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Abstract 

Poisson-statistics based spectral unmixing has previously been shown to be an 

efficient analysis tool for the activity estimation of radionuclides from gamma- 

ray spectroscopy measurements. In this paper, we present the quantification 

of characteristic limits (decision threshold, detection limit and limits of the 

coverage interval) for the metrological use of such spectral unmixing algorithms. 

The proposed approaches are evaluated and validated with simulated spectra of 

HPGe and NaI measurements by comparing the results to characteristic values 

calculated from Monte Carlo simulations. 

Keywords: gamma-ray spectrometry, characteristic limits, full spectrum 

analysis, spectral unmixing 

1 . Introduction 

The gamma-ray spectrum analysis problem has been tackled with spectral 
unmixing in Xu et al. (2020), Paradis et al. (2020). These studies show that such 

new algorithms based on the full spectrum analysis and the Poisson statistics 

underlying the gamma-ray detection process provides a more sensitive analysis 

of radionuclides than standard peak-based algorithms. In this work, we focus 

on the metrological use of the spectral unmixing algorithms, which further ne- 
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cessitates quantifying the characteristic limits associated with the measurement

result.

The characteristic limits generally consist of the decision threshold, the de-

tection limit and limits of the coverage interval, are essential for decision mak-

ing purposes of the measurement results. While the calculation of these limits

have been well studied in peak-based analysis, new calculation approaches are

needed for the spectral unmixing algorithms due to their different estimation

procedures. More, precisely, contrast to peak-based algorithms, the spectral un-

mixing is an analysis tool that identifies and quantifies radionuclides from the

full energy spectrum (i.e., peaks and their associated continua) of a gamma-ray

measurement. The problem can be generally written in the matrix formulation

as follows :

x ∼ Poisson (Φa+ b) (1)

With the aim of decomposing a measured spectrum x ∈ R
M×1 (composed10

of M channels) into a linear combination of radionuclides’ spectral signatures

Φ ∈ R
M×N (containing N radionuclides’ spectral signatures) and a background

spectrum b ∈ R
M×1, the spectral unmixing estimates radionuclides’ mixing

weights a ∈ R
N×1 that are proportional to radionuclides’ activities. There-

fore, we focus on the calculation of characteristic limits of the mixing weights15

estimated with Poisson-statistics based spectral unmixing algorithms.

The paper is organized as follows: Section 2 presents the concept of char-

acteristic limits for radioactivity measurements. In Section 3, we describe the

data used in this work and present how the characteristic limits can be calcu-

lated from Monte Carlo simulations. Section 4.2 explores the calculation of the20

decision threshold. Next, we discuss the assessment of the coverage intervals in

Section 5. Section 6 provides conclusions of this work.

2. Characteristic limits in radioactivity measurements

Refer to ISO 11929, the notations below are used in the description of the

characteristic limits:25
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• Y : Measurand, the quantity of interest.

• y: Determined value of the measurand Y (i.e., the estimate of Y ).

• ỹ: True value of the measurand.

We first present the classical statistical hypothesis framework used for de-

cision making in gamma-ray spectrum analysis. It is commonplace to consider30

testing hypotheses with the two alternatives (associated with type I error and

type II error described in Table 1):

• H0: the null hypothesis, where a given radionuclide is not “active”.

• H1: the alternate hypothesis, where the radionuclide is present in the

mixture.35

H0 is true H1 is true

rejecting

H0

Type I error: the error of

rejecting H0 when it is true,

the probability of committing

a type I error is denoted by α,

called false positive rate.

accepting

H0

Type II error: the error of

accepting H0 when H1 is true,

the probability of committing

a type II error is denoted by

β, called false negative rate.

Table 1: Two types of errors of hypotheses test.

