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Four fundamental sources of errors (Neutron Physics, P. REUSS, 2008) :

(1) errors related to the simplified modelling of the physics
➛ models of resonance self-shielding effects,
➛ replace transport with diffusion, on full core level, etc.

(2) errors related to imperfect numerical schemes applied to the obtained equations
➛ discretizations, computer implementations

(3) errors due to imperfect knowledge of nuclear data
(4) errors in the system description → dimensions, densities, isotopic compositions

➛ manufacturing tolerances

The first two errors constitute the deterministic bias (a systematic error), which can be
computed as the difference with the Monte-Carlo method
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In the 1970s, when full core simulations were performed with 1-group diffusion :

➔ “The albedo matrices are then often adjusted to experimental results. The albedo matrix
elements are thus used as ‘tuning’ constants thay may vary, within reasonable limits,
around their computed average values.” (STAMM’LER and ABATTE, 1983)

Later, fast diffusion coefficient of the reflector (D1) is used :

➔ “The reflector adjustment [. . . ] reduces the discrepancies between the calculated and
experimental detector responses in the peripheral assemblies at the beginning of the cycle
by flattening the power distribution. [. . . ] This adjustment corrects the discrepancy
observed but does not constitute a definitive solution. The latter, currently under
development, requires a reference calculation in one and two dimensional geometries.”
(our translation from KAMHA, 1981)
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➔ “To fit calculations with respect to real in-core measurements, some reflector parameters
can be adjusted. [. . . ] Adjustment is done only on the reflector description by trying to
decrease calculations-measurements differences. [. . . ] Fictitious reflector [. . . ] diffusion
parameters (and mainly first group diffusion coefficient D1 and absorption coefficient Σa1)
can strongly be changed (some ten of percent) to fit in-core measurements.” (ARGAUD,
1993)

➔ “The fast diffusion coefficient of the radial reflector acts on the radial leaks and thus on the
bulge of the radial flux distribution. It is adjusted to fit more accurately the experimental
power output distribution over the core.” (JOUTEL, 2015)

➔ “The fast diffusion coefficient of the reflector has been set to 1.78 cm instead of 1.3 cm”, i.e.
a 37% increase, “on account of the significant experience of EDF in improving radial power
distribution.” (MARGUET, 2017)



Uncertainties of deterministic simulations (1/2)

Introduction

Propagation of
nuclear data
uncertainties

PWR experimental
detector responses

Nuclear data
adjustment

Conclusions

6 / 25

➔ Knowledge on sources of errors mentioned earlier ➛ unused
➔ Instead, this assumption :

— usual discrepancy between calculations and measurements, and
— universal uncertainty of calculation

are taken as equal ➛ numerous weaknesses
➔ Uncertainty (of calculation) and discrepancy (between

calculation and measurement) ➛ concepts of radically different natures
➔ Standard deviation (or dispersion) 6= uncertainty
➔ Previously measured core, during a similar reloading ➛ expecting similar discrepancy
➔ Conversely, unmeasured cases may imply more discrepancy

➛ new reactors or fuel management, accident simulations
➔ Fragilities accentuated for adjusted deterministic simulations (residuals)

➛ compensations between errors of different natures, unlikely to be universal
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Long-standing and still pending questions

➔ “What adjustments have been made to the TURTLE methodology to improve the
agreement between calculation and measurement? How is the uncertainty in this
adjustment accounted for in F∆H , Fx y (z) and FQ (z) uncertainties?” (NRC, 1987)

Recently renewed concerns

➔ The French nuclear safety authority “is particularly attentive to feedback from the EPRs [. . . ]

in China, which highlights certain topics requiring specific investigations and instructions.
This concerns, in particular, [. . . ] anomalies in the power distribution in the core of the
Taishan EPRs” (ASN, 2021).

