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CT scans exposure

Increasing number of computed tomography
(CT) examinations in France:

Frequency between 2012 and 2017 :
+17% [IRSN,2017]

13% of diagnostic procedures but 74% of
the annual effective dose

Higher radio-sensitivity of children
[UNSCEAR,2013]

1% of children received at least one CT
scan during the year over the 2012-2018
period [IRSN,2017]
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Cancer risks following CT scans during childhood

Many epidemiological studies are underway
Identify the existence of an association between the organ (radiation) doses following
CT scans during childhood and a given cancer ⇒ If it exists, low risk!
Estimate the magnitude of this association (and its uncertainty)

Study Patients CNS Leukaemia
France [Foucault et al. (2022)] 100 560 Yes Yes

United-Kingdom [Pearce et al. (2012)] 180 000 Yes Yes
Australia [Mathews et al. (2013)] 680 000 Yes Yes
Germany [Krille et al. (2015)] 45 000 Yes No

Netherlands [Meulepas et al. (2019)] 168 000 Yes No
Taiwan [Li et al. (2020)] 130 000 Yes No

EPICT [Hauptmann et al. (2023)] 659 000 Yes

A recurrent criticism : Dosimetric uncertainty not accounted for in risk estimates
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How are the organ doses estimated ?

Example : The NCICT software [Lee et al. 2015]

Developed by the National Cancer Institute (NCI)/National Institute of Health (NIH)
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Different sources of dose uncertainty

The input parameters of dosimetric models are uncertain

The structure of the dosimetric models is uncertain

⇒ The estimation of organ doses is uncertain
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Dose uncertainty and risk estimates

If not or poorly accounted for, dose uncertainty may cause [Carroll et al, 2006; Keogh et
al, 2020] :

a bias in risk estimates (generally towards the null);

an inadequate estimation of the associated confidence/credible intervals;

a distortion of the dose-response relationship [Hoffmann et al, 2017];

⇒ Misleading conclusions about the effect of organ (radiation) doses on the disease risk
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Standard methods to account for dose uncertainty in risk estimates

Step 1: Simulate plausible organ doses values for each CT examination from a
dosimetric model like NCICT using a 2-dimensional Monte-Carlo algorithm [Simon
et al. (2015); Lee et al. (2019); Thierry-Chef et al. (2021)]

Step 2:
Regression calibration : averaged dose vectors (derived from all organ doses
realisations) are used as plug-in estimates for the true organ doses when estimating
disease risks [Little et al. (2014); Hauptmann et al. (2023)]
Monte-Carlo Maximum Likelihood : Estimate the risk coefficient by maximizing an
approximation of the likelihood integrated over all organ doses realisations over a grid
of fixed values for this coefficient [Stayner et al. (2007)]

Asymptotic confidence intervals
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Aim

To propose an alternative approach :
Bayesian learning of a model made of modules (e.g., multilevels/hierarchical
models) including the ”black-box” dosimetric model provided by the NCICT software
⇒ Extension of the works by Richardson and Gilks, 1993; Hoffmann et al. 2017.

To account for the difference between the patient’s morphology and that of the
NCICT phantom when modelling dose uncertainty
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The disease submodel : a survival model

Modelling the hazard rate of first diagnosis of a given cancer for patient i at age (in
days) t ∈ [0,+∞[

hi (t;β) = λ× exp(β × Dcum
i (t))

Dcum
i (t) =

∑
u≤t−x D

real
i,k (u): : 2 or 5-years lagged cumulative radiation dose to the

brain or the red bone marrow (RBM) (in Grays)
Dreal

i,k (t) : the true (unknown) organ dose received by patient i at age t for a CT

examination of type k
λ > 0 : Baseline hazard rate supposed to be constant over time
β: Unknown risk coefficient

Assumption : Non-informative censoring
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Accounting for dose uncertainty due to the patient’s morphology

Let DNCICT
i,k be the organ dose estimated by the NCICT model for a CT examination of

type k and a typical morphology (i.e., phantom selected from the age of patient i).

A multiplicative Berkson error model: D real
i,k (t) = DNCICT

i,k × BD
k × UD

i,k(t)

UD
i,k(t)

iid∼ logNormal

(
−σ2

D,k

2
, σ2

D,k

)
⇒ E

(
UD

i,k(t)
)
= 1

Homoscedastic : σ2
D,k = σ2

D , BD
k = BD , ∀k

Heteroscedastic : σ2
D,k = σ2

D,C(k), BD
k = BD

C(k), ∀k ∈ C(k) (age, scanned body
region)
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Accounting for dose uncertainty due to the NCICT input parameters

A restricted version of the NCICT model

DNCICT (organ, age, gender ,model , kVp, filter , start, end ,mAs, pitch)

=
end∑

z=start

DC(organ, age, gender , kVp, filter , z)× nCTDIw (model , kVp, filter)

pitch
× mAs

100

DC(organ, age, gender , kVp, filter , z) : dose coefficients estimated by Monte Carlo
simulations. A table of previously estimated values is available.

nCTDIw (model , kVp, filter) is the CT Dose Index per volumetric unit, normalised to
100 mAs and selected from the CTDI library [Lee and others, 2014].