The standardization document ISO 11929 defines the determination of the

characteristic limits, namely the decision threshold, the detection limit, and

limits of the coverage interval for ionizing radiation measurements. It provides

a framework for the computation of the characteristic limits. Referring to Weise
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et al. (2005), Michel (2016), the definition and interpretation of the character-40

istic limits for some estimate y of a measurand Y are as follows:

• Decision threshold (DT) allows a decision to be made on whether or

not the physical effect quantified by the measurand is present.

The determination of DT is related to the Type I error described in Table

1. When the quantity y exceeds the critical value (DT), the null hypothesis

H0 should be rejected with respect to a given false positive rate (FPR).

It can be described with:

α = P (y ≥ DT |ỹ = 0) (2)

where ỹ is the true value of the measurand and α is the desired critical

FPR.45

• Detection limit (DL) indicates the smallest true quantity value of the

measurand, which can still be detected with the applied measurement

procedure.

The determination of DL is related to the Type II error described in Table

1. It is selected with respect to a desired false negative rate (FNR) based50

on the decision threshold level.

More precisely, the detection limit (DL) is the smallest value that provides

a desired Type II error probability β:

β = P (y ≤ DT |ỹ = DL) (3)

where the DT is given and ỹ is the true value of the measurand.

• The coverage interval for the estimate y is an interval that has a prob-

ability γ of containing the true value ỹ.

3. Data description and the characteristic limits assessment with55

Monte Carlo simulations

In this work, the investigations are based on the following gamma-ray spectra

simulations:
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• Simulated aerosol filter measurement of an HPGe detector cylindrical (60

%relative efficiency) Xu et al. (2020), which corresponds to the energy60

response of gamma-emitting radionuclides from 20 keV to 1640 keV com-

posed in 16384 channels. This mixing scenario consists of 10 radionuclides:

7Be, 22Na, 40K, 137Cs, 210Pb, 208Tl, 212Bi, 212Pb, 214Bi, 214Pb. Their

mixing weights are fixed to values that are customary in real aerosol mea-

surements.65

In this context we focus on the assessment of characteristic limits for 4

radionuclides: 7Be, 22Na, 137Cs, 212Pb, since these radionuclides cover

the whole energy range and different statistic regimes. The simulation

model of 10 radionuclides and the contribution of these 4 radionuclides

are displayed in Figure 1.70

Figure 1: Spectral unmixing model used to illustrate the evaluation of the characteristic

limits. The simulated measurements (gray) are composed of the above 10 radionuclides, while

individual spectra of 7Be,22Na,137Cs,212Pb will be evaluated.

• Simulated measurements of a 3”x3” NaI(Tl) detector without shielding us-

ing point sources placed at a distance of 1 m Paradis et al. (2020), which is

made of 1024 channels. The spectral signatures correspond to the detector

response of 4 gamma-emitting radionuclides with photon emissions cover-

ing a range of energies between 40 keV and 2 MeV: 60Co, 134Cs, 137Cs,75
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152Eu (see Figure 2).

Figure 2: Spectral unmixing model of simulations of NaI measurements.

A traditional approach to quantify the characteristic limits for some esti-

mation method is to make use of Monte-Carlo simulations. In the following

paragraphs, we present how the characteristic limits of the spectral unmixing

method can be calculated from Monte Carlo simulations.80

Decision threshold from Monte Carlo simulations. Monte Carlo simula-

tions that mimic the mixture under the null hypothesis of a radionuclide allows

quantifying the false positive rate of this radionuclide, thus the decision thresh-

old. For each radionuclide, 1000 simulations are performed with this radionu-

clide set to zero and other radionuclides set to their actual levels. The spectral85

unmixing algorithm is subsequently applied to estimate radionuclides’ mixing

weights from these simulated spectra. The distribution of the estimated mixing

weight of this radionuclide allows computing a decision threshold with respect

to some false positive rate from the according percentile of the distribution.

Coverage interval from Monte Carlo simulations. In practice, and as-90

suming that some estimate of the mixing weights have a limited estimation bias
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or error, a coverage interval with respect to a given probability γ and for in-

dividual radionuclides can be derived by performing Monte-Carlo simulations.