➔ To increase robustness ➛ return to the fundamentals ➛ sources of errors
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A deterministic solution, with JEFF-3.3
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Deterministic vs Monte-Carlo ⇐⇒ deterministic bias

Power distribution in Tihange-1
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Uncertainties on cross sections of hydrogen bound in H2O

Source : JEFF-3.3
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Propagation of hydrogen uncertainties through deterministic methods

Total Monte-Carlo : 300 samples of nuclear data (with SANDY)

Introduction

Propagation of
nuclear data
uncertainties

PWR experimental
detector responses

Nuclear data
adjustment

Conclusions

12 / 25

µ=0.94
σ=1.1%
S=−0.2
K=−0.3

µ=0.71
σ=1.0%
S=−0.2
K=−0.3

µ : mean of the power assembly
σ : relative standard deviation (in %)
S : skewness (shown if σ > 0.1%)
K : excess kurtosis (if σ > 0.1%)

µ=1.08
σ=0.7%
S=−0.2
K=−0.3

µ=1.08
σ=0.7%
S=−0.2
K=−0.3

µ=1.01
σ=0.7%
S=−0.2
K=−0.3

µ=0.67
σ=0.7%
S=−0.2
K=−0.3

0.75 1.00

Normalized assembly
power

P
ro
b
ab

il
it
y

d
en
si
ty

µ=1.07
σ=0.2%
S=−0.2
K=−0.3

µ=1.09
σ=0.2%
S=−0.2
K=−0.3

µ=1.01
σ=0.3%
S=−0.3
K=−0.3

µ=0.96
σ=0.4%
S=−0.3
K=−0.3

µ=0.73
σ=0.5%
S=−0.3
K=−0.3

µ=1.08
σ=0.3%
S=0.2
K=−0.3

µ=1.06
σ=0.2%
S=0.2
K=−0.3

µ=1.09
σ=0.1%
S=0.2
K=−0.3

µ=1.10
σ=0.1%

µ=0.95
σ=0.3%
S=−0.2
K=−0.3

µ=0.73
σ=0.5%
S=−0.3
K=−0.3

µ=1.05
σ=0.6%
S=0.2
K=−0.3

µ=1.08
σ=0.6%
S=0.2
K=−0.3

µ=1.07
σ=0.4%
S=0.2
K=−0.3

µ=1.12
σ=0.2%
S=0.2
K=−0.3

µ=1.10
σ=0.1%

µ=0.96
σ=0.4%
S=−0.3
K=−0.3

µ=0.67
σ=0.7%
S=−0.2
K=−0.3

µ=1.07
σ=0.9%
S=0.2
K=−0.3

µ=1.05
σ=0.8%
S=0.2
K=−0.3

µ=1.08
σ=0.7%
S=0.2
K=−0.3

µ=1.07
σ=0.4%
S=0.2
K=−0.3

µ=1.09
σ=0.1%
S=0.2
K=−0.3

µ=1.01
σ=0.3%
S=−0.3
K=−0.3

µ=1.01
σ=0.7%
S=−0.2
K=−0.3

µ=1.04
σ=1.0%
S=0.2
K=−0.3

µ=1.07
σ=1.0%
S=0.2
K=−0.3

µ=1.05
σ=0.8%
S=0.2
K=−0.3

µ=1.08
σ=0.6%
S=0.2
K=−0.3

µ=1.06
σ=0.2%
S=0.2
K=−0.3

µ=1.09
σ=0.2%
S=−0.2
K=−0.3

µ=1.08
σ=0.7%
S=−0.2
K=−0.3

µ=0.71
σ=1.0%
S=−0.2
K=−0.3

0.75 1.00

µ=1.06
σ=1.1%
S=0.2
K=−0.3

0.75 1.00

µ=1.04
σ=1.0%
S=0.2
K=−0.3

0.75 1.00

µ=1.07
σ=0.9%
S=0.2
K=−0.3

0.75 1.00

µ=1.05
σ=0.6%
S=0.2
K=−0.3

0.75 1.00

µ=1.08
σ=0.3%
S=0.2
K=−0.3

0.75 1.00

µ=1.07
σ=0.2%
S=−0.2
K=−0.3

0.75 1.00

µ=1.08
σ=0.7%
S=−0.2
K=−0.3

0.75 1.00

µ=0.94
σ=1.1%
S=−0.2
K=−0.3



Propagation of uncertainties from hydrogen, JEFF-3.3
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➔ Proximity between the measurement and a sample k of nuclear data estimated with

