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Abstract: Reactor physics aims at studying the neutron population in a reactor core under the influence of
feedback mechanisms, such as the Doppler temperature effect. Numerical schemes to calculate macroscopic
properties emerging from such coupled stochastic systems however require to define intermediate quantities (e.g.
the temperature field), which are bridging the gap between the stochastic neutron field and the deterministic
feedback. By interpreting the branching random walk of neutrons in fissile media under the influence of a
feedback mechanism as a directed percolation process and by leveraging on the statistical field theory of birth
death processes, we will build a stochastic model of neutron transport theory and of reactor physics. The critical
exponents of this model, combined to the analysis of the resulting field equation involving a fractional Laplacian
will show that the critical diffusion equation cannot adequately describe the spatial distribution of the neutron
population and shifts instead to a critical super-diffusion equation. The analysis of this equation will reveal
that non-negligible departure from mean field behavior might develop in reactor cores, questioning the attainable
accuracy of the numerical schemes currently used by the nuclear industry.

I. INTRODUCTION

At their inception in the 30’s, Monte Carlo algorithms
intended to describe the neutron transport in fissile me-
dia [1, 2] in support of the first applications of nuclear
power, might it be for the design of the first nuclear
weapons or in support of nuclear energy production.
Since then, the nuclear energy industry has used the so-
called Monte Carlo criticality codes as reference numeri-
cal schemes to solve the linear Boltzmann equation. Nu-
clear safety demonstrations in particular rely on a Monte
Carlo solving of this equation with few, if any, hypothe-
ses, while the use of deterministic codes is preferred for an
approximate but fast -and even online- solving of a sim-
plified version of this equation: the two (energy) group
critical diffusion equation. In both cases, the aim of such
neutronics codes [3] is to calculate the neutron spatial
distribution in the context of mean-field hypotheses. In-
deed, even at the startup of a nuclear reactor (i.e. when
the neutron density is small), such mean-field equations
are believed to accurately describe the average behavior
of the stochastic regime. Though, in the power regime of
the reactor, stabilizing effects come into action. For ex-
ample, local power excursions and potential sudden rise
of local neutron densities are tempered by the Doppler
broadening of the neutron cross-sections (giving the prob-
abilities that a neutron at a given energy induce a par-
ticular reaction on a nuclei): the quantum resonances of
the neutron-nuclei system are broadened by the thermal
agitation of the nuclei from which results a modification
of the neutron capture cross section. The study of the
properties of neutron transport in fissile media subject
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to feedback mechanisms is called ’reactor physics’. Reac-
tor physics numerical solvers hence couple the mean-field
equations of neutronics to thermal or thermal-hydraulics
solvers via the definition of intermediate quantities (such
as the temperature scalar field) to extract macroscopic
measurable quantities characterizing the neutron popu-
lation (such as local neutron fluxes measured by fission
rate chambers for example).

The fluctuations of the neutron population were also
largely investigated in the past fifty years [4–6], while
being assumed to be of marginal concern for nuclear
safety, since they vanish as the core power increases.
However, a few years ago, this paradigm was questioned
[7–9] by the study of a neutronics toy-model based on
the celebrated branching Brownian motion [10], that
couples the diffusive random walk of neutrons [11],
mimicking their transport in the Brownian regime,
to a Galton-Watson birth-death process, reproducing
the induced fission reaction with variable number of
outgoing neutrons. Indeed, the first moments of the
master equation of this model revealed that the spatial
correlations within the neutron population might in
some cases diverge, invalidating the use of the mean-field
equations. From a physical point of view, this clustering
phenomenon (already characterized at the time in
the theory of population ecology [12–14]) causes the
emergence of spatial patterns in the neutron gas. While
always present and increasing with time in 1 and 2
dimensional systems, the spatial correlations however
saturate in 3 dimensions. A dedicated experiment
taking place at the Rensselaer Poytechnic Institute
was designed and took place in 2018 to characterize
such spatio-temporal correlations affecting the neutron
distributions. This experiment revealed the existence
of such correlations and triggered questions relative to
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their persistence in the power regime of reactor physics
where feedbacks occur [15].

In this paper, leveraging on the seminal approach of
Janssen and De Dominicis [16, 17], we will build a sim-
plified model of reactor physics to investigate the validity
of mean field equations in the power regime of nuclear
reactors. In that aim, a field theoretic formulation of
neutron physics will be built in Section 2. While being
0 dimensional, this formulation will then be exploited in
Section 3 so as to take into account the principal features
of neutronics such as the calculation of fluctuations and
correlations of the neutron field or the effects of an ex-
ternal neutron source. It will also be extended in order
to add the effect of delayed neutrons in Section 4 and to
take into account spatial phenomena in Section 5. Along
the path, we will highlight the close relationship between
the response functional formalism of Janssen and De Do-
minicis with the Doi and Peliti field theory [18, 19] which
lend itself to an exact microscopic interpretation, thus
strengthening the use of both approaches in neutronics.
Finally, in Section 6, we will add a simplified model of
thermal feedback, showing that the neutron gas in a nu-
clear reactor operated at criticality in the power regime
can be described as a phase transition belonging to the
directed percolation universality class. The calculation of
the critical exponents at the percolation threshold using
the renormalization group will in return allow to specify
the mean field equation, formulated in terms of fractional
Laplacian. We will in particular show that in the directed
percolation model, the critical diffusion equation shifts to
a critical super-diffusion equation, whose stochastic gen-
erators are Lévy flights, ultimately dynamically modify-
ing the medium properties in which neutrons are prop-
agating. The analysis of the fundamental mode of the
associated fractional Laplacian using an approximate for-
mula will allow to quantify the differences between this
formal approach and classical coupling schemes, thus set-
ting an accuracy limit on all actual numerical solvers of
reactor physics.

II. A FIELD THEORETIC FORMULATION OF
NEUTRONICS

Branching processes are among the simplest models
capable of characterizing the phenomenology of neutrons
evolving in fissile materials [5, 6]. In their simplest ex-
pression, these models approximate the path of neutrons
in matter as a stochastic process, in which they are sub-
ject to random extinction or reproduction events, occur-
ring at constant average rates. They are also known to
display a second order phase transition between an active
and an inactive state [10]. This transition is at the core
root of nuclear reactors operations and corresponds, in
this context, to the appearance of self-sustained chain re-
actions: the ’percolation threshold’ where neutron chains
survive indefinitely is precisely the point at which nuclear

reactors do operate.
Field theoretic methods have long been used in statis-

tical and condensed matter physics for their efficiency in
the study of the intricate behavior of systems undergoing
a phase transition. They indeed prove to be particularly
adapted to unravel the universal properties and scaling
behaviors in the vicinity of the phase transition’s criti-
cal point. Along this line of thought, the present paper
seeks to demonstrate that field theory also provides an
adapted framework for neutronics, allowing notably to
unravel highly non-trivial behaviors of the neutron pop-
ulation close to criticality.
The derivation of a field-theoretic version of neutron-

ics followed in this paper is based on the seminal work
of Janssen [16] and De Dominicis [17]. Starting from
the mean field equation of the problem, to which is sup-
plemented a random noise source term (as is commonly
done to study the stability of nuclear reactors [4]), the
neutron population evolving in a nuclear reactor can be
decoupled into two components:

• a smoothly varying neutron field N(t). It corre-
sponds to the instantaneous number of neutrons
that can be measured in a reactor (proportional
to the operating power for instance) and it is only
sensitive to the global reactivity ρ of the reactor;

• a random noise source η(t), arising from various
perturbations (such as the stochasticity of the in-
duced fission reactions that have a random number
of outgoing neutrons, or such as assembly vibra-
tions) which are generally driven by unknown or at
least unspecified phenomena.