More precisely, we first perform 1000 Monte Carlo simulations that mimic the

actual mixing scenario of radionuclides. Next, the spectral unmixing algorithm95

is applied to estimate mixing weights from these simulated spectra. Finally, the

coverage intervals of radionuclides can be derived from the distribution of their

estimated mixing weights.

In practice, Monte Carlo simulations are seldom used to analyze gamma-

ray spectra in routine analysis procedures. The main drawback is their massive100

computational cost since Monte Carlo simulations are needed for each new spec-

trum to be analyzed. In the next sections, we focus on computationally cheaper

and yet precise alternatives to derive the characteristic limits without resorting

to Monte-Carlo simulations.

4. Quantifying the decision threshold105

4.1. Decision threshold in peak-based analysis

In gamma-ray spectrum analysis, the decision threshold is usually derived

from some statistical test based on the measured spectrum. This amounts to

evaluating how much the estimated quantity associated with a radionuclide’s

activity departs from the background (i.e., other contributions composed in the110

measured spectrum) and is therefore statistically consistent or not with this

background.

In the peak-based analysis, the activity is associated with the net counts. It

is the total number of counts measured in a given ROI, which further corrected

by the average number of counts of the background:

Nn = Ng −N0 (4)

where Nn is the net counts number associated to the activity, Ng is the

observed gross number of counts and N0 is the number of background counts.
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Recall the definition of DT in Section 2, the DT level of the measurand (i.e.,

net counts number) is derived from:

α = P(Nn ≥ DT |Ñn = 0) (5)

where α and Ñn stands for the desired FPR and the true value of the net

number of counts respectively. The estimated number of Ng and N0, noted N̂g

and N̂0 respectively. In practice, the DT is derived from some statistical test of115

the quantity N̂g − N̂0 under the hypothesis of Ñn = 0, which has:

• mean value equal to zero.

• variance according to 2N̂0, since both of Ng and N0 follow the Poisson

statistic thus their mean value are equal to their variance, and Ng = N0

under the hypothesis of Ñn = 0.120

4.2. Decision threshold in spectral unmixing analysis

The DT determination in peak-based analysis considers that the background

spectrum N0 is well estimated and provides a mean value of the distribution

under the null hypothesis, from which the DT can be derived based on a desired

FPR. Now, we aim to investigate the DT in the spectral unmixing approach,125

where the measurand associated with a radionuclide’s activity is the number of

counts in the full spectrum range. The DT can be derived with the same idea

of statistical test based on a “background”, but adapted to the full spectrum

analysis.

Recall that the spectral unmixing decomposes a gamma-ray spectrum into

individual spectra of radionuclides. To determine the decision threshold of a

single radionuclide indexed by j in the unmixing model, we reformulate the

true linear mixing model with this radionuclide and an equivalent background:

Φa+ b → φjaj +m (6)

where φjaj represents the individual spectrum of the jth radionuclide, while

the other radionuclides and the background spectrum b compose an equivalent
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background:

m =

l 6=j
∑

φlal + b

In the spectral unmixing analysis, the activity of the jth radionuclide is

associated to the mixing weight aj . Recall the definition in Section ??, the DT

level of the measurand (i.e., aj) is derived from:

α = P (aj ≥ DT |ãj = 0) (7)

Recall that, the measured spectrum x is composed of M channels, ∀i ∈130

[1, ...,M ], the observed counts in each channel of the spectrum follows a Poisson

distribution with mean value: λi = [φjaj ]i +mi.

The DT can be derived from a standard hypothesis testing procedure test

under the null alternative of H0 : ãj = 0, which leads to λi = mi for ∀i ∈ M .

