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Abstract

Monte Carlo criticality simulations are widely used in nuclear safety demonstrations, as they

offer an arbitrarily precise estimation of global and local tallies while making very few assumptions.

However, since the inception of such numerical approaches, it is well known that bias might affect

both the estimation of errors on these tallies and the tallies themselves. In particular, stochastic

modeling approaches developed in the past decade have shed light on the prominent role played by

spatial correlations through a phenomenon called neutron clustering. This effect is particularly of

great significance when simulating loosely coupled systems (i.e., with a high dominance ratio). In

order to tackle this problem, this paper proposes to recast the power iteration technique of Monte

Carlo criticality codes into a variance reduction technique called Adaptative Multilevel Splitting.

The central idea is that iterating over neutron generations can be seen as pushing a sub-population

of neutrons towards a generational detector (instead of a spatial detector as variance reduction

techniques usually do). While both approaches allow for neutron population control, the former

blindly removes or splits neutrons. In contrast, the latter optimizes spatial, generational, and

spectral attributes of neutrons when they are removed or split through an adjoint flux estimation,

hence tempering both generational and spatial correlations. This is illustrated in the present article

with a simple case of a bare slab reactor in the one speed theory on which the Adaptive Multilevel

Splitting was applied and compared to variations of the Monte Carlo power iteration method used

in neutron transport. Besides looking at the resulting efficiency of the methods, this work also aims

at highlighting the main mechanisms of the Adaptive Multilevel Splitting in criticality calculations.

Keywords — Monte Carlo Criticality Simulations, Neutron Clustering, Power Iteration, Variance

Reduction, Adaptive Multilevel Splitting
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I. INTRODUCTION

For a long time, dating back 80 years, the simulation of neutron transport in multiplicative

media has been one of the main motivations leading the development of intensive systems (digital)

calculation capabilities and the Monte Carlo algorithm itself. Nuclear engineers and researchers

still consider Monte Carlo methods as high fidelity methods, compared to deterministic ones, since

they estimate global and local tallies with an arbitrary precision while making very few hypotheses.

Nuclear data uncertainties are often considered as the only source of uncertainty (while others

such as technological uncertainties are usually neglected or ignored), aside from the stochastic

fluctuations intrinsic to the very nature of the method. Therefore, Monte Carlo simulations are

widely used as reference calculations when validating new models/methods.

Criticality calculations have been used for decades in reactor physics to characterize the

behavior of multiplicative nuclear systems through their keff by solving the transport critical equa-

tion [1, 2, 3, 4, 5]. This equation takes the form of an eigenvalue equation in which fixed neutron

sources are neglected (for instance, spontaneous fissions), and the production term of the equation

is modified to ensure that the neutron population remains constant through generations. Solving

this k-eigenvalue equation by Monte Carlo methods is generally done using an iterative algorithm

based on the power iteration method, and therefore allows characterizing the fundamental mode of

the system as if it was exactly critical. Despite fundamental questions related to the inner nature

of the problem that is solved due to the renormalization of fission neutrons by the keff [6], this

method has made a consensus when it comes to criticality calculations. It is now widely used not

only in nuclear criticality safety but also in reactor physics. For loosely coupled systems, however,

it can exhibit convergence issues [7] that can lead to potentially significant errors in estimating

global and local tallies and their statistical uncertainties. By loosely coupled systems, we mean

systems in which neutrons may have difficulty travelling from one part of the geometry to another

over several generations, typically large systems.

Indeed, in the late 60’s, different works shed light on the biases on the keff estimation in crit-

icality calculations [8, 9, 10, 11, 12] which were however increasingly used by the nuclear industry.

Later, Ueki et al. [13], and Dumonteil et al. [14] highlighted respectively the fact that generational

and spatial correlations were also a source of biases in the spatial flux estimation. Additionally,

different works [15] pointed out that tallies estimators are usually built from observations drawn
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in successive generations of neutrons which lead to an actual underestimation bias of the tallies

uncertainty [16, 13].

At the heart of these observations lies the fact that, while both types of correlations (genera-

tional and spatial) are deeply rooted in the fission phenomenon and therefore also develop in actual

nuclear configurations [17], their magnitude might indeed soar in numerical simulations due to the

combination of the population control and the small number of neutrons that can be simulated

compared to natural systems. In particular, the so-called neutron clustering effect has received

considerable attention in the past decade. It is typical of branching spatial processes since its

origin is found in the asymmetry between neutron captures, which occur everywhere, and neutron

births, which can only happen in the vicinity of other neutrons. Whenever the system is loosely

coupled, and even in the presence of absorbing boundaries [18], the asymmetry creates spatial

patterns of randomly distributed neutron clusters. This results in the under-sampling of some

regions and ultimately leads to biased estimates of the global (e.g., keff) and local (e.g., flux) tallies

[19], which can have drastic consequences when feedback effects are taken into account through

multi-physics coupling [20, 21]. This phenomenon, called neutron clustering, has been investigated

using statistical mechanics tools and, in particular, could be modeled using the so-called branching

Brownian motion, which couples a Galton-Watson birth-death process to standard Brownian mo-

tion [14, 18, 22, 23]. Although neutron clustering is usually mitigated by sampling more particles

into the Monte Carlo simulation, different strategies have been tested to avoid the occurrence of

this phenomenon. While attenuating the phenomenon, neither the introduction of two-time scales

that reproduce the effect of delayed neutrons nor the presence or absence of population control

[24] affect this qualitative picture [25, 26]. Because the persistence of neutron families was the key

to counter this effect in simulations, beneficial modifications of the Monte Carlo power iteration

method were recently investigated [27, 20, 28].

Starting from these last observations, this paper proposes a different approach to tackle

generational and spatial correlations (hence, to temper Monte Carlo criticality biases). The ob-

servation that drives our approach is that the power iteration randomly kills or splits neutrons

during population control. The only way to ensure that neutron families extinction is slowed down

is to restart neutrons that will survive for many generations. Hence, the paradigm change here

consists of seeing the population control acting on a super/subcritical medium as a way to either

4



select neutrons or enforce neutrons persistence through generations. In other words, the goal is

to estimate the asymptotic state of our system conditioned on its survival: such approaches are

known in mathematics as Fleming-Viot processes [29, 30]. These processes can also be seen as an

estimator for rare events [31] and therefore as a variance reduction techniques [32] which primarily

aims at "pushing" neutron to a given "detector" without introducing any bias in the estimates of

tallies associated to this detector. These techniques can use an importance map whose quality will

condition the improvement in the method efficiency. In the present case, our detector could be a

generational detector, and the importance map could be the adjoint flux [33, 34, 35] that could be

estimated on-the-fly or using external codes. A generalization of such Fleming-Viot processes that

allows for handling importance functions has recently appeared. This method is based on the use

of particle splitting and using an on-the-fly estimation of the importance levels at which particles

are split [36]. It has been named Adaptative Multilevel Splitting (AMS) and has been adapted to

neutron transport in the context of shielding calculations [37, 38]. Following encouraging prelimi-

nary results [39], the present paper will show that modification of this variance reduction technique

that has proven successful in shielding calculations can also help mitigate correlations and biases

in Monte Carlo criticality calculations. It will also show that AMS can be used alone or on top of

other population control techniques (such as the branchless collision method [15]).