In the simplest model of the branching process asso-
ciated to neutrons evolving in an idealized, infinite and
homogeneous reactor, such a decoupling transforms the
mean field equation into a Stochastic Differential Equa-
tion (SDE), whose form is given by

dN(t)

dt
= ρN(t) + η(t). (1)

Any macroscopic observable quantity O[N ] is insen-
sitive to the rapidly varying and low lying noise term.
As such, physical observables must be averaged over all
possible configurations of the noise. This is formally
achieved by performing a functional integration over the
noise probability functional P [η(t)],

⟨O[N ]⟩ ∝
∫

DηO[N ]P [η]. (2)

The development of the field-theoretic model starts by
noting that the N appearing under the integral sign of
Eq. 2 is constrained to be a solution of Eq. 1. The con-
straint (valid for all t),

C[N ] =

{
dN(t)

dt
− ρN(t) − η(t)

}
= 0, (3)
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can be enforced with the help of a functional version of
the resolution of the identity [20],

1 =

∫
DN

∏
t

δ (C[N ]) . (4)

Performing a (functional) Fourier transform, one can
write

1 =

∫
D[iÑ ]

∫
DN e−

∫
dtÑ(t) C[N ]

=

∫
D[iÑ ]

∫
DN e−

∫
dtÑ(t) ( dN(t)

dt − ρN(t)− η(t)),(5)

where the purely imaginary auxiliary field Ñ(t), known
as the Martin-Siggia-Rose response field [21], has been
introduced. Inserting this Fourier transformed identity
back into Eq. 2, one obtains

⟨O[N ]⟩ ∝
∫

D[iÑ ]

∫
DN

{
e−

∫
Ñ(t)( d

dt−ρ)N(t) dt

× O[N ] ×
∫

Dη e
∫
Ñ(t)η(t)dtP [η]

}
. (6)

To go further, one needs to integrate over η and thus
specify the probability functional to which it is associ-
ated. In the following, it will be supposed that at any
given moment in time, the noise follows a Gaussian prob-
ability distribution

P [η] ∝ e−
1
4

∫
η(t)Γ−1η(t) dt (7)

with zero mean ⟨η(t)⟩ = 0 and a covariance given by,

⟨η(t)η(t′)⟩ = 2Γ(N)δ(t− t′). (8)

Note that an explicit dependence of the variance Γ(N)
on the global power level (i.e. N(t)) is to be expected on
physical ground : the expected noise in a reactor indeed
depends on the operating power level. The integral over
the noise can now be straightforwardly evaluated as∫

Dη e
∫
Ñ(t)η(t)dtP [η] ∝ eΓÑ

2

. (9)

Inserting this result back into Eq. 6, one finally arrives
at an expression that solely depends on the variance of
the noise probability distribution

⟨O[N ]⟩ = N
∫

D[iÑ ]

∫
DN O[N ] e−S[N,Ñ ], (10)

where both a normalisation factor N and the so-called
response functional

S[N, Ñ ] =

∫ {
Ñ(t)

(
d

dt
− ρ

)
N(t)− Ñ(t)ΓÑ(t)

}
dt,

(11)
have been introduced.

It often reveals convenient to include in Eq. 3 an initial
condition of the type N(t0) = N0. The initial condition

is then included directly into the response functional and
it will be taken into account naturally in the further cal-
culation of observables. One can show that the inclusion
of an initial condition in the response functional gives

S[N, Ñ ] =

∫ {
Ñ(t)

(
d

dt
− ρ

)
N(t)

−Ñ(t) δ(t− t0)N0 − Ñ(t)ΓÑ(t)
}
dt.(12)

It can then be demonstrated that the net effect of
this supplementary term appearing in the response
functional is to multiply each quantity evaluated at the
initial time by the factor N0. In the remainder of the
paper, only the latter prescription will be retained and
the terms corresponding to the initial conditions will be
systematically omitted in all of the response functionals
that will be considered.

Equations 10–12 form the field-theoretic version of the
branching process. It presents itself under the form of
a (euclidean) path integral. The further calculation of
observable quantities can now be addressed thanks to the
powerful machinery developed in Quantum Field Theory
(QFT) and statistical mechanics.

III. CALCULATION OF OBSERVABLES

It can generally safely be assumed that in a nuclear
reactor, the random power fluctuations driven by random
noise are much weaker than the actual operating power
level, i.e. the noise term is small. This suggests a strategy
to extract sensible results from the response functional
formalism. One can expand the function Γ(N) into the
Taylor series

Γ(N) = λ0 + λ1N + λ2N
2 + ..., (13)

with small λi’s. Under this form, the noise term appear-
ing in the response functional can be treated perturba-
tively, just as one does with an interaction potential in
quantum mechanics. This perturbative treatment and
the calculation of observables of the type given in Eq. 10
is most conveniently represented under the form of Feyn-
man diagrams [22, 23].
The observables derived from the response functional

will all depend on the parameters λi, which play here the
same role as the interaction coupling constants in con-
ventional QFT. The precise meaning of these parameters
and in particular their microscopic origin is, however,
left unspecified. In this respect, the response functional
formalism can be viewed as a purely phenomenological
approach: the precise interpretation of the coupling pa-
rameters is to be sought either a posteriori or from an
external knowledge of the problem.
One might thus rightly be worried that the calcula-

tion of observables relies upon an infinite power series
expansion, whose structure and convergence depends on
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unknown parameters. In fact, the inclusion of powers
higher than one in Eq. 13 leads in some cases to diverging
expressions, rendering the perturbative expansion poten-
tially inoperant (an example of which will be encountered
in the last section). This type of divergence is a common
problem in QFT and can generally be cured if one insists
that all observables quantities truly describe the macro-
scale behaviour of the problem, i.e. that all small scale
fluctuations are truly being ’integrated over’. In a nut-
shell, the observables must be derived at a fixed point of a
spatio-temporal scaling transformation of the system. By
simple dimensional arguments [24], one finds that high
order terms in the Taylor expansion of the function Γ
dies off when such a scaling operation is performed. In
the Renormalization Group (RG) jargon, they represent
irrelevant parameters which formally vanish in the vicin-
ity of the RG fixed point. These higher order terms can
thus be directly discarded at this stage and Γ may thus
be simply expressed as

Γ(N) = λ0 + λ1N. (14)

A. Moments of the neutron population

Because the noise term has zero mean, it cannot impact
the mean number of neutrons ⟨N(t)⟩ = N(t). As long
as mean values are concerned, the noise term appearing
in the response functional can safely be omitted. Using
Eq. 10, the mean number of neutrons can be written as,

⟨N⟩ = N
∫

D[iÑ ]

∫
DN N e−

∫ {Ñ(t)( d
dt−ρ)N(t)}dt.