χ
2
k =

nmes
∑

i=1

(

Ci ,k −Ei

σEi

)2

(1)

➔ Lack of uncertainty estimated by experimentalists
➛ expert opinion, for lack of a better choice

σE = 2% (2)

➔ Each nuclear data sample k ➛ weight

wk =
exp

(

−χ2
k

/χ2
min

)

n
∑

κ=1
exp

(

−χ2
κ/χ2

min

)

(3)
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➔ D1 reflector adjustment ➛ depends on the reactor size, fuel loading, etc.
➛ transferring information is rather difficult to justify

➔ Nuclear data are universal, identical for all reactors
➛ universal adjustment

➔ D1 reflector adjustment ➛ best estimate only, without any notion of uncertainties, must be
estimated afterwards

➔ Here, nuclear data adjustment also applies to uncertainties

➔ Limit : relies on Monte-Carlo to compute and evict the deterministic bias
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➔ For variations in nuclear data typically corresponding to their uncertainties :

Deterministic bias is constant, identical for 6= samples

➔ Thus, it is possible to benefit from the “best of both worlds” through combination of

■ the best estimate from the Monte-Carlo method (mean) and
■ the uncertainties obtained with deterministic methods (moments of higher orders),

➔ Second theme : adjustments. Objective : tend toward better extrapolability than
adjustment on reflector D1

➔ It seems legitimate to consider that computations should reproduce measurements made
experimentally on real reactors. However, the standard adjustment for PWRs is very
questionnable ➛ attempt to improve as much as possible, to remove as much deficiencies
as possible

➔ Based on a physical knowledge of the underlying causes of errors ➛ universality is sought
instead of error compensation

➔ Nevertheless, such an adjustment could still be questionable. In your opinion, what is the
most convincing argument against such adjustments?
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➔ Totality of developed software and produced data (initial, intermediate and final) available
on :

github.com/IRSN/SalinoPhD

Examples :

■ Nuclear data and its processing, from ENDF to ACE, Draglib
■ Datasets for Serpent, Dragon and Donjon
■ Experimental data (found in public sources) in csv, plots. . .

➔ Such a principle of openness is intended to allow, in a pragmatic and effective way :

■ the verifiable and complete reproducibility of this publicly funded research
■ the transparency necessary for a rigorous peer review
■ wide dissemination of the developed ideas
■ facilitate interaction and collaboration

https://github.com/IRSN/SalinoPhD
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Standard error on standard deviation (left axis),

on skewness and on excess kurtosis (right axis)
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Importance of power distribution
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➔ Most of the research in the field of uncertainty is focused on keff, yet, for reactors

— nuclear safety depends not much on it

➔ Focusing on power distribution

— nuclear safety depends heavily on it

(KERKAR and PAULIN, 2008)



C and D control rods banks in Tihange-1
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Equivalence methods for the reflector
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➔ Equivalences used for fuel ➛ not applicable to the reflector, as they typically conserve

— diffusion properties (diffusion coefficients),

— reaction rates (SPH)

➔ Conserving reaction rates in the reflector or neutron scattering in the reflector is of little

interest

➔ Rather wishes to maintain its reflective properties against an external source of neutrons

➔ Specific equivalences ➛ determining cross sections and diffusion coefficients preserving

reflective properties of a (transport) reference



Lefebvre-Lebigot method (1/2)
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➔ Analytical solution of the current at the interface (x = 0)

J1

φ1
=

√

D1 (Σa1 +Σ1→2) (1)

and
J2

φ1
=

φ2

φ1

√

D2Σa2 −
Σ1→2

p
D1D2p

Σa2D1 +
p

(Σa1 +Σ1→2)D2

(2)

➔ After analytical study, numerical experiments with a SN transport code on a representative

heterogeneous traverse

➔ Reflector applicable for all fuel bundles, ∀ temperature, burnup, etc.