This can be generally formulated with some statistical test T as follows:

α = P
(

T ≥ T (λ)|∀i, λi = mi

)

(8)

For this purpose, we propose to make use of statistical test based on different

assumptions as follows:

a. Test based on the sum of observed counts:. a simple statistical test

to consider is based on the total number of counts, as measured by the sum

of observed counts under the null hypothesis H0. Thanks to the statistical

independence of each channel, this quantity should follow a Poisson distribution

with mean value m̂ (i.e., estimated equivalent background).

∑

i

xi ∼ Poisson

(

∑

i

m̂i

)

(9)

Therefore, the DT (noted a∗j ) of the estimated activity for the jth radionu-

clide with a given false positive rate α, can be derived from the cumulative

distribution function (CDF) of the following distribution:

α = P
(

∑

i∈C

xi ≥
∑

i∈C

[φja
∗
j ]i +

∑

i∈C

mi

)

(10)
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where C is some set of observed channels. The total number of counts from135

the full spectrum is a special case where C defines all the observed channels.

While it allows to account for the full information carried out by the spectrum, it

however poorly distinguishes the radionuclide to be tested from the background.

We rather use the pre-specified channels in a region of interest, where the equiv-

alent background is better distinguished from the jth radionuclide. (e.g, peak140

region of the radionuclide).

b. Test based on sum of weighted observed counts:. In order to better

distinguish between the radionuclide to be tested and the equivalent background,

we further investigate statistical test derived from the sum of weighted counts

in different channels written as
∑

i wimi with the following choice of wi:145

• Let Ψ =
[

φj m

]

, the least squares solution of the mixing vector of Ψ

can be written as:

â ∈ argmin
a

1

2
‖x−Ψa‖2 (11)

for which the solution is â = Ψ†x, whereΨ† = (ΨTΨ)−1ΨT is the pseudo

inverse matrix.

We make use of the the component of Ψ† related to φj as the weights

matrix, noted as w1 = Ψ†
φ. As graphically illustrated in Figure 3, it

allows projecting onto the span of φj parallelly to m.150

Nevertheless, the resulting statistical test do not follow a Poisson distri-

bution. Thankfully, since it is defined as a linear combination of a large

number of observed channels, one can approximate the distribution to be

Normal. The resulting statistical test with observed counts x and esti-

mated equivalent background m will be carried out as follows:155

∑

i

wixi ∼ N

(

∑

i

wimi, w
2

imi

)

(12)

while in each channel, the mean value µ = wimi and variance σ2 = w2

imi

are considered, since both the mean value and the variance of the model

equal to mi because of the Poisson statistics.
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Figure 3: Schema of the least squares solution of the equivalent background model.

The DT of the estimated activity a∗j can be derived from the CDF of

Normal distribution:

α

2
= P

(

∑

i

wixi ≥
∑

i

wi[φja
∗
j ]i +

∑

i

wimi

)

(13)

• the weighted background statistical test is further studied with w2 = Ψ†
φ

with:

Ψ† =
(

ΨTdiag(
1

φjaj +m
)Ψ
)−1

ΨTdiag
( 1

φjaj +m

)

(14)

4.3. Evaluation of the decision threshold determination

For a comparison purpose, by fixing the false positive rate to α = 2.5%,160

we evaluate the statistical tests proposed in Section 4.2 to assess the decision

threshold for HPGe and NaI measurements described in Section 3, while the

results are compared to those carried out with Monte Carlo simulations. The

evaluations are carried out as follows:

• For each radionuclide, the accurate DT level quantified with respect to165

1− α percentile of the distribution of estimated values from Monte Carlo

simulations under the null hypothesis of this radionuclide.
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• Decision threshold assessment with different statistical tests for each Monte

Carlo simulation:

– the Poisson statistical test based on the sum of counts in peak re-170

gion. This is used only for HPGe measurements since using the peak

regions to analyze NaI measurements is not interesting due to the

correlations of spectra, for which it is better to take into account

the full spectrum information. Experiments on the described mixing

scenario (see Figure 1) of the HPGe measurement considers the fol-175

lowing peak regions: 7Be at 477 keV, 22Na at 1274 keV, 137Cs at 661

keV and 212Pb at 238 keV.