The paper is organized as follows. In Section II, the Adaptive Multilevel Splitting method,

and its extension to criticality calculations are presented, while Section III outlines the main numer-

ical results and discussions about methods performances. All methods were compared regarding

keff and flux estimations, as well as their impact on spatial and generational correlations.

II. ADAPTIVE MULTILEVEL SPLITTING

II.A. Original algorithm for particle transport

The Adaptive Multilevel Splitting (AMS) is a method initially developed in applied math-

ematics to compute rare events probability. Initially intended for continuous Markov chains [36],

it was then adapted to discrete Markov chains [40] and used in particle transport for attenuation

and radiation protection problems [41, 42].

The concept is to re-sample particles towards a detector iteratively. The key idea underlying

the method is to re-sample particle histories closer and closer to a detector. To this aim, neutron
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histories are first simulated from birth to death (disappearance of all its particles by capture,

leakage, Russian Roulette) and ranked following an importance criterion. According to the ranking,

the least important histories are deleted, and histories re-sampled among the remaining ones. The

general algorithm is illustrated in Figure 1. The general algorithm is here described for analog

transport of particles, it is however possible to use the AMS in a weighted Monte Carlo game [40].

Initialize
N neutron

histories/tracks

Transport
particles

All
particles

are dead ?

Ranking tracks

Stopping criterion
(I(K) = IMAX)

met ?

Re-sample
new tracks

End of iterations

Collision
Splitting
event ?

Create new
branch in track

Add point
in branch

Increasing
importance
in branch ?

Add point
in branch

Order tracks
I(1) ≤ I(2) ≤ ... ≤ I(N)

Define kill
level as I(K)

Kill Ki tracks
with I ≤ I(K)

Sample Ki new
tracks from the

N −Ki remaining
tracks (with
I > I(K))

LEGEND

Step

Substep

Test

yes

no

yes

yes

no

yes

no

Fig. 1. AMS algorithm

II.A.1. AMS tree structure and transport step

The AMS consists of successive fixed source simulations, where each batch , i.e. each sim-

ulation, is composed of N tracks (initially independent) representing N particle histories. Here,

a particle history is the whole trajectory of a particle and its progeny arising from collisions and

splitting events, from the birth of the initial particle to the death of all its progeny. At each colli-

sion, the outgoing particle of the collision is assigned an importance value using a cost function (see

Section II.A.4). If the particle importance is higher than the previous branch point importance,

the state of the particle outgoing the collision is saved as a point in the AMS structure. Each track

6



initially starts with a unique branch, and new branches are appended every time a splitting event

occurs (it can be physical like fission or numerical like splitting in a weighted Monte Carlo game).

At any time, a track importance is equal to the maximum importance of its branches, and the

importance of a branch is equal to the maximum importance amongst its points. The resulting

tree structure is illustrated in Figure 2.

AMS BATCH

Iteration number

TRACK 1

...

TRACK N

Importance

BRANCH 1

BRANCH 2

...

Importance

POINT 1

POINT 2

...

Position

Direction

Energy

Generation

Weight

Importance

Fig. 2. AMS track/branch/point structure

II.A.2. Ranking the histories

Once all particles in an iteration i are dead (by capture, leakage, Russian Roulette), the N

tracks are ranked in increasing order of importance. At this point, a kill level Ikill is defined by

the importance of the K-th worst track, where K is a user-defined parameter.

I
(i)
kill ≡ I(i)(K) (1)

When a track has reached the detector, its importance is set to infinity. At the end of an iteration,

the algorithm samples new tracks according to the following description if the stopping criterion

that is defined hereinafter has not been met.

AMS iterations stop when

I
(i)
kill = I

(i)
MAX (2)

where I
(i)
MAX is the maximum track importance at iteration i. If the algorithm iterated correctly
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(see discussion on the importance in Section II.A.4), it should stop when

I
(i)
kill = I(i)(K) = ∞. (3)

This equation implies that tracks K to N have reached the detector (since their importance is

superior to Ii(K)), hence, at least N −K + 1 tracks have reached the detector.

II.A.3. Sampling new particles

After the kill level has been computed, all tracks whose importance is lower or equal to this

level are deleted from the batch structure. Since multiple tracks can have the same importance,

the number of deleted tracks is not necessarily equal to K (it can be higher), and we denote it Ki

at iteration i, where Ki ≡ card(S) ≥ K, with S defined as

S =
{
k, k ∈ [1;N ] | I(i)(k) ≤ Ikill

}
. (4)

To keep the total number of tracks constant, Ki tracks are sampled uniformly among the

remaining ones to be duplicated to make up for the deleted ones. When a track is selected for

duplication, the first point of importance greater than the kill level is copied into the new track.

The new track thus created is simulated as described in Section II.A.1. This is illustrated by Figure

3.

Once the AMS algorithm has stopped (we note the last iteration I), scores are computed

using the following estimator [40, 41]

ϕ̃detector = ϕ
(I)
detector × αAMS . (5)

where ϕ̃detector is an unbiased estimator of ϕdetector, ϕ
(I)
detector is the estimation of score ϕdetector

based on all iterations tallies using classical Monte Carlo estimators (e.g., track length or collision

estimators) and αAMS is defined by

αAMS ≡
I∏

i=1

(
1− Ki

N

)
. (6)

While αAMS is used to correct tallies so that results remain unbiased, it can also be interpreted
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I
(1)
kill

x

Detectory

TRACK 1

TRACK 2

TRACK 3

(a) Iteration 1

I
(2)
kill

x

Detectory

TRACK 1

TRACK 2

TRACK 3

(b) Iteration 2

I
(3)
kill

x

Detectory

TRACK 1

TRACK 2

TRACK 3

(c) Iteration 3

Fig. 3. AMS iterations with a detector defined in the (x, y) plane, with N = 3 and K = 1. The
closer the detector, the more important the particle is.

.

as an estimation of the probability to reach the detector. Although it is not described here, it is

possible to define an on-the-fly scoring procedure to compute scores outside the detector.

II.A.4. About the importance function

The importance function is a function that maps RL → R, where L is the number of pa-

rameters considered to compute the importance (position, direction, energy, ...). Its purpose is

to rank tracks in the AMS (see Section II.A.2) and should be chosen to push neutron histories

towards the detector. The optimal choice for that function should lead to the best estimation of

the probability αAMS leading to the minimum variance [43]. In particle transport, although there

is no formal demonstration for the AMS, the solution of the adjoint Boltzmann equation for the

detector [35] is generally considered to be the optimal choice.

Although there are no further requirements, it is best to avoid importance functions pre-

senting discrete levels that could lead to aggregates of particles. Indeed, for a discrete importance
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function, if the N−K+1 particles with the highest importance were on the same level, the splitting

level would be equal to I
(i)
MAX < ∞, and the iterations would stop before enough particles have

reached the detector.

Finally, since the importance function is only used to rank particles, only the relative impor-

tance between two particles matters, making the AMS a reasonably robust and easy to use method

[42].