➛ reflector response for fuel varying as such

1) Fast group ➛ J1/φ1 is constant

R1 =
J1

φ1
(3)



Lefebvre-Lebigot method (2/2)
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2) Thermal group

➛ J2/φ1 depends on the fuel

J2

φ1
=−R3 +R2

φ2

φ1
(4)

➔ 5 unknowns and 3 parameters (R1, R2 et R3) calculated in SN ,

Lefebvre and Lebigot suggest to equalize Dg :

0

J2

φ1

−R3

•Case A

•Case B

Slope = R2

D fuel
1 ≈ 1.3cm Dreflector

1 = 1.3cm

D fuel
2 ≈ 0.4cm Dreflector

2 = 0.4cm
(5)

Σa2 =
(R2)2

D2
Σ1→2 = R3

(

R1

D1
+

√

Σa2

D2

)

(6)

Σa1 =
(R1)2

D1
−Σ1→2 (7)



k∞ discrepancy between Serpent and Dragon (pcm),

for assemblies during 1st start-up of Tihange-1
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Ranking of uncertainties in Tihange-1, by isotope
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Prior correlations between the uncertainties of hydrogen and uranium 238
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Posterior (BFMC) correlations between the uncertainties of hydrogen and

uranium 238

11 / 37

1H(n,el)

1H(n,γ)

238U(n,inl)

238U(n,f)

238U(n,el)

2
3
8
U
(n
,γ
)

238U(n,γ)

2
3
8
U
(n
,e
l)

2
3
8
U
(n
,f
)

2
3
8
U
(n
,i
n
l)

1
H
(n
,γ
)

1
H
(n
,e
l)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



Prior correlations between the uncertainties of diffrent isotopes
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Posterior (BFMC) correlations between the uncertainties of different isotopes
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Evaluation of nuclear data uncertainties
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1) JEFF-3.3 or ENDF-B/VIII.0 evaluations ➛ covariance matrices

➔ Multigroups ➛ piecewise constant

➔ Sometimes missing or incomplete (minor isotopes)

2) TENDL-2019 evaluation ➛ some various benefits

➔ Very complete uncertainties (angular distributions, etc), continuously varying, not

necessarily Gaussian

➔ Above all, single code for production ➛high format homogeneity ➛ safer and faster

➔ TALYS optical models ➛ no evaluation for less than 20 nucleons (hydrogen, boron,

oxygen. . .) ➛ JEFF-3.3

➔ No evaluation either for some heavy isotopes, the most important ones : uranium 235,

238. . .➛ JEFF-3.3

The idea is not to demonstrate the qualities or defects of JEFF-3.3 or TENDL-2019 : just a choice



Propagation of uncertainties from uranium 238, JEFF-3.3

300 samples of nuclear data (with SANDY)
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Propagation of uncertainties from uranium 238, JEFF-3.3

Deterministic and Monte-Carlo comparison
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σD=1.1%
σS=1.0%
D=0.04
p=0.88

σD=1.0%
σS=0.9%
D=0.04
p=0.81

σD : drakkar relative standard deviation (in %)
σS : serpent relative standard deviation (in %)
D : Kolmogorov-Smirnov statistic
p : Kolmogorov-Smirnov p-value

drakkar

serpent

σD=0.7%
σS=0.7%
D=0.03
p=0.96

σD=0.7%
σS=0.7%
D=0.03
p=0.96

σD=0.7%
σS=0.7%
D=0.05
p=0.68

σD=0.7%
σS=0.6%
D=0.06
p=0.40

0.75 1.00

Normalized assembly
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σS=0.2%
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p=0.03