(15)
This expression can be simply evaluated with the help
of the functional version of Wick’s theorem [23]. Taking
into account for the initial condition N(0) = N0, one has,

⟨N(t)⟩ = N0 × t t0 = N0 G(t− t0). (16)

G(t − t0) = ⟨N(t)Ñ(t0)⟩ is the retarded Green function,
solution of the equation(

d

dt
− ρ

)
G(t− t′) = δ(t− t′), (17)

so that,

G(t− t′) = eρ(t−t′) θ(t− t′), (18)

with the Heaviside function θ(t−t′), equals to zero when-
ever t < t′ and one otherwise. The mean number of
neutrons then reads

⟨N(t)⟩ = N0 e
ρ(t−t0) θ(t− t0). (19)

The second moment ⟨N2(t)⟩ is less trivial, because it
depends on the noise variance Γ(N). Forgetting tem-
porarily the λ0 term in the series expansion of Γ, and

resorting again to Wick’s theorem, one can symbolically
write

⟨N2(t)⟩ = 2λ1 + 2

= ⟨N2(t)⟩c + ⟨N(t)⟩2, (20)

where the notation ⟨⟩c is used to represent the first, so-
called connected, diagram. The variance can then be sim-
ply evaluated as (ρ ̸= 0)

⟨N2⟩ − ⟨N⟩2 = ⟨N2⟩c = 2λ1N0

∫ t

t0

dτG2(t− τ)G(τ − t0)

=
2λ1N0

ρ
eρ(t−t0)

[
eρ(t−t0) − 1

]
. (21)

This expression corresponds exactly to the variance one
would obtain from a detailed microscopic balance of
the neutron population (in an infinite, homogeneous
medium) [6], provided that λ1 be identified with the
rescaled variance (ν̄(2) − ρ)/2 of the offspring distribu-
tion associated to the underlying branching stochastic
process. This result is a good illustration of the gen-
eral outreach of the response functional formalism. Re-
lying only on the SDE built upon the ’coarse-grained’
description of the problem, the formalism is able to take
advantage of the phenomenological and microscopic ran-
dom source term to extract residual information about
the structure of the fluctuations around the mean field
behaviour of the system.
A strong limitation of this approach is the assumption

that the noise term follows a Gaussian profile. Indeed,
the calculation of higher moments ⟨Nk⟩ for the neutron
population would formally require information about
the same moments of the offspring distribution. In the
response functional formalism, there is no possibility to
include this type of information in the calculations. This
limitation does not however apply in the present case,
at least in the vicinity of criticality. It has indeed been
demonstrated in [25] that the microscopic branching
process under study displays a universal behaviour in
the vicinity of the critical point ρ = 0: it then solely
depends on the reactivity ρ and the second moment
of its offspring distribution. In other words, close to
the critical point, the knowledge of the variance of the
offspring distribution is sufficient to fully characterize
the process, i.e. to calculate any moment ⟨Nk⟩ of the
neutron distribution.

The approach proposed in [25] also relies on a field-
theoretic formulation of the stochastic branching process,
pioneered in the work of Doi [18] and Peliti [19]. Start-
ing from a formal identification of the ladder operators
a† and a with the multiplication or derivation by z of the
generating function ψ(z, t) =

∑
n P (n, t)z

n, one can give
a structure to the stochastic process that closely resemble
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the structure of Fock spaces used in quantum mechanics
[26]. A path integral formulation of the process is then
built upon the coherent states associated to the annihi-
lation operator a [27].

Both the Doi-Peliti and Janssen-De Dominicis ap-
proaches allow for the derivation of a field theory, from
two different starting points. In this respect, they can be
viewed as complementary:

• the Doi-Peliti approach relies on the explicit mod-
elling of the underlying microscopic stochastic pro-
cess. Every term in the theory is given a sound
microscopical interpretation from the start. The
drawback is the difficulty to include terms that can-
not be described as stochastic processes (because
their microscopic origin is unclear for instance);

• the Janssen-De Dominicis approach is much more
phenomenological. Its starting point is the mean
field equation associated to the problem. This en-
ables more flexibility in the modelling of phenom-
ena that cannot be given a microscopic origin (e.g.
the modelling of counter-reaction mechanisms in
neutronics for instance). Relying on Gaussian noise
distributions and unspecified parameters, this ap-
proach is nevertheless more limited in scope when
a microscopic model is available.

Thanks to the universal behaviour of branching pro-
cesses close to their critical point, both approaches coin-
cide in the present case: they both lead to the same path
integral formulation and the same diagrammatic expan-
sion. As such, the extraction of higher moments for the
neutron population in the response functional formalism
exactly matches the derivation presented in [25].

B. Addition of an external neutron source

At low power, external neutron sources, such as spon-
taneous fission or (α, n) reactions might have a substan-
tial impact on the moments of the neutron population
[5, 15]. The response functional formalism lends itself
easily to describe this phenomenon. Considering an ex-
ternal neutron source, emitting an average of S neutrons
per second, the SDE describing the problem now reads

dN(t)

dt
= ρN(t) + S + η(t), (22)

as well as the associated response functional,

S[N, Ñ ] =

∫ {
Ñ(t)

(
d

dt
− ρ

)
N(t)− ÑS

− Ñ(t)ΓÑ(t)
}
dt. (23)

Considering that the source term is accompanied by an
intrinsic noise, we now can set λ0 ̸= 0 in the Taylor
expansion of Γ(N) = λ0 + λ1N .

The moments of the neutron population must now take
into account the external source. In the perturbative
calculation, this is done in the form of new Feynman
diagrams appearing in the calculations. For the mean
number of neutrons at time t, one has (setting t0 = 0 in
the following),

⟨N(t)⟩ = + S

= N0e
ρt + S

∫ t

0
eρ(t−t′)dt′

= N0e
ρt + S

ρ (eρt − 1) , (24)

in agreement with the literature [5]. The second propa-
gator that now appears in the diagram directly account
for the creation of neutrons produced at a constant rate
S by the source.
As for the variance of the neutron population, one has,

⟨N2(t)⟩c = 2λ1 +2λ1S +2λ0

(25)
The first diagram has already been calculated in the pre-
vious section. The following two diagrams take into ac-
count respectively:

• the variance of the neutrons’ branching process af-
ter their creation by the source S;

• the intrinsic variance λ0 of the neutron source.

The calculation of the two unknown diagrams leads to
the final expression (ρ ̸= 0):

⟨N2(t)⟩c =
2λ1N0

ρ
eρt

(
eρt − 1

)
+

2λ1
ρ

(
eρt − 1

)2
+

λ0
ρ

(
e2ρt − 1

)
. (26)

The calculation of moments of higher orders now poses
a real problem. Although the universal behavior of the
neutrons’ branching process could, here also, be invoked,
one is now limited by the noisy component of the external
source term. Only if the source possesses a Gaussian
distribution can the calculation be taken further and the
moments ⟨Nk⟩c with k > 2 be exactly calculated.