II.B. Adaptation to criticality calculations

For subcritical systems, the neutron population tends to go extinct with time/generationsa.

Therefore, it is clear that the lower the keff, the less likely a neutron history is to survive over several

generations, and reaching a distant generation is then a rare event. In criticality calculations, the

AMS is thereby used to re-sample histories and push them across generations.

In a subcritical system, keff can be interpreted as the probability for a neutron to go from one

generation to the next. With that in mind, the probability for one neutron history with initially

one particle to reach generation G is

Psurvive(G) = kGeff. (7)

Hence, tracking neutrons over generations in a subcritical system can also be considered as an

attenuation problem over generations when no population control is done, making this a suitable

scope for using the AMS. The idea is then to define a detector in generation (i.e., a target generation

towards which neutrons will be pushed by the re-sampling algorithm) and to track neutrons not in

time but over successive generations. For this purpose, in the subsequent sections of this article,

the importance function used to rank tracks will be of the following form

I(rrr, g) = g + f(rrr) (8)

where g is the neutron generation to push neutrons over generations, and 0 ≤ f(rrr) ≤ 1 is a function

of space used to discriminate neutrons of the same generation so that the importance function is
aOne can artificially define a generation as a neutron trajectory between birth and death by absorption or

leakage. Therefore, neutrons born by fission are considered in the next generation of the particle that caused the

fission.

10



not discrete (see Section II.A.4).

While the detector is defined as the last generation, it is possible to rely on the on-the-

fly scoring procedure mentioned in Section II.A.3 to compute unbiased reaction rates (or any

derived score) in the successive generations that precede that of the detector. Thus, it is still

possible to compute scores by averaging over successive generations of the same batch. Additionally,

the AMS does not make any assumption on estimators that are used to compute scores. It is

thereby theoretically possible to make use of implicit estimators that are usually used in criticality

calculations to compute the keff for example.

The resulting algorithm is compared to the Power Iteration in Figure 4.

N fission sites

initialize

FISSION BANK

N neutrons

PARTICLE DEATH

fission
capture

leakage

sample N neutrons

then empty bank

fill fission

bank

Transport neutrons over 1 generation

capture

leakage

Iterate

over G

cycles

(a) PI: iterates over fission neutrons (1 generation
per iteration) after being initialized with an arbi-
trary fission distribution. Neutrons are sampled
from fission neutrons of the last iteration.

N analog tracks

initialize

N TRACKS

Ki new tracks

TRACKS DEATH

all branches are dead

either by capture, leakage, ...

delete Ki tracks

sample Ki

new tracks

rank the

N tracks

Transport tracks over several generations

tracks structures are filled at collisions

Iterate until

N −K + 1 tracks

have reached

generation G

(b) AMS in criticality: iterates over re-sampled
tracks (multiple generations per iteration) after be-
ing initially fed with N analog tracks.

Fig. 4. Comparison scheme between the Power Iteration (PI) and AMS used for criticality.

While this holds for subcritical systems, it is no longer valid when the system is critical

or supercritical. In the description above, the neutron population is not constrained by some

population control mechanism, which allows for fluctuations in the system’s number of particles.

This mechanism can induce population growth for systems close to criticality (and supercritical

systems), thus increasing the number of branches inside a track. Since it is necessary to take those

branches into account during the re-sampling step, the number of re-sampled branches may increase

as iterations go by, leading to slower and slower iterations (as well as more and more memory used).

Besides, as in fixed source calculations, neutron histories must end at some point to be able to
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rank the tracks as previously described, which could be troublesome in critical and supercritical

regimes. Thus, the branchless collision method [15] was used to limit the number of branches inside

a track (equal to one if no splitting is used), preventing these issues. For a system with leakage,

making particles carry population fluctuations through statistical weights produces a numerically

subcritical system (no particles are produced by splitting, and some disappear by leaking out of

the geometry). Hence, it is possible to reproduce a population attenuation over generations that

appeals to the use of the AMS whatever the keff if the branchless collisions method is used.

II.B.1. Branchless collisions method

The branchless collisions method is usually used in time-dependent calculations in which

restricting the number of particles is of the upmost importance. Due to the population control

step that is performed in criticality calculations, branching processes are not an issue regarding

computation costs. However, since the branchless collisions method has been used to compute

results using power iteration based calculations presented later in this article, it is appropriate to

present its implementation in the criticality calculations that are presented later.

The method is a combination of weighted fission sites and forced fission [15]. Indeed, source

particles are sampled as if only one particle was born from a fission event (i.e., the number of

source particles before population control is not randomly sampled for each fission site). However,

each fission site carries a weight depending on collisions undergone by the neutron that led to this

fission site.

As a matter of fact, instead of sampling a capture, a fission or a scattering with probability

Σc/Σtot, Σf/Σtot or Σs/Σtot respectively, only two reactions may occur: fission or scattering. The

analog fission probability is thus replaced by

P (fission) =
νΣf

νΣf +Σs
, (9)

where ν is the average number of neutrons emitted by fission, and Σs, Σf , Σc and Σtot are the

scattering, fission, capture and total macroscopic cross sections of the medium in which the collision

occurs. The analog scattering probability is replaced by

P (scattering) =
Σs

νΣf +Σs
. (10)
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The term ν is used to account for the neutron multiplicity due to branching events. Each

particle weight is modified after each collision to compute unbiased estimator of scores

wout = win
νΣf +Σs

Σtot
(11)

where wout is the weight of the outgoing particle and win is the weight of the incoming particle.

III. APPLICATION TO A ONE-DIMENSIONAL SLAB REACTOR

To characterize the AMS behavior regarding criticality calculations, the method was tested

on a one-dimensional bare slab reactor. We tested the method on a simple case in one dimension

with mono-energetic neutrons, thus limiting the number of particles needed to explore the space

and allowing us to compare results to a simple analytical solution.

III.A. Bare slab properties

The modeled system is a one dimensional homogeneous bare slab reactor with leakage on

the sides, the total size of the slab being 100 cm, from xmin = −50.0 cm to xmax = 50.0 cm. The

slab size was chosen so the system would be loosely coupled considering the cross sections of the

system, presented in Table I. Three reactions are possible following a collision in analog transport:

fission, capture, and isotropic scattering. The cross sections were arbitrarily chosen to model a

slightly supercritical system to assess the capability of the AMS to model supercritical systems

using the branchless collisions method, the resulting keff being equal to 1.03437. The simplicity of

TABLE I
Physical properties for homogeneous 1D rods

Mean number of fission neutrons (ν̄) 2.383
Neutron speed (v) 2.2× 104 cm.s−1

Macroscopic cross sections
Fission (Σf ) 0.250 cm−1

Absorption (Σa) 0.575 cm−1

Scattering (Σs) 0.425 cm−1

Total (Σtot) 1.00 cm−1

the system also allowed us to compute an analytical solution using diffusion theory [44], which is
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used as a comparison in the following results

ϕ(x) = ϕ0 cos

(
π

2(a+ z0)
x

)
(12)

with ϕ0 depending on the normalization, a being the reactor half size (here a = 50.0 cm) and z0

is the linear extrapolated end point of the reactor and is defined as

z0 =
2

3Σtr
(13)

where Σtr is the transport cross section, which is equal to the total macroscopic cross section Σt

since all collisions are isotropic in the laboratory referential.

