

17/11/2021

ISOTOPIC EXCHANGE INSIDE IMPREGNATED ACTIVATED CARBONS

Hantao LIN^a

M. CHEBBI ^a C. MONSANGLANT-LOUVET ^a, B. Marcillaud ^a, A. Roynette ^a, D. DOIZI ^b, P. Parent ^c

^a Institute for Radiological Protection and Nuclear Safety (IRSN), PSN-RES/SCA/LECEV, France ^b Alternative Energies and Atomic Energy Commission (CEA), DEN/DES/ISAS/DPC/SECR/LRMO, France ^c Aix Marseille University, CNRS, CINaM, Marseille, France

CONTENT

1. Context

- 2. Decontamination factors (DF) determination of activated carbons towards γ-labelled CH₃I
- 3. Breakthrough curves measurements of activated carbons towards stable and γ -labelled CH₃I
- 4. Conclusions and perspectives

Context

Necessity to trap CH₃¹³¹I through the iodine filters in the ventilation networks of nuclear facilities

Context

Filter of Camfil[®] *ActiCarb Nucléaire*

Why choose activated carbons:

- Simplicity and good efficiency with impregnation
- Low maintenance and operating costs
- Reasonable price

...

Three mechanisms for $CH_3^{131+127}I$ trapping 1. Physisorption 2. Chemisorption of $C_6H_{12}N_2$ (TEDA) Numerous experimental studies (static, dynamic) and modeling \rightarrow reaction mechanism depending on the water vapor content 3. Isotopic exchange of KI $K^{127}I(s) + CH_3^{131}I(g) \rightleftharpoons K^{131}I(s) + CH_3^{127}I(g)$ Few studies on the mechanism of isotopic exchange in nuclear grade activated carbons

Better assess the contribution of isotopic exchange between CH₃¹³¹I and K¹²⁷I in activated carbons

Methodology

A selection of commercial activated carbons (AC):

KI impregnated AC

TEDA impregnated AC

Co-impregnated AC

Physico-chemical characterization

- Impregnation quantity
- Surface morphology
- Porous structure

Decontamination factors (DF) measurements of CH₃¹³¹I

- Standardized norms*
- T = 20°C, R.H. = 40% and 90%

Breakthrough curves measurements

 Breakthrough curve measurements of stable and radioactive CH₃I in similar conditions

Methodology

A selection of commercial activated carbons (AC):

KI impregnated AC

TEDA impregnated AC

Co-impregnated AC

Physico-chemical characterization

- Impregnation quantity
- Surface morphology
- Porous structure

Decontamination factors (DF) measurements of CH₃¹³¹I

- Standardized norms*
- T = 20°C, R.H. = 40% and 90%

Breakthrough curves measurements

 Breakthrough curve measurements of stable and radioactive CH₃I in similar conditions

Decontamination factors (DF) measurements of CH₃¹³¹I

Representation of PERSEE facility

(Plateforme Expérimentale de Recherches Sur l'Epuration des Effluents radioactifs)

	DF	100000	10000	1000	100	10	1		
	Р	0.001%	0.01%	0.1%	1%	10%	100%		
	η	99.999%	99.99%	99.9%	99%	90%	0%		
Relation between DE P and n									

Relation between DF, P and r

Impregnation ratio (wt.%)

→ Drastic decrease in DF : competitive adsorption between water vapor and CH₃I

La.

1....

