersill et al. (2007)
Salmo salar	Co-60	Cd	Х			Salbu et al. (2008)
Salmo salar	Co-60	Cd	Х			Olsvik et al. (2010)
Oryzias latipes	Cs-137	Cd		Х		Shimada et al. (1985)
Souris	X-ray	Cd	Х			Michel & Balla (1987)
Hordeum vulgare	Cs-137	Pb	Х	Х		Geras'kin et al. (2005)
Salmo salar	Gamma-rays	Al		Х		Mothersill et al. (2007)
Salmo salar	Co-60	Al		Х		Salbu et al. (2008)
Salmo salar	Co-60	Al	Х			Olsvik et al. (2010)
Oryzias latipes	Cs-137	As		Х		Shimada et al. (1985)
Souris	X-ray	Hg			Χ	Michel & Balla (1987)
Rayonnement + organiques						
Hordeum vulgare	Cs-137	2,4-D	Х	Х		Geras'kin et al. (2005)
Tradescantia	X-ray	PDA	Х		Х	Xiao & Ichikawa (1998)
Tradescantia	X-ray	DMN	Х	Х	Х	Xiao & Ichikawa (1998)
Oryzias latipes	Cs-137	Cycloheximide			X	Shimada et al. (1985)
Pu en mélange						
Rat	X-ray	Pu-239		Х	X	Ballou et al. (1962)
Rat	Pu-239	Amiante		Χ		Sanders (1975)
Rat	Pu-239	Be			X	Finch et al. (1991)

from Vanhoudt at al (2012) Env Doll 169.177

IRS

4- Beyond a descriptive approach

Ecotoxicity: Interactions between stable and radioactive substances

Conclusions from **STAR** WP4 (2015)

general pattern of the combined effects of <u>UxCd</u> and <u>yxCd</u> across species
 → needed to examine a wide a range of endpoints, timepoints and exposure conditions (bioavailability, bioaccumulation)

→ consistent with the use of SSDs derivations?

- some interactions were explained (mainly antagonistic) by bioavailability and toxicokinetics (rarely toxicodynamic processes)
 - \rightarrow needs robust exposure characterization (speciation, bioavailability & bioacc.)
 - \rightarrow toxicokinetic/dynamics (eg. DEBtox) helps for an overall conclusion
- → no evidence of large (but some) synergism: additivity assumtion sufficient?
 - we used huge, but mainly 'bioassay-derived' experimental designs
 → robust but low sensitive species, endpoints, timepoints (=high exposure needed)
 - need more ecological and biological realism to identify interactions!
- → interactions & mode of action at cell/molecular level?
- → interactions at low doses and effect?
- \rightarrow interactions at higher level (populations) and long-term (trans-generational)?

DEBtox: Toxicokinetic & dynamic model

• antagonism: at toxicokinetic or toxicodynamic level?

Cd

 ex. Toxicity of U+Cd to C elegans

DEBtox of individual substance (U and Cd) + use of additivity model (ex. IA, 11-day)

4- Beyond a descriptive approach

Strong potential of AOP approaches

- Low doses: undetectable individual exposure / effect levels. combined exposure with detectable answers
- Identification of the main risk factors in the exposome
- Cause and effect relationships: Similar AOs may be triggered by different MIEs (affect jointly the same KE) limitation: complex interactions (eg, complex role of low-dose mixtures in carcinogenesis) Goodson et al., 2015)

Conclusion / Take home message (1/3)

Ecosystem Exposure

- Generalization of the BLM approach to consider interactions in the medium (speciation) and bioavailability (eg WHAM-Ftox)

- Co-exposure with organic substances?
- integration of other stress factors (temperature,

```
biotope changes, UVs...)?
```


Conclusion / Take home message (2/3)

Ecotoxicity

- Explicit modeling coupling toxicico-kinetic and dynamic (eg DEBtox, AOP) to generalize the observations (mixtures, species, exposure)

Synergisms and/or Antagonisms may be explained (at least partially) with mechanistic approaches interactions at different steps from exposure, initial events up to Adverse Outcomes

Conclusion / Take home message (3/3)

• **Ecological Risk Analysis** needs a better prognostic power.

- May be (partly) solved by a **proper exposure characterisation** (eg. taking into account bioavailability,... exposome) and description of *interactions* (TDTK models such as DEBtox; AOP)

- msPAF (based on SSD) seems to be satisfactory to describe the response of communities,
by taking into account bioavailability, modes of action (CA / IA) and lack of specific interaction

- However, the **real ecological status** under mixture stress **needs more field survey** of ecologically-relevant endpoints (communities structure and function)

IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Combined exposures to stable and radioactive substances for ecological risk assessment

<u>Rodolphe GILBIN</u>, Laureline FÉVRIER, Catherine LECOMTE, Frédéric ALONZO, Béatrice GAGNAIRE, Jean-Marc BONZOM, Olivier ARMANT, Karine BEAUGELIN, Hugo LEPAGE, Jacqueline GARNIER-LAPLACE

Rodolphe GILBIN

rodolphe.gilbin@irsn.fr

Research Department on Transfers and Effects of Radionuclides on ecosystems IRSN / PSE-ENV / SRTE Cadarache, France