IV. TWO SPECIES MODEL

Another key aspect in the modelling of the temporal
behavior of the neutron population in a nuclear reactor
is the role played by the precursors of delayed neutrons
M(t). In rare cases, an induced fission does not emit all
the outgoing neutrons instantaneously: the decay at a
rate λD of the fission fragments can lead to the emission
of delayed neutrons, emitted much later after the prompt
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neutrons. Thus, while emitting a small fraction β of the
overall number of neutrons, precursors control the kinet-
ics of nuclear reactor which could not be operated on
human time scales otherwise.

Including the coupling between the neutron and pre-
cursor populations, the point-like model transforms to
(with r = ρ− β)

dN(t)

dt
= rN(t) + λDM(t) + η1(t),

dM(t)

dt
= βN(t)− λDM(t) + η2(t),

(27)

where external sources have been neglected, for simpli-
city. As before, the two random source terms are sup-
posed to follow Gaussian probability distributions with
zero mean and a covariance given by the relation (a, b =
1, 2),

⟨ηa(t)ηb(t′)⟩ = 2Γab(N,M) δ(t− t′), (28)

The derivation of the response functional associated to
this coupled system of equations still follows the same
recipe as the one described in section II. Four inde-

pendent fields Ñ , M̃ ,M and N are now introduced into
the theory and the response functional can be written
S = Sneut. + Sprec. + SΓ, with,

Sneut. =

∫ {
Ñ(t)

(
d

dt
− r

)
N(t)− λDÑ(t)M(t)

}
dt,

(29)

Sprec. =

∫ {
M̃(t)

(
d

dt
+ λD

)
M(t)− βM̃(t)N(t)

}
dt,

(30)
and, in its most general form,

SΓ =

∫
Γ11Ñ

2 + Γ22M̃
2 + 2Γ12ÑM̃

=

∫ {
λ1Ñ

2N + λ2Ñ
2M + λ3M̃

2N

+ λ4M̃
2M + 2λ5ÑM̃N + 2λ6ÑM̃M

}
dt. (31)

Two Green functions are to be associated to the free parts
of the neutron and precursor functionals,

GN (t− t′) = t t′ = er(t−t′)θ(t− t′) (32)

and

GM (t− t′) = t t′ = e−λD(t−t′)θ(t− t′). (33)

Because of the couplings between the neutron and pre-
cursor populations appearing in Eq. 29 and Eq. 30, ob-
servables must however be ultimately constructed from a
generalized set of propagators, which solve the full cou-
pled set of equations Eq. 27. These generalized propaga-
tors may be symbolically written,

ΣNN (t, t′) = = + β λD + (β λD)
2

+ ... , (34)

ΣMM (t, t′) = = + β λD + (β λD)
2

+ ... , (35)

ΣNM (t, t′) = = β { + β λD + ...} , (36)

ΣMN (t, t′) = = λD { + β λD + ...} . (37)

The calculation of each one of the ΣIJ involves an infi-
nite series of nested integrals. Fortunately, these infinite
series can be summed over and it is possible to obtain an-
alytical results in all four cases (see appendix A). A much
more convenient but indirect way to extract an analyti-
cal expression out of these propagators is to realize that
they all directly correspond to the mean value of either
the neutron or precursor populations for different initial
conditions. Indeed, setting (N(t0),M(t0)) = (N0, 0), one
can show that,

⟨N(t)⟩(N0,0) = N0 × ΣNN (t, t0), (38)

⟨M(t)⟩(N0,0) = N0 × ΣNM (t, t0), (39)

whereas, for (N(t0),M(t0)) = (0,M0),

⟨N(t)⟩(0,M0) =M0 × ΣMN (t, t0), (40)

⟨M(t)⟩(0,M0) =M0 × ΣMM (t, t0), (41)

so that each of these propagators is the solution of the
system of equations Eq. 27 for a specific set of initial con-
ditions (and with the stochastic terms set to zero). The
system of equations can be straightforwardly integrated
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and solutions extracted, leading to the explicit form of
the generalized propagators provided in appendix A.

Equipped with an analytical expression for the prop-
agators of the theory, the variance of the process may

then be evaluated. Imposing the initial condition
(N(0),M(0)) = (N0, 0) , the variance of the neutron and
precursor populations may be diagrammatically written,

⟨N2(t)⟩c = 2N0λ1 + 2N0λ2 + 2N0λ3

+2N0λ4 + 2N0λ5 + 2N0λ6 , (42)

⟨M2(t)⟩c = 2N0λ1 + 2N0λ2 + 2N0λ3

+2N0λ4 + 2N0λ5 + 2N0λ6 . (43)

Just as it was the case in the last section, both ex-
pressions depend on the set of parameters λi, which are
not specified by the theory. With a total of 6 unknown
parameters for only two observables, it may seem at first
sight difficult to give a precise meaning to each term.
However, the structure of the diagrammatic expansion
and the results of the one species model derived earlier
allows to do so, at least partially. In light of the results
obtained in the previous section, it might indeed be in-
ferred that the diagrams associated to λ1 appearing in
both expressions represent the variance associated to the
neutron’s offspring distribution. There is furthermore no
reason to expect that the value for λ1 obtained in the
case of the one species model should be any different in
the present situation, except for the replacement of the
reactivity ρ with the prompt reactivity r = ρ− β.

On the same model, the diagrams associated with λ3
are most certainly to be identified with the variance of
the precursor emitted by fission.

The diagrams associated to λ2 and λ4 share the
same output structure as for λ1 and λ3 but possess a
precursor at the origin of the branching term. This
suggest that these diagrams encode for a source of
variance intrinsic to the precursor population. The only
process responsible for such kind of fluctuation in the
precursor population is their decay process which, being

a Poisson process, has a variance λD.

At this point, one can thus postulate,
λ1 = (ν̄

(2)
n − ρ+ β)/2,

λ3 = (ν̄
(2)
m + β)/2,

λ2 = λ4 = λD/2,

(44)

so that only two unknown parameters, λ5 and λ6, remain
to be determined for the two variances. Comparing equa-
tions Eq. 42-43 with a microscopic balance of the neutron
and precursor populations [6] for different values of ρ, β
and λD, one gets (the offspring distributions of neutrons
and precursors were supposed independent),{

λ5 = νm(νn − 1) = ν̄
(2)
n

β
1−β ,

λ6 = −λD.
(45)

A comparison of the diagrammatic expansion with the
results of the literature is presented in Figure 1. The tem-
poral evolution of the variance of both the neutron and
precursor populations are displayed, in all three regimes:
sub-critical (ρ < 0), critical (ρ = 0) and super-critical
(ρ > 0). An excellent agreement is found in all three
cases.
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FIG. 1. Comparison of the variance of the neutron and pre-
cursor populations extracted from the solution of the stochas-
tic process (plain lines) and from the calculation of Feynman
diagrams (dotted lines), for ρ = -0.2 (red), 0 (green), 0.2
(blue). The calculations are made assuming the following set

of parameters: β = 0.8, λD = 0.03, N0 = 1000, ν̄
(2)
n = 2,

ν̄
(2)
m = 1.2. The two offspring distributions were supposed in-

dependent so that νm(νn − 1) = β
1−β

ν̄
(2)
n .