1.00

- → TEDA impregnation → counteract the adverse effect of high R.H. (CE~100) : protonation mechanism
- → KI impregnation → gradual increase in performance (CE~10) → isotopic exchange ?
- → Similar DF evolutions between co-impregnated and single impregnated ACs
 → no interaction between KI and TEDA as demonstrated by characterization techniques

Decontamination factors (DF) measurements of CH₃¹³¹I

- → DF : 10^4 - 10^5 : microporous characteristics of AC → retention of CH₃I by physisorption phenomena (kinetic diameter : 0.5-0.6 nm)
- → TEDA impregnation (< 5wt.%) → increasing performance of CH₃I trapping →alkylation mechanism, optimum towards 5 wt.% in TEDA : compromise between chemisorption and micropore blocking phenomena
- → Impregnation with KI → decrease in DF ?
- → Similar DF evolutions between co-impregnated and single impregnated ACs → no interaction between KI and TEDA as demonstrated by characterization techniques

DF	100000	10000	1000	100	10	1			
Р	0.001%	0.01%	0.1%	1%	10%	100%			
η	99.999%	99.99%	99.9%	99%	90%	0%			
Bolation botwoon DE Dand n									

Decontamination factors (DF) measurements of CH₃¹³¹I

Relation between DF, P and h

→ Similar microporosity for these KI impregnated ACs due to low impregnation ratio

- \rightarrow Progressive KI impregnation \rightarrow effect of nucleation of KI as functional groups on the AC surface \rightarrow facilitate the H₂O attraction
- \rightarrow increasing amount of adsorbed H₂O \rightarrow decreasing available microporosity for CH₃¹³¹I trapping by physisorption
- \rightarrow Effect of H₂O under current conditions \rightarrow determining role for physisorption
- ➔ Absence of isotopic exchange ?

Decontamination factors (DF) measurements of CH₃¹³¹I

Relation between DF, P and n

RS

Methodology

A selection of commercial activated carbons (AC):

KI impregnated AC

TEDA impregnated AC

Co-impregnated AC

Physico-chemical characterization

- Impregnation quantity
- Surface morphology
- Porous structure

Decontamination factors (DF) measurements of CH₃¹³¹I

- Standardized norms
- T = 20°C, R.H. = 40% and 90%

Breakthrough curves measurements

 Breakthrough curve measurements of stable and radioactive CH₃I in similar conditions

IRS

- Part A: generation of γ-labelled methyl iodide in gaseous form *via* permeation oven
- Part B: characterization of the γ-labelled methyl iodide flux (*ex-situ*, gamma spectroscopy)
- Part C: Breakthrough curve measurement (*ex-situ*, gamma spectroscopy)

- \rightarrow Slight decrease in adsorption capacity of CH₃¹²⁷I due to the slight increase of the mass of the AC sample
- \rightarrow Progressive increase in adsorption capacity CH₃¹³¹I due to the effect of isotope exchange (gain of about 70% for 5wt.% in KI)
- Significant decrease of the rate constant K_{th} due to the isotopic exchange (increase of adsorption sites participating in the isotopic exchange)

Conclusions and perspectives

<u>AC performance towards the trapping of $CH_3^{131}I$ (T = 20 - 30 °C)</u>

DF measurements

- Good performance of all the tested ACs at R.H. = 40% (DF: 10⁴ 10⁵)
- Drastic decrease of DF at R.H. = 90% (maximum DF around 100)
- The best performances are observed for impregnation compositions similar to nuclear grade AC
- DF decreases with KI impregnation at R.H. = 40% \rightarrow absence of the isotopic exchange for the KI impregnated AC at R.H. = 40%, with the AC performance dominated by physisorption and pre-adsorbed H₂O
- DF increases with KI impregnation at R.H. = 90% \rightarrow Observation of the isotopic exchange

Breakthrough curve measurements (effect of KI)

- Quasi similar breakthrough curves for the trapping of CH₃¹²⁷I
- No significant change in the retention phase (in agreement with literature and previous DF measurement tests)
- Significant increase of the AC performance for the trapping of CH₃¹³¹I due to the isotopic exchange (during the breakthrough phase)

Perspectives

- Continue the breakthrough curve measurements with different ACs (TEDA and TEDA/KI co-impregnated ACs)
- Improvements of the newly designed experimental set-up (temperature, R.H., etc)
- · Investigations of the effect due to isotopic exchange phenomena for other synthetized materials

THANK YOU FOR YOUR ATTENTION.