σD=0.2%
σS=0.3%
D=0.06
p=0.40

σD=0.3%
σS=0.3%
D=0.04
p=0.79

σD=0.4%
σS=0.4%
D=0.05
p=0.68

σD=0.4%
σS=0.4%
D=0.04
p=0.90

σD=0.3%
σS=0.3%
D=0.04
p=0.77

σD=0.2%
σS=0.2%
D=0.04
p=0.81

σD=0.1%
σS=0.1%
D=0.06
p=0.35

σD=0.1%
σS=0.2%
D=0.16
p=0.00

σD=0.3%
σS=0.3%
D=0.06
p=0.40

σD=0.4%
σS=0.4%
D=0.04
p=0.90

σD=0.7%
σS=0.6%
D=0.04
p=0.90

σD=0.6%
σS=0.5%
D=0.05
p=0.66

σD=0.5%
σS=0.4%
D=0.04
p=0.81

σD=0.2%
σS=0.2%
D=0.06
p=0.28

σD=0.1%
σS=0.2%
D=0.16
p=0.00

σD=0.4%
σS=0.4%
D=0.05
p=0.68

σD=0.7%
σS=0.6%
D=0.06
p=0.40

σD=0.9%
σS=0.8%
D=0.04
p=0.83

σD=0.9%
σS=0.8%
D=0.04
p=0.83

σD=0.7%
σS=0.6%
D=0.04
p=0.85

σD=0.5%
σS=0.4%
D=0.04
p=0.81

σD=0.1%
σS=0.1%
D=0.06
p=0.35

σD=0.3%
σS=0.3%
D=0.04
p=0.79

σD=0.7%
σS=0.7%
D=0.05
p=0.68

σD=1.1%
σS=1.0%
D=0.06
p=0.43

σD=1.0%
σS=0.9%
D=0.05
p=0.66

σD=0.9%
σS=0.8%
D=0.04
p=0.83

σD=0.6%
σS=0.5%
D=0.05
p=0.66

σD=0.2%
σS=0.2%
D=0.04
p=0.81

σD=0.2%
σS=0.3%
D=0.06
p=0.40

σD=0.7%
σS=0.7%
D=0.03
p=0.96

σD=1.0%
σS=0.9%
D=0.04
p=0.81

0.75 1.00

σD=1.1%
σS=1.1%
D=0.05
p=0.51

0.75 1.00

σD=1.1%
σS=1.0%
D=0.06
p=0.43

0.75 1.00

σD=0.9%
σS=0.8%
D=0.04
p=0.83

0.75 1.00

σD=0.7%
σS=0.6%
D=0.04
p=0.90

0.75 1.00

σD=0.3%
σS=0.3%
D=0.04
p=0.77

0.75 1.00

σD=0.2%
σS=0.2%
D=0.09
p=0.03

0.75 1.00

σD=0.7%
σS=0.7%
D=0.03
p=0.96

0.75 1.00

σD=1.1%
σS=1.0%
D=0.04
p=0.88



Hydrogen uncertainty decomposition with respect to reaction and energy
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Uranium 238 uncertainty decomposition with respect to reaction and energy

From Luka Stancev’s internship
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Drakkar detector responses (JEFF-3.3)
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R P N M L K J H G F E D C B A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.577 0.721 0.577

0.544 0.823 0.864 1.285 0.864 0.823 0.544

0.555 0.780 0.960 1.352 1.072 1.352 0.960 0.780 0.555

0.555 0.989 0.899 1.276 1.016 1.361 1.016 1.276 0.899 0.989 0.555

0.544 0.780 0.899 1.246 0.983 1.310 0.961 1.310 0.983 1.246 0.899 0.780 0.545

0.823 0.960 1.276 0.983 1.289 0.975 1.267 0.975 1.289 0.983 1.276 0.961 0.823

0.577 0.864 1.352 1.016 1.310 0.975 1.246 0.902 1.247 0.975 1.311 1.016 1.352 0.865 0.577