– the Gaussian statistical test based on two choices of weighted sum of

counts, noted w1 and w2 respectively.

Results180

For HPGe spectra, the different statistical tests are compared in Figure 4,

5, 6 and 7. Figure 8, 9, and 10, and 11 for NaI spectra respectively. The results

report the distribution of:

• Poisson test based on region of interest (ROI) (green) of x.

• Gaussian test based on sum of weighted counts carried out by w1x (blue)185

and w2x (orange).

• For a comparison purpose, the accurate DT level calculated from Monte

Carlo (i.e., 1− α percentile of the distribution under the null hypothesis)

is displayed with a dotted line (red).

From these results, we can draw the following conclusions:190

• Firstly, compared to the Gaussian statistical test based on the sum of

weighted counts, the Poisson statistical test based on the sum of the counts

in the ROI is less efficient to derive the DT. Since the peaks are not well

distinguished from the continua.
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• For HPGe measurement, for 22Na, 137Cs and 212Pb, the Gaussian statis-195

tical test of weighted counts with w2 derives similar DT levels comparing

to the actual 1−α percentile of the distribution (i.e., accurate DT level),

which is better than the choice of w1. This is not valid for 7Be due to

the fact that 7Be is predominant in the measured spectrum, while its

equivalent background is poorly estimated. However, the determination200

of accurate DT level for low-level radionuclides is more important for the

decision making purpose; in such case, the dominant spectral contribution

such as 7Be can provide a better estimation of the equivalent background

thus more accurate DT determination for low-level radionuclides.

• When we further focus on the results of NaI measurements, the choice205

of using w2 is shown to be more consistent than w1; it allows better

distinguishing a radionuclide from its equivalent background when the

spectra are overlapped in the whole energy range.

Figure 4: DT assessment for HPGe measurements: 7Be
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Figure 5: DT assessment for HPGe measurements: 22Na

Figure 6: DT assessment for HPGe measurements: 137Cs
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Figure 7: DT assessment for HPGe measurements: 212Pb

Figure 8: DT assessment for NaI measurements: 60Co
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Figure 9: DT assessment for NaI measurements: 134Cs

Figure 10: DT assessment for NaI measurements: 137Cs
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Figure 11: DT assessment for NaI measurements: 152Eu

5. Confidence interval

The statistical uncertainty of the estimation of a parameter is twofold: the210

estimation bias and an interval of values that contains the true value of the

parameter. In the spectral unmixing approach, the assessment of uncertainties

can be carried out from Monte Carlo simulations that mimic the actual mixture

of radionuclides as presented in Section 3. The distribution of estimated val-

ues provides both the estimation bias and the coverage interval. However, this215

requires a massive amount of simulations, making this approach hard to imple-

ment in practice. Nevertheless, the Poisson-based spectral unmixing is shown

to provide accurate activity estimations; we can only focus on determining a

coverage interval from the estimated mixing weights.

5.1. Fisher information to compute coverage intervals220

For the observed variable x distributed as f (x|θ), the maximum likelihood

estimator (MLE) can be approximated with a Gaussian distribution:

N
(

θ, I(θ)−1
)

(15)
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where I(θ) is the Fisher information (Fisher (1956)) defined as:

I(θ) = Eθ

[

∂2 log f(x|θ)

∂θ2

]

(16)

The estimation standard error can be obtained by replacing the unknown

true value θ by the estimated value θ̂.