Different calculation options were tested and compared to assess the effects of each regarding

clustering and variance estimation. The sets of options corresponding to each case are described

in Table II. Four different simulations were done for the power iteration to distinguish between

the effects of the methods used. As a matter of fact, collisions were simulated either by in an

analog way or by using the branchless collisions method. As for the population control operated

between cycles, two sampling methods were used, a simple sampling with replacement and the

combing method [45]. For the AMS, since the system is supercritical, no simulation with analog

collisions was done since it would lead to a divergence of the particle number over generations,

hence computation cost issues.

TABLE II
Description of calculation parameters

Case Population control Collisions Importance (AMS only)

PI analog sampling with replacement analog
PI branchless sampling with replacement branchless
PI combing combing analog
PI combing branchless combing branchless
AMS branchless AMS branchless g + cos

(
πx
2a

)
All the calculations presented below started from a uniform fission distribution and were done

with 1000 neutrons per cycle (N = 1000 initial independent tracks for the AMS) over G = 1000

successive generations in M = 1000 independent runs. Having too few particles per generation to

facilitate clustering in all cases was deliberate to study the effects of methods on neutron clustering.
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Finally, estimators used in this work for the flux and the keff rely on the on-the-fly scoring

procedure detailed in Ref. [42]. In each generation i, the flux was computed using the collision

estimator and normalized so its spatial shape could be averaged over successive generations. The

keff estimator is based on the physical interpretation of the keff, and was computed as the ratio of

neutrons produced in a generation over the ones produces in the previous generation.

III.B. Convergence of inactive cycles and behavior of the Shannon entropy

Firstly, the convergence of the keff estimates in each generation, and the Shannon entropy

[46] of the system were considered to set the number of inactive cycles. Firstly, the convergence

of the keff is shown on Figure 5 as the mean keff per generation, computed in M independent

simulations, as a function of the cycle number

keff(g) =
1

M

M∑
m=1

N
(m)
g

N
(m)
g−1

(14)

where N
(m)
g is the number of neutrons born in generation g for simulation m. Its convergence is

quite fast for every calculation. Apart from statistical fluctuations that have no impact on the

mean value, as seen later, all methods seem to converge towards the same value.

Secondly, the Shannon entropy was used to assess the spatial flux convergence [46] and set

the number of generations that have been discarded when computing average scores. Its averaged

value over M independent simulation has been computed in each generation as such

H(g) =
1

M

M∑
m=1

[
−

Nbins∑
l=1

ϕ
(m)
g (xl)

ϕ
(m)
g,tot

log2

(
ϕ
(m)
g (xl)

ϕ
(m)
g,tot

)]
(15)

where Nbins is the number of spatial bins along the x (here 100 bins), ϕ(m)
g (xl) is the normalized

flux estimated in generation g in bin xl for simulation m, and ϕ
(m)
g,tot is the normalized flux at

cycle g for simulation m integrated over x. The results are plotted in Figure 6. As expected, the

entropy converges slower than the keff. All cases were considered to have reached an acceptable

convergence for g = 200. For the rest of the article, the number of inactive cycles was set to 200.

Unlike the keff, the Shannon entropy, as defined in Equation 15, and presented in Figure

6, does not converge to the same asymptotic value for all the different methods and is lower
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Fig. 5. Convergence of the average keff (over 1000 independent runs) with 3σ confidence intervals.
Cases PI branchless, PI combing branchless, and AMS branchless show the same results, with
narrow confidence intervals.

than the theoretical value for a cosine shape distribution in all cases. Moreover, the entropy

presents oscillations when the AMS is used. This phenomenon is likely due to how the AMS

injects particles into the simulation and can be decomposed into two underlying mechanisms: the

numerical subcriticality of our system (1) and the re-sampling of new particles by the AMS (2), as

portrayed in Figure 7. Indeed, as explained in Section II.B, the system was set to be numerically

subcritical thanks to the branchless collisions method to model an attenuation problem for the

AMS. Thus, without population control, the population progressively goes extinct over generations

(see mechanism (1) on Figure 7). As for the re-sampling of new particles, detailed in Section II.A.3,

the algorithm samples about K new tracks close to an importance level defined by the kill level

of the current iteration. Since the generation of a particle mainly drives the importance value, as

stated by Equation 8, we have

g ≤ Ikill(i) ≤ g + 1. (16)

The new tracks sampled by the algorithm will therefore start either in generation g with an
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importance higher than Ikill(i), or in generation g + 1 (illustrated by the dashed area on Figure

7). This will result in a much higher increase in the total population sampled in these generations

(see mechanism (2) on Figure 7). Intuitively, the more particles in the system, the closer (and

smoother) their distribution will be to the natural distribution. Hence, as the system loses particles,

the flux estimation gets noisier due to statistical fluctuations. Although these fluctuations have

no visible impact on the average estimate, they slightly modify the entropy. Consequently, when

the number of particles in the system is increased by the re-sampling of the AMS in generations

g and g + 1, the flux estimate in generation g + 1 gets smoother than in previous generations,

inducing an increase in the entropy (which will then decrease as particles disappear, until the

next re-sampling step, and so on). To reduce the amplitude of these fluctuations, one could

reduce the number of re-sampled particles at each iteration by reducing the value of K. It would

also increase the frequency of the entropy since the re-sampling of particles would occur more

frequently. To illustrate the phenomenon, the mean number of collisions (unweighted) and the

corresponding entropy per generation were computed and plotted on Figure 8 for K/N = 25% and

K/N = 10%. Making the system less subcritical (numerically) should also reduce the frequency of

the oscillations; however, it should not modify the amplitude of the oscillations. Another way to

make the oscillations disappear without changing the simulation would be to compute the Shannon

entropy over a coarser spatial mesh, which would lessen the spatial fluctuations.

In a nutshell, the AMS does not seem to lengthen nor abridge the convergence period.

Besides, the observed oscillations of the flux entropy it might produce are natural and do not

affect the average flux estimation.

III.C. Fundamental mode estimates

The fundamental mode of a multiplicative system described by the k-eigenvalue equation is

characterized by the highest eigenvalue k0 = keff and the associated eigenvector : the fundamental

flux distribution.

For the system described earlier, the keff distribution over 800 actives cycles in 1000 in-

dependent simulations is plotted in Figure 9. Cases with branchless collisions show quite similar

distributions, with much less dispersion around their mean value than for the non-branchless cases.

Hence, regarding the keff estimation, the branchless collisions method seems to be the main con-
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tributor to the variance reduction, while the differences between population control methods are

not very significant.

Besides the eigenvalue, the fundamental flux was also computed over 800 successive genera-

tions in 1000 independent simulations, and is plotted on Figure 10. The first striking observation

is the lack of consistency between the solutions of the different methods, even with 3σ confidence

intervals. Although they do not include the analytical solution within their 3σ confidence inter-

val, the cases that show the less difference with the analytical cosine are the power iteration with

branchless collisions and combing used for population control case, and the AMS combined with

branchless caseb.