0.721 1.285 1.072 1.361 0.961 1.267 0.902 1.194 0.902 1.268 0.961 1.362 1.072 1.286 0.721

0.577 0.864 1.352 1.016 1.310 0.975 1.247 0.902 1.247 0.975 1.311 1.016 1.352 0.865 0.577

0.823 0.960 1.276 0.983 1.289 0.975 1.268 0.975 1.289 0.983 1.276 0.961 0.823

0.544 0.780 0.899 1.246 0.983 1.311 0.961 1.311 0.983 1.247 0.899 0.780 0.545

0.555 0.989 0.899 1.276 1.016 1.362 1.016 1.276 0.899 0.989 0.555

0.555 0.780 0.961 1.352 1.072 1.352 0.961 0.780 0.555

0.545 0.823 0.865 1.286 0.865 0.823 0.545

0.577 0.721 0.577

0.6

0.7

0.8

0.9

1.0
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Discrepancy between Drakkar (JEFF-3.3) and experimental mean
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Power distribution discrepancy between Drakkar and Serpent, on Bugey-2

and Fessenheim-1 and 2
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Discrepancies between Drakkar (corrected from deterministic bias, JEFF-3.3)

and experimental mean
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Simultaneous sampling : interactions between isotopes

Power distribution

23 / 37

µ=0.86
σ=1.6%
S=−0.0
K=−0.0

µ=0.67
σ=1.6%
S=−0.0
K=−0.0

µ : mean of the power assembly
σ : relative standard deviation (in %)
S : skewness (shown if σ > 0.1%)
K : excess kurtosis (if σ > 0.1%)

µ=1.07
σ=1.1%
S=−0.1
K=−0.0

µ=1.05
σ=1.1%
S=−0.1
K=−0.0

µ=0.96
σ=1.1%
S=−0.0
K=−0.0

µ=0.63
σ=1.2%
S=−0.0
K=−0.0

0.75 1.00

Normalized assembly
power
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µ=1.19
σ=0.4%
S=−0.1
K=−0.0