In our activity estimation problem, the investigated Poisson-based spectral

unmixing provides a maximum likelihood estimate of the mixing weights, noted

â. According to the Poisson likelihood, the Fisher information matrix can be

written as:

I(â) = ΦTdiag
(

x⊘ (Φâ+ b)2
)

Φ (17)

We propose to assess the coverage interval of the estimated mixing weights

â by the diagonal elements of
√

I(â)−1, which approximates the standard de-

viation of the distribution.225

5.2. Evaluation of coverage interval in spectral unmixing

In this paragraph, the coverage interval assessment with Fisher information

matrix is evaluated with simulations of HPGe and NaI measurements described

in the previous section. More precisely, we calculate the standard deviation

from the Fisher information matrix and evaluate the results with Monte Carlo230

simulations.

Firstly, we make use of the Q-Q (quantile-quantile) plots, which compares the

distribution of estimated activities of Monte Carlo simulations to the distribu-

tion generated from the standard deviation carried out with Fisher information.

The aim is to i), test the normality of the estimator, which allows validating the235

coverage interval with a standard uncertainty in terms of Normal distribution.

ii), compare the distribution to those obtained with Fisher information.

More precisely, for each radionuclide, we show the Q-Q plot for two data

samples noted A1 and A2:

• A1 for estimated activity values of Monte Carlo simulations.240
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• A2 for Normal distribution generated from the Fisher information of the

estimation:

N
(

a0, σ
2

f

)

where a0 is the expected mixing weight of the radionuclide and σf is the

standard uncertainty calculated from the Fisher information matrix.

For each value a in a sample (A1 and A2), quantiles are calculated with:

q =
a− µ

σ
(18)

where µ and σ are the mean value and the standard deviation of the given

sample.

The Q-Q plots shown in Figure 12 and Figure 13 for the HPGe measurement245

and the NaI measurement, respectively, display the quantiles of A2 (Fisher

quantiles) as a function of A1 (Estimation distribution quantiles).

Firstly, the results show the normality of activity estimation of Monte Carlo

simulations with the straight line of the Q-Q plots and absolute values from 0

to 3. This confirms that the coverage interval of the estimation can be carried250

out with an approximation of the Normal distribution. Secondly, the Normal

distribution generated with spectral unmixing (Maximum likelihood estimation)

and Fisher information matrix provides similar coverage intervals comparing to

the real Monte Carlo distribution. To further valid this conclusion, we calculate

the percentage of the values estimated from Monte Carlo simulations within the255

interval of:

a0 ± σf , a0 ± 2σf and a0 ± 3σf ,

where a0, σf stand for the expected mixing weight (i.e., simulated value)

and standard error determined by the Fisher matrix. These percentage values

are expected to be 68.27 %, 95.45 % and 99.73 % for normal distribution. The260

results are shown in Table 2 and Table 3 for HPGe and NaI measurements

respectively.
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(a) 7Be (b) 22Na

(c) 137Cs (d) 212Pb

Figure 12: Evaluation for the HPGe simulation: the Q-Q plots for Fisher quantiles versus

estimation distribution quantiles for radionuclides.(blue). The theoretical Q-Q plots are shown

in red.

7Be 22Na 137Cs 212Pb

percentage within a0 ± σf 68.0 66.1 68.6 68.4

percentage within a0 ± 2σf 96.4 93.9 95.7 95.0

percentage within a0 ± 3σf 99.9 99.8 99.8 99.9

Table 2: Standard deviation from Fisher information matrix comparing to Monte Carlo sim-

ulations (HPGe measurements).
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(a) 60Co (b) 134Cs

(c) 137Cs (d) 152Eu

Figure 13: Evaluation for the NaI simulation: the Q-Q plots for Fisher quantiles versus

estimation distribution quantiles for radionuclides.(blue). The theoretical Q-Q plots are shown

in red.

60Co 134Cs 137Cs 152Eu

percentage within a0 ± σf 68.1 66.0 67.5 66.2

percentage within a0 ± 2σf 95.3 95.0 94.0 95.5

percentage within a0 ± 3σf 99.7 99.5 99.9 99.8

Table 3: Standard deviation from Fisher information matrix comparing to Monte Carlo sim-

ulations (NaI measurements).

6. Conclusion
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