V. STOCHASTIC DIFFUSION EQUATION

Now equipped with the main phenomena of 0 dimen-
sional neutronics, our field theoretic model can transi-
tion to proper neutron transport theory. A convenient
and easy way to do so, yet realistic [28], is to lean on
the diffusion equation, which can also formally be built
as a coarse grained description of a microscopic, stochas-
tic process. When supplemented by an external random

noise term, the (one energy group) equation can be writ-
ten as

∂

∂t
N(x⃗, t)−D(∆ + r)N(x⃗, t) + η(x⃗, t) = 0, (46)

where the rescaled parameter r = ρ/D as been defined for
convenience and where now N(x⃗, t) should be interpreted
as the neutron density field. The transcription of this
d+1 diffusion equation into a response functional follows,
here also, exactly the same line as in section II. One thus
have (in d spatial dimensions),

S =

∫
ddx⃗

∫
dtÑ(x⃗, t) (∂t −D(∆ + r))N(x⃗, t)− ÑΓÑ .

(47)
The propagator of the theory is most conveniently writ-
ten in the Fourier transformed spatial domain (p⃗,t),

G(p⃗, t) = e−D(p⃗ 2−r)t. (48)
The structure of the interaction term of the response
functional is not affected by the dimensionality of the
problem. As a consequence, the diagrammatic expan-
sion of the theory is the same as the one obtained in
section III. It can for instance be immediately con-
cluded that provided with the initial condition N(x⃗, t) =
N0 δ(t)δ

(d)(x⃗), one finds that

⟨N(x⃗, t)⟩ = N0G(x⃗, t) = N0

√
π

4Dt
erDt− |x⃗|2

4Dt . (49)

A substantial amount of work has been done in the past,
revolving around the possibility that neutrons evolving
in fissile matter might gather into clusters and that the
neutron density map should consequently present patch-
iness. This neutron clustering phenomenon results from
the very nature of the underlying branching process they
are subjected to [7–9, 15, 29, 30]. This phenomenon
can be quantified through the equal-time spatial corre-
lation function ⟨N(x⃗, t)N(y⃗, t)⟩ which, in the response
functional formalism can be written as

⟨N(x⃗, t)N(y⃗, t)⟩c = 2λ1 = 2λ1

∫
ddw⃗

∫ t

0

dt1G(w⃗, t1)G(x⃗− w⃗, t− t1)G(y⃗ − w⃗, t′ − t1)

= 2λ1

∫ t

0

dt1

∫∫∫
ddp⃗1
(2π)d

ddp⃗2
(2π)d

ddp⃗3
(2π)d

G(p⃗1, t1)G(p⃗2, t− t1)G(p⃗3, t− t1)e
−ip⃗2·x⃗e−ip⃗3·y⃗

∫
ddw⃗e−iw⃗·(p⃗1−p⃗2−p⃗3)

= 2λ1

∫ t

0

dt1

∫∫∫
ddp⃗1
(2π)d

ddp⃗2
(2π)d

ddp⃗3
(2π)d

G(p⃗1, t1)G(p⃗2, t− t1)G(p⃗3, t− t1)e
−ip⃗2·x⃗e−ip⃗3·y⃗(2π)dδ(d)(p⃗1 − p⃗2 − p⃗3)

= 2λ1

∫ t

0

dt1

∫∫
ddp⃗2
(2π)d

ddp⃗3
(2π)d

G(p⃗2 + p⃗3, t1)G(p⃗2, t− t1)G(p⃗3, t− t1)e
−ip⃗2·x⃗e−ip⃗3·y⃗. (50)

Note that because of the appearance of Dirac delta func- tions enforcing momentum conservation at each vertex,
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it becomes useful to indicate on the Feynman graphs the
directions of the flowing momenta.

To proceed further with the calculation, one has to
pay special attention to the initial condition chosen for
the neutron population. In the case of neutrons evolving
in an homogeneous and infinite system, and setting a uni-
form initial neutron density N0, one can use the transla-
tion invariance of the problem to set p⃗1 = 0⃗. Momentum
conservation then implies that Eq. 50 be transformed into

⟨N(x⃗, t)N(y⃗, t) ⟩c = 2λ1N0

∫ t

0

dt1

∫
ddp⃗

(2π)d
G (⃗0, t1)×

G(p⃗, t− t1)G(−p⃗, t− t1)e
−ip⃗·(x⃗−y⃗).(51)

Performing the integration over the momentum p⃗ in d-
dimension, one obtains,

⟨N(x⃗, t)N(y⃗, t)⟩c = 2λ1N0e
Drt

∫ t

0

eDrt′

(8πDt′)d/2
e−

|x⃗−y⃗|2
8Dt′ dt′,

(52)
in agreement with the literature [31].

VI. FROM NEUTRONICS TO REACTOR
PHYSICS - ADDITION OF A SIMPLE

FEEDBACK MECHANISM

Reactor physics is neutron transport theory supple-
mented by feedback mechanisms, which happen when-
ever the reactor is operated at high power. These feed-
back mechanisms are a central aspect of the stability of
nuclear reactors but their detailed modelling is gener-
ally difficult to implement in a neutron balance, princi-
pally because they cannot be associated to a microscopic
stochastic process. In the response functional formalism,
these effect can however be directly incorporated at the
macroscopic level of description, i.e. in the mean field
equations.

In the following, this advantage is therefore exploited
to explore a simplified but realistic model of a reactor
in the presence of counter-reactions. It will be shown
that the feedback mechanism imposed on the neutron
population has a strong impact on the structure of the
fluctuations close to the percolation transition. The field
theoretic viewpoint adopted here will in particular allow
to establish that the neutron gas undergoes, whenever
the reactor is exactly critical, a phase transition whose
universality class will be identified.

A. A simplified model with Doppler broadening

One of the most paradigmatic feedback effect affecting
the neutron population in a reactor core is the Doppler
broadening of the capture resonances of 238U, which cou-
ples the neutron population to the temperature of the
fuel. As the temperature increases, more and more neu-
trons are captured by the medium and disappear: the

overall neutron population is pulled back towards a ref-
erence operating power. This feedback is quite diffi-
cult to include in a detailed microscopic model because
it involves the reactor power or the temperature of the
medium which are macroscopic quantities. It can how-
ever be straightforwardly implemented under the form of
a restoring force of the type σN(N −Nref.) in the diffu-
sion equation [4]. The behavior of the neutron popula-
tion evolving in a nuclear reactor operating at nominal
power (and thus subject to Doppler broadening) can con-
sequently be described by the equation

∂

∂t
N(x⃗, t)−D(∆ + r)N(x⃗, t) + σN2(x⃗, t) = 0, (53)

where the shifted parameter r = (ρ+σNref.)/D has been
introduced, for convenience.
The response functional and the resulting theory to

which this equation is associated has been extensively
studied. It corresponds to the functional of the Directed
Percolation (DP) universality class [24, 27]:

S =

∫
ddx⃗

∫
dtÑ (∂t −D(∆ + r))N + σÑN2 − λÑ2N.