A preliminary step: Identify the NCICT software input parameters that are most
influential when estimating organ doses
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A variance-based global sensitivity analysis

Let X = (X1, . . . ,Xp) be the NCICT input parameters and Y the univariate outcome (a
specific organ dose) of the (deterministic) dosimetric model f where Y = f (X ).

Sobol’ indice associated to input i [Sobol (1993)]:

Si =
V[E(Y |Xi )]

V(Y )

ST
2ST

1

ST
3

S3

S1 S2

S13 S23

S12

S123

⇒ When the input parameters are independent, Sobol’ indices assign to each input
parameter Xi a share of the variance of the organ dose estimate (Y ).

BUT some NCICT input parameters are dependent ⇒ We no longer have

1 = S1 + S2 + S3 + S12 + S23 + S13 + S123
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Towards the Shapley effects...

Shapley effects [Owen (2014); Iooss et Prieur (2019)]

For any i in D = {1, . . . , p}:

Shi =
1

p

∑
A⊆D−i

(
p − 1
|A|

)−1 (
ST
A∪{i} − ST

A

)
ST
A =

E[V(Y |XĀ)]

V(Y )

Two main properties:

Shi ≥ 0∑
i Shi = 1

⇒ An interaction effect is equitably shared between each parameter involved in this
interaction.
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Application to the NCICT model (1/2)

Estimation of the Shapley effects from a single i.i.d input-output sample of PACS
(Picture archive and communication system) data

Consistent ”given-data” estimates of the total Sobol’ indices using a
nearest-neighbor procedure [Broto et al. (2020); Il Idrissi et al. (2021)]

sensitivity R package, and in particular the shapleysobol knn function, were used to
estimate the Shapley effects

Estimated Shapley effects for brain dose estimates associated with head examinations
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Application to the NCICT model (2/2)

Identification of most influential parameters for each examination category :

Anatomical area Brain dose Bone marrow dose
Head mAs, kVp, end mAs, kVp, start, end, age
Chest mAs, kVp, pitch mAs, pitch

Abdomen-pelvis kVp kVp
Multiple start start

Proportional Marginal Effects [Herin et al. (2022)] were also estimated :
known to be less sensitive to correlations and to provide more pronounced hierarchy
than Shapley effects in highly correlated cases;
tends to favor the inputs proportionally to their marginal contributions to every
possible ”coalitions” ⇒ Proportional redistribution of interaction effects

⇒ Similar conclusions
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Continuous parameters uncertainty model
(mAs, pitch, CTDIvol )

A multiplicative Berkson error model : P real
i,k (t) = Pprot

k × BP
k × UP

i,k(t)

UP
i,k(t)

iid∼ logNormal

(
−σ2

P,k

2
, σ2

P,k

)
⇒ E

(
UP

i,k(t)
)
= 1

Homoscedastic : σ2
P,k = σ2

P , BP
k = BP , ∀k

Heteroscedastic : σ2
P,k = σ2

P,C(k), BP
k = BP

C(k), ∀k ∈ C(k)
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Discrete parameters uncertainty model
(kVp,landmarks of the scanned body region)
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Prior probability distributions

Parameter Prior distribution
Disease submodel

λ = λ′ × 10−7 λ′ ∼ G(1, 1)
β N (0, 106)
Morphology uncertainty submodel
σD HC(0, 5) [Gelman (2006)]

σD,C(k) HC(0,Z), Z ∼ U(0, 100)
BD LN (−50, 100)
BD

C(k) LN (−s2/2, s2), s ∼ U(0, 100)

NCICT input parameters uncertainty submodel
σP HC(0, 5)

σP,C(k) HC(0,Z), Z ∼ U(0, 100)
BP LN (−50, 100)
BP

C(k) LN (−s2/2, s2), s ∼ U(0, 100)

pL
x,. Dirichlet(0, 5, . . . , 0, 5)
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Bayesian inference

High-dimensional posterior distribution
Over 500,000 latent variables to be estimated (but informed by external PACS data)

Around 170,000 pseudo-observations

Hamiltonian Monte-Carlo algorithm implemented in the R package rstan
Targeted Effective Sample Size : 4000
Importance of model parameterization ! (Ex : using standard normal distributions, 20
→ 2 days of calculations for the most complex model)

Comparison of the predictive performance of proposed models using the
Leave-one-out information criterion (LOOIC) [Vehtari et al. (2017)]
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Application to the French CT cohort

Set up in France in 2009 by IRSN

100 560 patients who:
Received at least one CT scan for a non-cancer
pathology
Before the age of 10 years
Between 2000 and 2011
In one of the 21 participating university
hospitals.