These observed deformations of the flux shape are likely due to clustering effects that affect

the estimation of the mean spatial flux. Since our goal was to compare methods behavior regarding

clustering, those effects were expected due to the low number of particles simulated in each batch,

and increasing their number would tend to mitigate clustering effects until they disappear.
bThe analytical solution was computed using the diffusion theory, this is why minor discrepancies are expected,

especially on the sides.
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By flattening the average flux distribution, the presence of neutron clusters should increase

the entropy of the average distribution since the entropy of a uniform distribution is higher than the

entropy of a cosine distribution. At the same time, the estimation of the spatial flux in a generation

is noisier than its average over multiple generations, which tend to lower the entropy, and clusters

in a generation should lower the entropy even more. This could explain the different asymptotic

values displayed in Figure 6. Table III displays the values of the average spatial flux entropy, as

well as the asymptotic value to wich the generational entropy converges (the one shown in Figure

6). We can see that the the averaged flux entropy is systematically higher than the reference

solution entropy due to flatter spatial shapes than the analytical diffusion solution, whereas the

asymptotic entropy reached in a generation is systematically lower due to statistical noise (which

could be reduced if the number of bins used to compute the entropy were to be decreased). In
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that regard, the AMS branchless and PI combing branchless cases present the lowest discrepancies

(about the same order of magnitude for both methods) with the analytical solution, which implies

less noise in the spatial estimation of the flux and an average value closer to the analytical solution

than the other cases.

These residual discrepancies, observed both on the flux and the entropy, with the diffusion

solution arise from the fact that diffusion fails to faithfully describe transport phenomenon near

boundaries. It is especially true in this case as the scattering cross section is of the same order

of magnitude than the capture cross section. It should, however, not be subject to question the

observations made on the clustering phenomenon, which are much more significant. Increasing

the number of particles per generation is expected to decrease clustering effects in the three other

cases (namely PI analog, PI combing and PI branchless). All calculations would then converge

towards the same solution.

The observed bias on the average flux shape related to the clustering phenomenon is further

examined in the following section.
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TABLE III
Values for the asymptotic entropy reached during source convergence and for the flux distribution
averaged over active cycles for each case. The differences are computed with respect to the analyt-
ical solution; a negative difference means that the distribution is more ordered than the analytical
one (in terms of entropy), while a positive difference means that the distribution is less ordered
than the analytical one (closer to a uniform distribution).

Case Converged entropy Averaged flux entropy
value difference value difference

Analytical solution 6.4673 - 6.4673 -
PI analog 6.0525 −4.148× 10−1 6.5424 7.511× 10−2

PI branchless 6.2427 −2.246× 10−1 6.4975 3.020× 10−2

PI combing 6.1838 −2.835× 10−1 6.5088 4.154× 10−2

PI combing branchless 6.3976 −6.969× 10−2 6.4687 1.375× 10−3

AMS branchless 6.3629 −1.044× 10−1 6.4704 3.168× 10−3

III.D. Effects of the AMS on clustering

To assess the probability for clusters to appear, spatial correlations were computed using

empirical estimations of Pearson’s correlation coefficient between each spatial bin defined by

ρij =
Cov [ϕ(xi), ϕ(xj)]

σ [ϕ(xi)]σ [ϕ(xj)]
(17)

where Cov [ϕ(xi), ϕ(xj)] is the covariance between flux estimations in spatial bins xi and xj , and

σ [ϕ(xi)] is the standard deviation of the flux in spatial bin xi. The results are presented on Figures

11 and 12 for 100 spatial bins. While cases PI analog, PI branchless, and PI combing show similar

levels of spatial correlations (see Figure 11), combing branchless and AMS branchless cases present

almost nonexistent spatial correlations as seen in Figure 12. Since these correlations are deeply

linked to the probability for clusters to form [22], this implies that the two above mentioned cases

are the least likely to present neutron cluster problems. High correlation levels are linked to the

number of correlated pairs of particles in the system, whose number increases as generations go by

because of independent familyc extinctions [23, 27].

Regarding the loss of independent neutron families, Figure 13 shows that both the branchless

collisions method and population control play a nonnegligible role in preserving uncorrelated pairs

of particles. Indeed, both the combing method and the AMS seem to allow for more neutron
cA neutron family is defined as the set of all neutrons descending from the same ancestor amongst neutrons

initially present.
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Fig. 11. Spatial correlations (scale set from −1 to 1)
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Fig. 12. Spatial correlations (scale set from −0.1 to 0.1)

lineages to be conserved over generations.

In the power iteration method, the death of a particle can occur from physical phenomena

during the transport stage or by being combed out or not selected for duplication during the
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population control step. To look at these two mechanisms in more detail, Figures 14 and 15

present the number of independent families removed from the simulation throughout the transport

stage and during the population control step, respectively.

Regarding the death occurring during transport, their relative number is higher when branch-

less collisions are not used, as seen in Figure 14, because the method reduces the number of un-

correlated pairs that disappear during the transport step by preventing families from dying from

capture.

Clusters of particles can form due to the asymmetry between particle death, which is likely

to happen everywhere in the core, and the birth of new particles, which happen only at fission

sites. Regulating the particle population thus also affects the formation of clusters by removing

independent families (which are not sampled during the population control step), reducing the

number of uncorrelated particles in the process. It also contributes to regrouping particles into

areas of the geometry because the probability of sampling a particle from the fission bank in a region

of the geometry will depend on the density of particles inside that region, hence favoring high-

density regions like clusters. In that regard, the combing is expected to be less "cluster-friendly"
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Fig. 14. Absolute (top) and relative (bottom) mean number of independent neutron families killed
by birth/death process over generations

than sampling with replacement since particles can be sampled a limited number of times by

combing. As seen in Figure 15, the combing method shows excellent results with a meager killing

rate, around a few percent. At the same time, the AMS does not appear in the absolute results

(top figure) because the AMS does not remove particles during re-sampling. It is because it never

kills independent families since the "population control" operated during the re-sampling step, see

Section II.A.3, only regenerates particles. Obtaining the same effect without taking into account

any importance function would eventually be possible by modeling the system as a Fleming-Viot
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particle systemd. Eventually, these observations are consistent with the findings of recent work

on the role of population control on clustering in Monte Carlo iterated-fission-source calculations

[27]. It is interesting to notice that using branchless collisions when population control is done by
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Fig. 15. Absolute (top) and relative (bottom) mean number of independent neutron families killed
by population control over generations

sampling with replacement (case PI branchless on Figure 15) causes more families to be terminated

than the analog collisions (case PI analog). This is because analog collisions induced more death

during transport, so the total number of independent families is lower once the population control

step is reached, as seen on the bottom plot of Figure 15 presenting a relative number of families
dTo characterize the state of this system conditioned on its survival
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being killed in the case PI analog.

As a reminder, the number of particles per cycle was deliberately too low to enable the

formation of neutron clusters to compare the methods regarding clustering issues. In the end, both

the AMS and the combing method helped reduce clustering effects by preserving more independent

families if combined with branchless collisions. In a production calculation, the number of particles

would be higher to reduce the bias on the average value. However, for loosely coupled systems where

this bias is limiting regarding the number of particles simulated in each generation, decreasing the

required number of neutrons by using an appropriate method would be attractive regarding the

global performances of the calculation.