(54)
The inclusion of the term σN2 has a strong impact

on the structure of the theory, for now the two following
processes are allowed

2λ 2σ

as well as their combination, i.e. the loop diagram

4σλ , (55)

whose contribution leads to badly divergent behaviors of
two different types [27]:

• a divergence is observed in dimension d ≥ 2, be-
cause the momentum associated to the loop is not
constrained by any conservation rule. Its integra-
tion thus runs over theoretically infinite momenta
and include small distances, short time, unbounded
fluctuations of the neutron population. This is a
paradigmatic example of an Ultra-Violet (UV) di-
vergence;

• another and more serious divergence occurs in di-
mension d ≤ 4. An Infrared (IR) divergence is
observed in the long time, long distance limit. The
highest dimension dc = 4 for which the divergence
is observed is called the critical dimension of the
problem.

Both types of divergences can be eliminated through
the well-known renormalization procedure [32], which, in
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essence, consists in the application of successive spatio-
temporal scaling transformations on the problem, so that
the small distance and UV divergent fluctuations be truly
integrated over. The true macro-scale description of the
problem is obtained at a fixed point of the iterated scaling
process which generally has the induced benefit of taming
the residual IR divergence of the problem.

Although the starting point of the model are the mean
field equations of the problem, the renormalized observ-
ables one ultimately extract from the theory present
asymptotic behaviors (i.e. critical exponents) that differ
from the predictions of the mean field equations, at
least in the vicinity of the phase transition. Close to the
critical point, mean field theory breaks down and only
the renormalized field theoretic description of the system
can correctly describe the evolution of observables.

B. The directed percolation transition

The largest deviation from the mean field predictions
is obtained in the 0D model. Indeed, setting D = 0 in
Eq. 53, the point-like DP model can be defined as

dN

dt
= rN − σN2. (56)

As long as r > 0, this equation possesses a positive sta-
tionary solution N∞ ∝ rβ (β = 1 is the first critical
exponent of directed percolation). A detailed analysis
with the help of the RG leads to a strikingly different
prediction [33, 34]: in zero dimension, whatever the val-
ues chosen for r and σ, the neutron population always
asymptotically vanish. This finding is in sharp contrast
with the solution of the mean field equations but has been
tested and validated against Monte-Carlo simulations.
Translated into the domain of nuclear reactor physics,
this means that adding a feedback term of the form σN2

into the point kinetics equation leads to a theory that
do not possess a stable, non-trivial, equilibrium solution:
every point-like reactors subject to counter-reactions are
sub-critical !

The triviality of this point-like model can be easily
circumvented though, by considering instead the case
of a tri-dimensional, infinite and homogeneous reactor.
The system then do admit N∞ ∝ rβ as a solution, but
the RG predicts a value for the exponent β close to
0.8 in 3d [24, 27] (as compared to 1 for mean field).
Although conceptually important, this deviation in the
scaling relation between the power level and the reactiv-
ity of the reactor would be difficult to observe in practice.

Even though the feedback mechanism proposed in this
paper might appear as a simplistic approximation of the
true processes at play in an operating reactor, the asymp-
totic scaling laws and the overall behaviors predicted by
the RG analysis of the directed percolation process might

still persist in a more refined treatment. The DP conjec-
ture [24, 35] indeed states that the DP universality class
is the most general universality class observed in transi-
tions between an active to an absorbing state and persist
under very general conditions. The modelling of critical
nuclear reactors might thus fall into the general class of
the DP percolation transitions, even with a more elabo-
rate modelling of counter-reaction mechanisms.
Observable consequences of the DP transition and

direct violation of the mean field equation predictions
might however be difficult to observe in practice. Apart
from the exponent β, two other critical exponents char-
acterize the DP universality class. They are associated
to the correlation length ξ and the diffusion time scale τ
that naturally appear in equation 53:

ξ ∼ |r|−ν and τ ∼ ξz/D ∼ |r|−zν . (57)

The DP class is entirely characterized by these exponents
and any observable consequence of the DP transition can
be traced back to a deviation of these exponents from
their mean field predictions. Deviations from the mean
field theory are expected to be larger for system in lower
dimensions, in models farther away from the critical di-
mension dc = 4. Table I list the values of the exponents
of directed percolation, extracted from numerical simu-
lations, for systems in 1, 2 or 3 dimensions.

TABLE I. Critical exponents of the DP phase transition [36].

exponent d = 1 d = 2 d = 3 mean field

β 0.276486(8) 0.5834(30) 0.813(9) 1
ν 1.096854(4) 0.7333(75) 0.584(5) 0.5
z 1.580745(10) 1.7660(16) 1.901(5) 2

A detailed account of all of the possible experimental
evidences of the DP transition in nuclear reactors would
by far exceed the scope of this paper. As a matter of
illustration, the following section will describe what ob-
servable and concrete consequence the dynamic exponent
z might have in a real reactor.

C. A Consequence on reactor physics

Reactor physics aims at accurately calculating (with a
precision of ∼ 1%) the spatial distribution of the neu-
tron flux, from which diverse measurable local quantities
can be extracted, such as fission rates, neutron counts,
etc. Those quantities are measured either by in-core
detection devices (e.g. the aeroball measurement sys-
tem) or by ex-core detection devices (using source-range,
intermediate-range or power-range neutron flux instru-
mentations). Any significant deviation from the flux
measured by these detectors to ’expected’ values should
trigger various safety warnings notified by the automatic
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protection system, ultimately leading to the core tripping
procedure. Noticeably these expected values of the flux
are set by an online solving of a simplified -yet robust-
neutron transport model.

During the intermediate and power range operation
of the reactor, the thermal feedback effects have to be
taken into account as they modify the cross-sections dic-
tating the laws of propagation of the neutrons. As seen
in the previous section, this modification has another
consequence: the macroscopic properties of the medium
emerge from an intimate coupling at the mesoscopic scale
between the random walk of the neutrons and the feed-
back reactions depending on the neutrons local densities.
Usual coupling schemes relying on mean field equations
are therefore not valid anymore since the mean field equa-
tions themselves are wrong, and the properties of the
system can only be obtained through the critical expo-
nents of the directed percolation defined in the previous
section. In the following, since we are interested in a
simplified model of reactor physics, we will restrict our-
selves to d = 3. In this case, the value of z, the dynamic
critical exponent, is about 1.9. This exponent describes
how fast any local perturbation spreads [37] and can be
related to a modification of the diffusive (z = 2) random
walk which becomes slightly super-diffusive for d = 3 (in-
deed z can be interpreted as an anisotropy parameter).
The scaling of the spatial correlation length versus the
time correlation length follows ξz ∼ Dτ (see Eq. 57, with
z = 1.901 in the following). These Lévy flights (see for
instance [38] for a review on fractional Laplacians and
their connection to Lévy flights) call for a more quanti-
tative modelling of the mean-field Eq. 53 which is hence
modified according to:

D(−(−∆)z/2 + r)N(x, t)−σN2(x, t) =
∂

∂t
N(x, t), (58)

where −(−∆)z/2 is the fractional Laplacian defined

through −(−∆)z/2 = ∂z

∂|x|z ( ∂z

∂|x|z being the Riesz-Feller

derivative of fractional order z). Yet, whenever the reac-
tor is in a stationary state, the Doppler effect does hardly
comes into play: it mainly stabilizes the core upon local
perturbations or control long-term statistical fluctuations
[15]. Since the critical exponents obtained in the previ-
ous section did not explicitly depend on σ, representing
the strength of the coupling between the neutron scalar
field and the feedback mechanism, this equation can fur-
ther be simplified by considering the parametric regime
where this coupling is weak. The feedback term σN2 in
the mean field equation can consequently be safely ne-
glected. In this case the stationary behavior of Eq. 58
boils down to

D(−∆)z/2N(x, t) = rN(x, t). (59)

This critical diffusion equation essentially tells that, in
the frame of the so-called one-group diffusion equation,
moving from neutron transport theory (without feed-
back) to reactor physics theory (i.e. neutronics with feed-
back) mainly consists in replacing the standard Laplacian

(z = 2) by the fractional Laplacian with z = 1.901. The
equilibrium spatial distribution of the neutron field can
therefore be obtained through the analysis of the first
eigenmode of this fractional Laplacian. Since the reac-
tor has a finite spatial extent, it is necessary to estimate
this eigenmode in a bounded domain, keeping in mind
that the critical exponents obtained through the use of
the renormalization group are valid only for an infinite
medium. To avoid the intricate analysis of critical expo-
nents of the directed percolation in finite domain, we will
anyway use this (infinite medium) dynamic critical expo-
nent while keeping in mind that the results of the analysis
will be only valid within the bulk of the medium (i.e. far
from the boundaries). The precise topic of the proper-
ties of the fractional Laplacian in bounded domains has
been investigated in the seminal paper of Zoia et al [39].
This paper proposes a different way to numerically tackle
such equations. One possible and elegant way being to
perform a Monte Carlo simulation of the neutron trans-
port where the standard diffusion kernel is replaced by
Lévy flights. Given the different hypotheses of our re-
actor model (diffusion instead of transport, no energy
dependence, uniform medium, restriction to the bulk of
the domain,...) we are only interested in approximate
solutions, and therefore another possibility is to have re-
course to approximate analytical expression as the one
given by [40] for example. Figure 2 reports the compar-
ison between the exact solution of the critical diffusion
equation that models neutron transport and such an ap-
proximate solution of our critical super-diffusion equation
that models reactor physics. This approximate solution
has the form

N(x) = A cos
((π

2
− (2− z)

π

8

) x
L

)
(60)

with A being a normalization constant, and is obtained
for a 1d uniform medium by imposing Dirichlet bound-
ary conditions (N(±L) = 0) at the boundaries L of the
domain for z = 2. For z < 2, the neutron density at
the boundaries does not vanish: this can be interpreted
as long-distance flight bringing some neutrons to cross
the boundary instead of being absorbed at it. But in
the present case we are not interested in the properties
of the medium close to the boundaries (where the dy-
namic critical coefficient is not valid anymore), hence the
proper boundary conditions for z = 1.901 are not dis-
cussed in this paper. It is however worth noting that the
topic of boundary conditions for Lévy flights and their
physics interpretation is currently under active investi-
gation (see [41] for instance). Equation Eq. 60 can also
be extended to 3dmedium by multiplication of the modes
along each axis since N(x, y, z) = N(x)N(y)N(z) (this
separation of variables stands for homogeneous partial
differential equations in general [42]), making the study
of a 1d medium meaningful. Also, for z values close to
2 the approximated solution comes close to being exact
(the L2 norm between the exact and the approximate
solution is controlled by (2 − z) [40]). When z = 2,
this approximate solution becomes exact since one re-
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trieves the usual solution of the critical diffusion equa-

tion N(x) ∼ cos
(

π
2

x
L

)
. The 1d comparison between

the spatial distributions of z = 2 and z = 1.901 (top
plot of Figure 2) finally reveals that, as could be qual-
itatively guessed, the super-diffusion slightly flatten the
spatial distribution compared to diffusion. This macro-
scopic point of view emerges from the fact that the long-
range events characteristics of Lévy flights indeed tend
to spatially redistribute the neutrons. In the frame of all
the aforementioned hypotheses, the differences between
the diffusion and the z = 1.901 super-diffusion on local
neutron densities are of the order of 1−2% (bottom plot
of Figure 2), which is precisely the accuracy targeted by
high precision reactor physics codes and methods, thus
making these relative differences non-negligible.

FIG. 2. Top plot: comparison between the first normalized
eigenfunction of the linear diffusion equation (z = 2 in plain
line) with Dirichlet boundary conditions in −1 and 1, and
an approximation of the first normalized eigenfunction of the
fractional Laplacian (as given by [40]) with z = 1.901 (dashed
line). The approximation is valid far from the boundaries,
i.e. within the bulk. Bottom plot: relative differences (in %)
between both eigenfunctions.

VII. CONCLUSION

The response functional formalism of Janssen and De
Dominicis has proven to be a versatile and powerful
companion for exploring the physics of branching pro-
cesses. Applied to the well known equations of neutron
transport in fissile media (neutronics), we have been
able to recover with relative ease the main recent results
of the field : moments of the neutron population within
the reactor, effect of external neutron sources on the
chain reaction, taking into account of delayed neutrons,
and characterization of spatial and temporal correlations
that may develop at low power. Along this path, the
close connection between the statistical field theory of

Janssen and De Dominics and the coherent path integral
method of Doi and Peliti has been underlined. This last
approach is based on establishing a second quantized
version of the neutron’s branching process, and therefore
relies on the solid-ground microscopic description of
branching spatial Brownian motion that has been build
in the past few decades. But the generality of the
response functional approach lend itself to the inclusion
of very general ad-hoc models whose microscopic origin
would be difficult to implement. The restoring force
that has been used in section VI is an example of such a
heuristic approach. It allowed the study of a simplistic
model of nuclear reactor, that couples neutronics to a
prototype feedback model (the Doppler effect), which is
usually not possible via the traditional master equations
approach. Showing that the phase transition of the
neutron population at criticality falls into the directed
percolation universality class permitted to retrieve the
critical exponents of the phase transition, thanks to the
well established results of the renormalization group.
The results obtained notably show deviations from
the mean field theories prediction. These deviations
are ultimately related to unconstrained stochastic
fluctuations of the neutron population, propagating
at all spatio-temporal scales in the vicinity of the
phase transition. The joint use of field theory and the
renormalization group then provide an adapted frame in
which these fluctuations can be systematically explored.
Field theoretic methods then provide the most natural
framework in which valid asymptotic predictions can be
extracted in the vicinity of the critical point, a regime in
which the mean field equations generally lose all or part
of their predictive power.

The main consequence of this work in the realm of
nuclear reactor physics were evaluated by focussing
on the corrected mean field equation of our simplified
reactor physics model, using in particular the dynamic
critical exponent z previously obtained. In the same
manner that this coefficient transforms the diffusion law
z = 2 into a super-diffusive Lévy flights with z = 1.901
for 3d medium, the usual critical diffusion equation used
to grasp the main features of neutronics was shown
to be replaced, in this prototype model of reactor
physics, by a critical super-diffusion equation. In the
low feedback regime, and far from the boundaries, the
main eigenmode of this critical super-diffusion equation
was approximated using recent developments on the
spectrum of the fractional Laplacian in bounded do-
mains. In this frame, the solution of the standard mean
field equation for the neutron local distributions might
show deviations up to 1 − 2%, which invalidates many
formal approaches and reactor physics analytical models
(see [43, 44] among many others) sometimes used to
benchmark reactor physics codes, while questioning the
accuracy targeted by the current high precision reactor
physics codes themselves, which aim at calculating
neutron fluxes with an accuracy below this precision
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(see [45] for instance).