Follow-up until a diagnostic of cancer, the death,
the 18th birthday or the 31st December 2016

Some statistics

50 cases of central nervous system (CNS) tumours

35 cases of leukaemia

Mean age at inclusion : 3 years / Mean follow-up : 9 years

Patients without cancer predisposing factors : 97%
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A transfer learning approach

No pair of values (P real
i,k (t),Pprot

k ) is available in the French CT cohort database

⇒ Information required to learn about σP , σP,C(k), B
P , BP

C(k) !

Idem for σD , σD,C(k), B
D , BD

C(k), p
L
x,y

8848 CT examinations collected in the PACS database ⇒ True technical parameters
values associated with CT examinations + associated radiological protocols ⇒ Pair
of values (P real

i,k (t),Pprot
k ) were defined.

Different morphologies were simulated from growth curves: dose estimation based
on age (typical phantom morphology) versus dose estimation based on weight and
height ⇒ Pair of values (D real

i,k (t),Di , k
NCICT ) were defined

Assumption: These pairs of values follow the same multiplicative Berkson error
models than in the French CT cohort

Joint Bayesian inference of our multilevel models from both the French CT cohort
data and the PACS data
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Results

Model HR∗ per 10 mGy LOOIC
(95% CI)

CNS tumors (cases=50)
Frequentist estimation 1,05 (1,01 - 1,09)

No effect of radiation exposure (β = 0) 1381
Uncorrected 1,04 (0,97 - 1,08) 1382

Berkson homoscedastic 1,04 (0,97 - 1,07) 1611
Berkson + Bias heteroscedastic a 1,03 (0,97 - 1,06) 1383

Leukaemia (cases=35)
Frequentist estimation 1,17 (1,07 - 1,27)

No effect of radiation exposure (β = 0) 803
Uncorrected 1,15 (0,99 - 1,23) 1172

Berkson homoscedastic 1,15 (1,02 - 1,22) 789
Berkson + Bias heteroscedastica 1,10 (1,01 - 1,16) 791

a
Latent structure with the smallest LOOIC on PACS data.

∗ Hazard Ratio: exp(β × 10)
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Impact of the prior choice for disease model parameters

Construction of informative prior probability distributions from the English cohort

Posterior probability distribution of the Hazard Ratio per 10 mGy
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A simulation study

Aim :

1 Evaluate the ability of LOOIC to make a relevant model selection

2 Evaluating the effect of misspecification of Berkson error models on risk estimation

Organ doses were the ones from the French CT cohort :

1 Without adding a multiplicative Berkson error on the NCICT input parameters
2 After multiplying the NCICT input parameters :

by an homoscedastic Berkson error component
by an heteroscedastic Berkson error component and a systematic bias component

⇒ True values of Berkson error model parameters = Posterior medians estimated from the
French CT cohort

Generate failure times for 10,000 individuals according to the Cox disease model to
obtain cancer incidence rates similar to the ones observed in the French CT cohort.

Generate 100 replicated datasets for each scenario
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Ability of LOOIC to make a relevant model selection

Estimation β̂a Mean 95% Model
model relative coverage rate selectionb

bias
β = 0, 005

β = 0 0
Cox 0,005 0,01 0,98 99

β = 0
β = 0 0

Cox (β > 0) 10−3 0

a
Posterior median averaged over 100 replicated datasets

bProportion of simulated data sets for which the LOOIC of the simulation model is lower than the LOOIC of
the other competing model with a difference of at least 8 points [Sivula et al. (2020)]
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Impact of Berkson error model misspecification on risk estimation

Estimation model β̂a Mean 95%
relative coverage rate
bias

Berkson error (homoscedastic)
Cox, β = 0, 02

Uncorrected 0,02 -0,01 98
Berkson error (homoscedastic) 0,02 0,03 100

Berkson error + bias (heteroscedastic)
Cox, β = 0, 04

Berkson error (homoscedastic) 0,01 -0,65 0
Berkson error + bias (heteroscedastic) 0,04 -0,02 94

a
Posterior median averaged over 100 replicated datasets
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Discussion

Bayesian inference of the proposed multilevel models on the French CT cohort showed:

A weak but statistically significant positive association between CT scans exposure
during childhood and the risk of leukaemia

No statistically significant association between the risk of CNS tumours and CT
scans exposure

A weak impact of dosimetric uncertainties on cancer risk estimates

Strenghts:

Use of two recent variance-based global sensitivity indices

Use of a Bayesian multilevels approach :
Flexible modelling approach to describe different sources of uncertainty
Allows to integrate external information
Allows for the joint inference of all unknown quantities (e.g., true organ doses and risk)

Weaknesses :

Using the LOOIC for model selection in case of multilevel models ? What else?

Transfer learning : Possible underestimation of the variance of dose uncertainty.
What about adding similarity parameter(s) ?
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Thank you for your attention !

sophie.ancelet@irsn.fr
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