III.E. Variance estimation

Besides a bias on the mean flux estimates due to clustering, criticality calculations can also

present a bias on variance estimates since scores are averaged over correlated generations. In order

to evaluate the bias on the flux variance estimation along the x-axis of the geometry, generational

correlation coefficients were computed as a function of the neutron position along x. Like spatial

correlations, the generational correlations were estimated using Pearson’s correlation coefficient

ρg(xl) =
Cov [ϕ0(xl), ϕg(xl)]

σ [ϕ0(xl)]σ [ϕg(xl)]
(18)

where ρg(xl) is the correlation coefficient for the flux estimate in spatial bin xl between two gen-

erations g apart, computed from M independent simulations, ϕ0(xl) and ϕg(xl) are flux estimates

in spatial bin xl in the first and k + 1-th active generations respectively, and σ [ϕ0(xl)]σ [ϕg(xl)]

is the product of their standard deviation. Figure 16 illustrates the behavior of the generational

correlations in different space bins in the case PI analog, which is expected to be the worst-case

scenario regarding correlations. In this figure, two local maxima appear along the x-axis (around

-25 cm and 25 cm, which corresponds to 1/4 and 3/4 of the slab length), and three local minima

around -50, 0 and 50 cm (0, 1/2 and 1 of the total length) in each generation. This behavior has

already been observed in previous work and is due to excitation of the eigenvector higher modes

as explained in Ref. [47]. To compare the different calculations, a slice along the x-axis is plotted

in Figure 17, around x = 25 cm which is one of the locations where correlations are the strongest.

This figure highlights that generational correlations drop quickly to negligible levels when combing
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or AMS are combined with the branchless collisions method. In a nutshell, the real variance should

be very close to the apparent one given by the Monte Carlo calculation in those two cases. Com-

puting the cycle correlations allows us to compute the real variance when estimating the Figure of

Merit.
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Fig. 16. Cycle correlations for the PI analog case.

In order to compare the efficiency of the methods, the Figure of Merit (FoM) for the flux

was computed in each spatial bin xl as such

FoM(xl) =
1

σ2
corr(xl)Tcalc

(19)

where Tcalc is the calculation time and σ2
corr is the variance of the score which was computed

accounting for generational correlations using Bienaymé’s identity such that

σ2
corr(xl) =

σ2(xl)

N

[
1 + 2

G−1∑
g=1

(
1− g

G

)
ρk(xl)

]
(20)

where σ2(xl) is the variance between estimations of the flux in spatial bin xl, N is the size of

the sample used to compute the average flux, G is the number of active cycles and ρk(xl) is the
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generational correlations coefficients defined in Equation 18.

The computation times are presented in Table IV. All methods show similar orders of mag-

nitude, with combing overall faster than the rest and AMS slightly slower. The combing speed is

due to the way source neutrons are sampled, which is more efficient than sampling with replace-

ment. Concerning the AMS, the transport part is slightly faster than in the power iteration due

to the smaller number of collisions occurring in some generations (see Figure 8). It appears that

a nonnegligible amount of time is spent in the function that adds points into the AMS structure,

which could probably be optimized.

The resulting FoM for the spatial flux is shown in Figure 18. Cases PI combing branchless

and AMS branchless display better FoM, about one to two orders of magnitude more than the three

other cases for all x. Overall, preserving the maximum number of independent pairs of particles

through appropriate population control, combined with the branchless collisions method, which

reduces the variance between fission chains length, improves the Figure of Merit of the spatial flux.

In that sense, the AMS seems to be an equivalent alternative to the combing method.
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TABLE IV
Computation time [s] for each calculation

Case Total Transport Sampling Scoring Sorting tracks Adding points

PI analog 1.822× 104
1.896× 103 7.954× 103 6.134× 103

(10) % (43) % (33) %

PI branchless 1.779× 104
1.859× 103 7.805× 103 5.949× 103

(10 %) (43 %) (33 %)

PI combing 1.497× 104
2.066× 103 4.377× 103 6.245× 103

(13 %) (29 %) (41 %)

PI combing branchless 1.392× 104
1.896× 103 3.990× 103 5.885× 103

(13 %) (28 %) (42 %)

AMS branchless 2.094× 104
1.660× 103 4.166× 101 1.199× 104 3.638× 101 3.867× 103

(7 %) (0 %) (57 %) (0 %) (18 %)
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Fig. 18. Figure of Merit for the flux estimation over x.

IV. CONCLUSION

In this work, the Adaptive Multilevel Splitting (AMS) algorithm initially designed for vari-

ance reduction and used in fixed source simulations has been extended to Monte Carlo neutron

criticality calculations. The results obtained with this methodology were compared to the ones

obtained with the power iteration algorithm used in Monte Carlo calculations on a one-dimensional

homogeneous reactor slab. To assess for the population control impact on correlations and cluster-
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ing, multiple population control methods were used in the power iteration. The results produced

by the different methods were compared regarding the average keff and spatial flux, as well as

spatial and generational correlations.

Due to the fact that the AMS does not kill particles like usual population control techniques, it

has allowed to highly reduce correlations levels. It has been combined with the branchless collision

method and has showed results almost identical to those obtained with the power iteration when

the combing and the branchless collision methods were used. Compared to the other cases (power

iteration with sampling with replacement and/or analog collisions), the AMS branchless and the

combing branchless displayed spatial and generational correlation levels close to nil, resulting

in almost no clustering, despite a low number of neutrons per generation. Indeed, while the

branchless collisions method allows to improve the preservation of independent families of neutrons,

a combination of this technique and an appropriate population control method (here, regarding

the preservation of families) greatly reduced spatial correlations and thereby neutron clustering.

Overall, we managed to compute a fundamental flux distribution using the AMS with branchless

collisions with a Figure of Merit (FoM) multiplied by 100 compared to an elementary power

iteration, thus close in magnitude to the power iteration using the combing and branchless collisions

methods.

The importance function chosen in the numerical applications remained quite simple due to

the nature of the system. Indeed, we do not expect much improvement in the Figure of Merit by

changing the spatial shape of the importance in one-speed homogeneous problems. Modeling more

complex systems with a non-trivial adjoint solution should be necessary to further characterize

this method’s behavior, especially for loosely coupled systems. In these systems, neutrons would

have difficulties reaching certain regions, thus making the effects of the importance function even

more significant and potentially potentially improving the FoM compared to the combing used in

combination with branchless collisions.

Another opening for this work could be to investigate, on the contrary, approaches that

totally eliminate the importance map. Indeed, the idea of using the AMS in criticality simulations

was to characterize the asymptotic behavior of a system (e.g., the keff and the fundamental flux)

conditioned to its survival. This approach does, in essence, not require an importance function to

rank tracks and push neutron histories through time. It could be possible to get rid of this function
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by treating the system as a Fleming-Viot process, thus benefiting from the population control to

regenerate particles without killing independent families.