Finally, to further assess the accuracy of mean field
approaches (and hence reactor physics codes), it would
be necessary to investigate the properties of the directed
percolation in finite medium, while studying the effects of
neutron energy (in the frame of a 2-group critical super-
diffusion equation for instance) and improving the mod-
eling of the feedback mechanism. A prominent role might
also be played by the precursor of delayed neutrons. In-
deed, these precursors being not subject to any feedback
mechanism, they might inflect the system’s dynamic into
a different universality class. Ultimately, reactor physics
experiments aiming at measuring and detecting distor-
tions of the neutron field could definitely sign this phe-
nomenon of neutron percolation in reactor cores.

ACKNOWLEDGMENTS

The authors are thankful to Léonie Canet and Andrea
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Appendix A: Analytical calculation of the
generalized propagators Σab (a, b = N,M) in the two

species model

Focusing on the evaluation of ΣNN (t, t′), and using the
shorthand notation a = r + λD, the diagram of Eq. 34
translates into the infinite series,

ΣNN (t, t′) = er(t−t′)

{
1 + βλD

∫ t

t′
dt1e

−at1

∫ t1

t′
dt2e

at2 + (βλD)2
∫ t

t′
dt1e

−at1

∫ t1

t′
dt2e

at2

∫ t2

t′
dt3e

−at3

∫ t3

t′
dt4e

at4 + ...

}
,

(A1)
or,

ΣNN (t, t′) = er(t−t′)

1 +
∑
n≥1

(βλD)nAn(t, t
′)

 , (A2)

with,

An(t, t
′) =∫ t

t′

∫ t1

t′
...

∫ t2n−1

t′
dt1...dt2ne

−a(t1−t2+...+t2n−1−t2n)(A3)

One can first easily show that An(t, t
′) = An(t− t′, 0), so

that only An(t) := An(t, 0) needs to be evaluated. Then,
the form of the exponential calls for a change of variable
of the form t1, ..., t2n → t1 − t2, ..., t2n−1 − t2n, t2n =
u1, ..., u2n. Using this new set of variables, An(t) can be
written,

An(t) =

∫
· · ·

∫
0<u1,...,u2n
u1+..+u2n<t

du1 . . . du2ne
−a(u1+...+u2n−1), (A4)

where the exponential now only depends on the odd
terms u2i+1. The constraint

∑2n
i=1 ui < t can be en-

forced through the introduction of an indicator function
1∑2n

i=1 ui<t, so that,

An(t) =∫
· · ·

∫
0<u1,...,u2n

du1 . . . du2ne
−a(u1+...+u2n−1)1∑2n

i=1 ui<t(A5)

The integration over even indices corresponds now to a
volume integral over an n-dimensional simplex,∫

· · ·
∫

0<x1,...,xp

dx1 . . . dxp1∑p
i=1 xi<α =

αp

p!
. (A6)

Splitting Eq. A5 over even/odd indices, one can then
show that,

An(t) =

∫
· · ·

∫
0<u1,...,u2n−1

du1 . . . du2n−11
∑n−1

i=0 u2i+1<te
−a(u1+...+u2n−1)

∫
· · ·

∫
0<u2,...,u2n

du2 . . . du2n1∑n
i=1 u2i<t−

∑n−1
i=0 u2i+1

=

∫
· · ·

∫
0<u1,...,u2n−1

du1 . . . du2n−11
∑n−1

i=0 u2i+1<te
−a(u1+...+u2n−1)

(t− u1 − . . . u2n−1)
n

n!

(A7)

The integrand in the last expression only depends on the

sum u1 + . . .+ u2n−1. Thus, defining x =
n−1∑
i=0

u2i+1 and

changing the integration variables accordingly, one ends

up with,

An(t) =

t∫
0

dxe−ax (t− x)
n

n!

xn−1

(n− 1)!
. (A8)
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ΣNN can thus be written,

ΣNN (t, 0) = ert

{
1 +

∑
n≥0

(βλD)n+1

∫ t

0

dx e−ax (t− x)
n+1

xn

(n+ 1)! n!

 . (A9)

The latter expression involves the series development of
the Modified Bessel function of the first kind I1. Rein-
stating the lower bound t′ into the equation, one then
has,

ΣNN (t, t′) = er(t−t′)

{
1 +

∫ t−t′

0

dτe−rτ

√
βλD(t− t′ − τ)

τ

× I1

(
2
√
βλDτ(t− t′ − τ)

)}
. (A10)

One the same model, one can show that,

ΣMM (t, t′) = e−λD(t−t′)

{
1 +

∫ t−t′

0

dτeaτ
√
βλD(t− t′ − τ)

τ

×I1
(
2
√
βλDτ(t− t′ − τ)

)}
, (A11)

ΣNM (t, t′) = βe−λd(t−t′)

×
∫ t−t′

0

dτ eaτI0

(
2
√
βλDτ(t− t′ − τ)

)
,(A12)

and

ΣMN (t, t′) = λD er(t−t′)

×
∫ t−t′

0

dτe−aτI0

(
2
√
βλDτ(t− t′ − τ)

)
.(A13)

All these expressions contain integrals that can be fur-
ther evaluated. After successive change of variables, and
setting Ω = 4βλD + λ2D + 2λDr + r2, one can show [46]
that,

ΣNN (t, t′) =
e

1
2 (r−λD)(t−t′)

√
Ω

{√
Ωcosh

(
1

2

√
Ω(t− t′)

)
+(r + λD) sinh

(
1

2

√
Ω(t− t′)

)}
, (A14)

ΣMM (t, t′) =
e

1
2 (r−λD)(t−t′)

√
Ω

{√
Ωcosh

(
1

2

√
Ω(t− t′)

)
−(r + λD) sinh

(
1

2

√
Ω(t− t′)

)}
, (A15)

ΣNM (t, t′) = 2β
e

1
2 (r−λD)(t−t′)

√
Ω

sinh

(
1

2

√
Ω(t− t′)

)
,

(A16)

ΣMN (t, t′) = 2λD
e

1
2 (r−λD)(t−t′)

√
Ω

sinh

(
1

2

√
Ω(t− t′)

)
.

(A17)
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[37] U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior
(Cambridge University Press, 2012) pp. 1–511.

[38] A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa,
X. Zheng, Z. Mao, W. Cai, M. M. Meerschaert,
M. Ainsworth, and G. E. Karniadakis, What is the frac-
tional Laplacian? A comparative review with new re-
sults, Journal of Computational Physics 404, 109009
(2020).

[39] A. Zoia, A. Rosso, and M. Kardar, Fractional Laplacian
in bounded domains, Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics 76, 10.1103/PHYS-
REVE.76.021116 (2007).
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