µ=1.15
σ=0.4%
S=−0.1
K=−0.0

µ=1.01
σ=0.5%
S=−0.1
K=−0.0

µ=0.94
σ=0.7%
S=−0.0
K=−0.0

µ=0.67
σ=0.9%
S=−0.0
K=−0.1

µ=1.18
σ=0.4%
S=−0.0
K=−0.0

µ=1.13
σ=0.3%
S=−0.0
K=−0.1

µ=1.11
σ=0.2%
S=−0.1
K=−0.0

µ=0.97
σ=0.1%

µ=0.86
σ=0.4%
S=−0.1
K=−0.1

µ=0.67
σ=0.9%
S=−0.0
K=−0.1

µ=1.07
σ=0.9%
S=0.1
K=−0.0

µ=1.15
σ=0.9%
S=0.0
K=−0.0

µ=1.10
σ=0.7%
S=0.0
K=−0.0

µ=1.09
σ=0.4%
S=0.0
K=−0.0

µ=0.97
σ=0.1%

µ=0.94
σ=0.7%
S=−0.0
K=−0.0

µ=0.63
σ=1.2%
S=−0.0
K=−0.0

µ=1.13
σ=1.3%
S=0.1
K=−0.0

µ=1.11
σ=1.3%
S=0.1
K=−0.0

µ=1.14
σ=1.0%
S=0.1
K=−0.0

µ=1.10
σ=0.7%
S=0.0
K=−0.0

µ=1.11
σ=0.2%
S=−0.1
K=−0.0

µ=1.01
σ=0.5%
S=−0.1
K=−0.0

µ=0.96
σ=1.1%
S=−0.0
K=−0.0

µ=1.02
σ=1.6%
S=0.1
K=−0.0

µ=1.11
σ=1.5%
S=0.1
K=−0.0

µ=1.11
σ=1.3%
S=0.1
K=−0.0

µ=1.15
σ=0.9%
S=0.0
K=−0.0

µ=1.13
σ=0.3%
S=−0.0
K=−0.1

µ=1.15
σ=0.4%
S=−0.1
K=−0.0

µ=1.05
σ=1.1%
S=−0.1
K=−0.0

µ=0.67
σ=1.6%
S=−0.0
K=−0.0

0.75 1.00

µ=1.07
σ=1.7%
S=0.1
K=−0.0

0.75 1.00

µ=1.02
σ=1.6%
S=0.1
K=−0.0

0.75 1.00

µ=1.13
σ=1.3%
S=0.1
K=−0.0

0.75 1.00

µ=1.07
σ=0.9%
S=0.1
K=−0.0

0.75 1.00

µ=1.18
σ=0.4%
S=−0.0
K=−0.0

0.75 1.00

µ=1.19
σ=0.4%
S=−0.1
K=−0.0

0.75 1.00

µ=1.07
σ=1.1%
S=−0.1
K=−0.0

0.75 1.00

µ=0.86
σ=1.6%
S=−0.0
K=−0.0



Adjustment with BMC method (Bayesian Monte-Carlo)
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➔ Proximity between the measurement and a sample k of nuclear data estimated with

χ2
k =

nmes
∑

i=1

(

Ci ,k −Ei

σEi

)2

(8)

➔ Lack of uncertainty estimated by experimentalists

➛ expert opinion, for lack of a better choice

σE = 2% (9)

➔ Each nuclear data sample k ➛ weight

wk =
L

(

pk ,x
)

n
∑

κ=1
L

(

pκ,x
)

=
exp

(

−χ2
k

/2
)

n
∑

κ=1
exp

(

−χ2
κ/2

)

(10)

where L
(

pk ,x
)

➛ likelihood of the x experimental observations for a k sample of p nuclear data



χ2 histogram
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w weight histogram obtained with BFMC
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w weight histogram obtained with BMC
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Posterior (BMC) detector responses
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µ=0.72
σ=0.5%
S=0.0
K=0.1

µ=0.59
σ=0.5%
S=0.1
K=−0.0

µ : mean of the detector response
σ : relative standard deviation (in %)
S : skewness (shown if σ > 0.1%)
K : excess kurtosis (if σ > 0.1%)
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Overfitting illustration, in green
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Credits : I. ICKE, Creative Commons BY-SA 4.0 https://commons.wikimedia.org/wiki/File:Overfitting.svg

https://commons.wikimedia.org/wiki/File:Overfitting.svg


Modifications (red) to five prior quantiles (grey) of hydrogen cross sections,

with BMC
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Modifications (red) to five prior quantiles (grey) of uranium 238 cross

sections, with BFMC
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Modifications (red) to five prior quantiles (grey) of uranium 238 cross

sections, with BMC
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Modifications (red) to five prior quantiles (grey) of uranium 235 cross

sections, with BMC
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Modifications (red) to five prior quantiles (grey) of

nickel 58 cross sections, with BMC
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Modifications (red) to five prior quantiles (grey) of zirconium 90 cross

sections, with BMC
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Modifications (red) to five prior quantiles (grey) of zirconium 90 cross

sections, with BFMC
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Pseudorandom number generator
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➔ “The generation of random numbers is too important to be left to chance” (COVEYOU)

➔ Codes such as SERPENT (since version 2.1.0) and MCNP5

➛ Linear congruential generator

Xn+1 = (a ×Xn + c) mod m (11)

➔ Nuclear data sampling ➛ SANDY ➛ NumPy

➛ Since NumPy version 1.17, permuted congruential generator (PGC64)

➛ Before NumPy 1.17, Mersenne Twister

➔ Random selection of nuclear data

➛ Here, relies on Python 3.6.9 ➛ Mersenne Twister
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