More importantly, since the AMS has been capable of computing a steady-state spatial flux

distribution, regardless of the reactivity of the system, it should be conceivable to take a step

further and use it to model transients in kinetics calculations. The target detector would therefore

be defined in specific time bins, e.g., one could be interested in reducing the variance of the power

distribution during the power peak. In order to achieve variance reduction in specific time bins, the

importance function would have to account for particles position in time. Hence it would be helpful

to be able to compute a time-dependent adjoint flux. Going from a time-independent adjoint flux to

a time-dependent one would also allow taking delayed neutron precursors importance into account.

Indeed, AMS branches can also carry the particle type as a parameter, making it possible to use

multiple importance functions depending on the particles nature.

Finally, no major hindrance is foreseen with regard to the implementation of the AMS al-

gorithm within a Monte Carlo code. However, implementing the AMS algorithm in a production

level Monte Carlo, in which several methods may already interact with each other, may prove to

be difficult. Indeed, the AMS must be able to perform several actions requiring to have access to

collision outputs, resampling of particles and scoring functions. Investigating simplifications of the

current implementation of the algorithm may be worthwhile.

32



ACKNOWLEDGMENTS

The authors would like to thanks Benjamin Dechenaux for his useful remarks on the present

article, as well as Tony Lelièvre for helpful discussions on the Adaptive Multilevel Splitting method.

33



REFERENCES

[1] D. Dickinson and G. E. Whitesides, “The Monte Carlo method for array criticality cal-

culations,” Nuclear Technology, 30, 2, 166 (1976).

[2] W. Goad and R. Johnston, “A monte carlo method for criticality problems,” Nuclear

Science and Engineering, 5, 6, 371 (1959).

[3] M. R. Mendelson, “Monte Carlo criticality calculations for thermal reactors,” Nuclear sci-

ence and Engineering, 32, 3, 319 (1968).

[4] J. G. MOORE, “THE SOLUTION OF CRITICALITY PROBLEMS BY MONTE CARLO

METHODS,” Advances in Nuclear Science and Technology, 73–98 (1976); 10.1016/B978-0-12-

029309-4.50009-X.

[5] H. Rief and H. Kschwendt, “Reactor analysis by Monte Carlo,” Nuclear Science and En-

gineering, 30, 3, 395 (1967).

[6] D. E. Cullen, C. J. Clouse, R. Procassini, and R. C. Little, “Static and dynamic

criticality: are they different?” , Lawrence Livermore National Lab.(LLNL), Livermore, CA

(United States) (2003).

[7] E. Dumonteil and T. Courau, “Dominance ratio assessment and Monte Carlo criticality

simulations: Dealing with high dominance ratio systems,” Nuclear Technology, 172, 2, 120

(2010); 10.13182/NT10-A10899.

[8] J. Lieberoth, “MONTE CARLO TECHNIQUE TO SOLVE. THE STATIC EIGENVALUE

PROBLEM OF THE BOLTZMANN TRANSPORT EQUATION.” Nukleonik, 11: 213-

19(Sept. 1968). (1968)URL https://www.osti.gov/biblio/4835730.

[9] R. C. Gast, “Monte Carlo eigenfunction iteration strategies that are and are not fair games

(LWBR Development Program),” (1969)URL https://www.osti.gov/biblio/6720467.

[10] D. MacMillan, “Monte Carlo confidence limits for iterated-source calculations,” Nuclear

Science and Engineering, 50, 1, 73 (1973).

34

https://www.osti.gov/biblio/4835730
https://www.osti.gov/biblio/6720467


[11] E. M. Gelbard and R. Prael, “Monte Carlo Work at Argonne National Laboratory,”

(1974).

[12] R. Brissenden and A. Garlick, “Biases in the estimation of keff and its error by Monte

Carlo methods,” Annals of Nuclear Energy, 13, 2, 63 (1986).

[13] T. Ueki, F. B. Brown, D. K. Parsons, and D. E. Kornreich, “Autocorrelation and

dominance ratio in Monte Carlo criticality calculations,” Nuclear science and engineering,

145, 3, 279 (2003).

[14] E. Dumonteil, F. Malvagi, A. Zoia, A. Mazzolo, D. Artusio, C. Dieudonné, and

C. De Mulatier, “Particle clustering in Monte Carlo criticality simulations,” Annals of

Nuclear Energy, 63, 612 (2014).

[15] I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods, CRC-Press (1991).

[16] T. Ueki, T. Mori, and M. Nakagawa, “Error estimations and their biases in Monte Carlo

eigenvalue calculations,” Nuclear Science and Engineering, 125, 1, 1 (1996); 10.13182/NSE97-

1.

[17] E. Dumonteil, R. Bahran, T. Cutler, B. Dechenaux, T. Grove, J. Hutchinson,

G. McKenzie, A. McSpaden, W. Monange, M. Nelson et al., “Patchy nuclear chain

reactions,” Communications Physics, 4, 1, 1 (2021).

[18] A. Zoia, E. Dumonteil, A. Mazzolo, C. De Mulatier, and A. Rosso, “Clustering of

branching Brownian motions in confined geometries,” Physical Review E - Statistical, Nonlin-

ear, and Soft Matter Physics, 90, 4 (2014); 10.1103/PHYSREVE.90.042118.

[19] J. Miao, B. Forget, and K. Smith, “Predicting correlation coefficients for Monte Carlo

eigenvalue simulations with multitype branching process,” Ann. Nucl. Energy, 112, 307 (2018);

10.1016/j.anucene.2017.10.014.

[20] P. Cosgrove, E. Shwageraus, and G. Parks, “Neutron clustering as a driver of Monte

Carlo burn-up instability,” Annals of Nuclear Energy, 137, 106991 (2020).

[21] P. Cosgrove, M. A. Kowalski, E. Shwageraus, and G. T. Parks, “Countering Neutron

Clustering In Monte Carlo With A Neutron Source Injection,” EPJ Web of Conferences, 247,

35



04022 (2021); 10.1051/epjconf/202124704022., URL https://doi.org/10.1051/epjconf/

202124704022.

[22] C. De Mulatier, “A random walk approach to stochastic neutron transport,” PhD Thesis,

Université Paris-Saclay (ComUE) (2015).

[23] E. Dumonteil, G. Bruna, F. Malvagi, A. Onillon, and Y. Richet, “Clustering and

traveling waves in the Monte Carlo criticality simulation of decoupled and confined media,”

Nuclear Engineering and Technology, 49, 6, 1157 (2017).

[24] C. De Mulatier, E. Dumonteil, A. Rosso, and A. Zoia, “The criti-

cal catastrophe revisited,” Journal of Statistical Mechanics: Theory and Ex-

periment, 2015, 8, P08021 (2015); 10.1088/1742-5468/2015/08/P08021., URL

https://iopscience.iop.org/article/10.1088/1742-5468/2015/08/P08021https:

//iopscience.iop.org/article/10.1088/1742-5468/2015/08/P08021/meta.

[25] B. Houchmandzadeh, E. Dumonteil, A. Mazzolo, and A. Zoia, “Neutron fluctuations:

The importance of being delayed,” Physical Review E - Statistical, Nonlinear, and Soft Mat-

ter Physics, 92, 5, 052114 (2015); 10.1103/PHYSREVE.92.052114/FIGURES/8/MEDIUM.,

URL https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.052114.

[26] T. Bonnet, D. Mancusi, and A. Zoia, “Space and time correlations for diffusion mod-

els with prompt and delayed birth-and-death events,” Physical Review E, 105, 6, 064105

(2022); 10.1103/PhysRevE.105.064105., URL https://journals.aps.org/pre/abstract/

10.1103/PhysRevE.105.064105.

[27] T. M. Sutton, “Toward a More Realistic Analysis of Neutron Clustering,” Nuclear Sci-

ence and Engineering, 1–12 (2022); 10.1080/00295639.2022.2065872., URL https://www.

tandfonline.com/doi/full/10.1080/00295639.2022.2065872.

[28] I. Mickus and J. Dufek, “Does neutron clustering affect tally errors in Monte

Carlo criticality calculations?” Annals of Nuclear Energy, 155, 108130 (2021);

10.1016/J.ANUCENE.2021.108130.

[29] W. H. Fleming and M. Viot, “Some measure-valued Markov processes in population ge-

netics theory,” Indiana University Mathematics Journal, 28, 5, 817 (1979).

36

https://doi.org/10.1051/epjconf/202124704022
https://doi.org/10.1051/epjconf/202124704022
https://iopscience.iop.org/article/10.1088/1742-5468/2015/08/P08021 https://iopscience.iop.org/article/10.1088/1742-5468/2015/08/P08021/meta
https://iopscience.iop.org/article/10.1088/1742-5468/2015/08/P08021 https://iopscience.iop.org/article/10.1088/1742-5468/2015/08/P08021/meta
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.052114
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.064105
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.064105
https://www.tandfonline.com/doi/full/10.1080/00295639.2022.2065872
https://www.tandfonline.com/doi/full/10.1080/00295639.2022.2065872


[30] A. Asselah, P. A. Ferrari, P. Groisman, and M. Jonckheere, “Fleming–Viot selects

the minimal quasi-stationary distribution: The Galton–Watson case,” Annales de l’Institut

Henri Poincaré, Probabilités et Statistiques, vol. 52, 647–668, Institut Henri Poincaré (2016).

[31] F. Cerou, B. Delyon, A. Guyader, and M. Rousset, “On the Asymptotic Normal-

ity of Adaptive Multilevel Splitting,” https://doi.org/10.1137/18M1187477, 7, 1, 1 (2019);

10.1137/18M1187477., URL https://epubs.siam.org/doi/abs/10.1137/18M1187477.

[32] W. L. Dunn and J. K. Shultis, Exploring monte carlo methods, Elsevier (2011).

[33] L. Ussachoff, “Equation for the importance of neutrons, reactor kinetics and the theory of

perturbations,” Proc. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, Switzerland,

Aug. 8-21, 1955, vol. 5, 503–510 (1956).

[34] H. Hurwitz, “Physical interpretation of the adjoint flux: Iterated fission probability,” Naval

Reactor Physics Handbook, 864–869 (1964).

[35] J. Lewins, Importance: the adjoint function, Pergamon (1965).

[36] F. Cérou and A. Guyader, “Adaptive multilevel splitting for rare event analysis,” Stochastic

Analysis and Applications, 25, 2, 417 (2007).

[37] H. Louvin, E. Dumonteil, T. Lelièvre, M. Rousset, and C. M. DIop,

“Adaptive Multilevel Splitting for Monte Carlo particle transport,” EPJ Web of

Conferences, 153, 06006 (2017); 10.1051/EPJCONF/201715306006., URL https:

//www.epj-conferences.org/articles/epjconf/abs/2017/22/epjconf_icrs2017_

06006/epjconf_icrs2017_06006.html.

[38] E. Brun, F. Damian, C. M. Diop, E. Dumonteil, F. X. Hugot, C. Jouanne, Y. K.

Lee, F. Malvagi, A. Mazzolo, O. Petit, J. C. Trama, T. Visonneau, and A. Zoia,

“TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code,” Annals of Nuclear

Energy, 82, 151 (2015); 10.1016/J.ANUCENE.2014.07.053.

[39] K. Fröhlicher, E. Dumonteil, L. Thulliez, J. Taforeau, and M. Brovchenko, “Im-

proving the variance in Monte Carlo criticality calculations with adaptive multilevel splitting,”

PHYSOR 2022: Making Virtual a Reality: Advancements in Reactor Physics to Leap Forward

Reactor Operation and Deployment.

37

https://epubs.siam.org/doi/abs/10.1137/18M1187477
https://www.epj-conferences.org/articles/epjconf/abs/2017/22/epjconf_icrs2017_06006/epjconf_icrs2017_06006.html
https://www.epj-conferences.org/articles/epjconf/abs/2017/22/epjconf_icrs2017_06006/epjconf_icrs2017_06006.html
https://www.epj-conferences.org/articles/epjconf/abs/2017/22/epjconf_icrs2017_06006/epjconf_icrs2017_06006.html


[40] C.-E. Bréhier, M. Gazeau, L. Goudenege, T. Lelièvre, and M. Rousset, “Unbiased-

ness of some generalized adaptive multilevel splitting algorithms,” The Annals of Applied

Probability, 26, 6, 3559 (2016).

[41] H. Louvin, E. Dumonteil, T. Lelièvre, M. Rousset, and C. M. Diop, “Adaptive multi-

level splitting for Monte Carlo particle transport,” EPJ Web of Conferences, vol. 153, 06006,

EDP Sciences (2017).

[42] H. Louvin, “Development of an adaptive variance reduction technique for Monte Carlo par-

ticle transport,” PhD Thesis, Université Paris-Saclay (2017).

[43] C. E. Bréhier and T. Lelièvre, “On a new class of score functions to estimate tail prob-

abilities of some stochastic processes with adaptive multilevel splitting,” Chaos: An Interdis-

ciplinary Journal of Nonlinear Science, 29, 3, 033126 (2019); 10.1063/1.5081440.

[44] P. Zweifel, Reactor physics (1977).

[45] T. E. Booth, “A weight (charge) conserving importance-weighted comb for Monte Carlo,” ,

Los Alamos National Lab.(LANL), Los Alamos, NM (United States) (1996).

[46] F. B. Brown, “On the use of Shannon entropy of the fission distribution for assessing con-

vergence of Monte Carlo criticality calculations,” ANS topical meeting on reactor physics

(PHYSOR 2006). Canadian Nuclear Society, Canada (2006).

[47] E. Dumonteil and F. Malvagi, “Automatic treatment of the variance estimation bias in

TRIPOLI-4 criticality calculations,” Proceedings of the 2012 International Congress on Ad-

vances in National Power Plants - ICAPP ’12, Chicago, IL (United States) (2012).

38


	Introduction
	Adaptive Multilevel Splitting
	Original algorithm for particle transport
	AMS tree structure and transport step
	Ranking the histories
	Sampling new particles
	About the importance function

	Adaptation to criticality calculations
	Branchless collisions method


	Application to a one-dimensional slab reactor
	Bare slab properties
	Convergence of inactive cycles and behavior of the Shannon entropy
	Fundamental mode estimates
	Effects of the AMS on clustering
	Variance estimation

	Conclusion

