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1 Abstract
This paper presents analytical solutions for a steady turbulent miscible gravity
current flowing along a horizontal rigid boundary of finite length into a quiescent
uniform environment. These solutions are obtained from the governing equations
(mass, momentum and buoyancy) originally proposed by Ellison & Turner (J.
Fluid. Mech., vol. 6, 1959, pp. 423-448) for a Boussinesq buoyant layer. We first
derived a system of coupled ordinary differential equations describing the longitu-
dinal evolution of the mean velocity 𝑢, the height ℎ, the mean density deficit 𝜂 and
the Richardson number Ri of the current. The theoretical approach described here
provides, for an initially supercritical flow (Ri < 1), explicit relations to determine
𝑢, ℎ and 𝜂 solely from the longitudinal evolution of the Richardson number Ri.
This evolution is theoretically obtained from a universal function 𝐹 which can
be tabulated and, as in the present paper, also plotted. In addition, the function
𝐹 allows us to determine (and only from the knowledge of the initial conditions)
whether the flow remains supercritical over the whole length of the rigid bound-
ary, or might transit towards a subcritical state (Ri > 1). In this latter case, the
method is extended by including a hydraulic jump. The location and amplitude of
this jump are calculated from an additional universal function 𝐺 and the injection
conditions.
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2 Introduction
A gravity current is a canonical flow that occurs when a light (heavy) fluid prop-
agates into a heavier (lighter) ambient fluid along a rigid boundary. This flow
can involve immiscible or miscible fluids. In the latter case, the current engulfs
the surrounding fluid in a process called entrainment, resulting in a longitudinal
evolution of the current mass flow rate.

Gravity currents arise in many environmental flows such as katabatic winds
or oceanic deep currents, to name but a few. They may also appear in hazardous
situations such as oil spreading on the sea or fire-induced smoke propagation.

Because of both their ubiquity and academic interest, gravity currents have
been widely studied. The pioneering works of Von Kármán (1940) and later
Benjamin (1968) were the first to tackle this flow theoretically. One of the main
objectives of these works was to determine the dynamics of the current head during
the propagation phase. Several authors have subsequently addressed the transient
evolution of this flow by proposing models for gravity currents resulting from a
fixed-volume release (Huppert & Simpson (1980); Rottman & Simpson (1983);
Lowe, Rottman & Linden (2005); Birman, Battandier, Meiburg & Linden (2007);
Sher & Woods (2015)) as well as from a fixed-flux release (Huppert (1982); Didden
& Maxworthy (1982); Shin, Dalziel & Linden (2004); Marino, Thomas & Linden
(2005); Ungarish (2017)).

In contrast to the transient phase of gravity currents, that has been addressed in a
substantial number of studies, the steady phase (i.e. after a long time subsequent to
the reaching of the exit of the rigid boundary by the flow) remains little investigated
so far. In their seminal article, Ellison & Turner (1959) (hereafter referred to as
ET59) have developed a theoretical model for a fixed-flux steady gravity current
based on the conservation equations for mass, momentum and buoyancy. Through
a system of coupled differential equations, their model allows the evolution of the
three variables of the current (velocity, thickness and density) to be calculated along
the longitudinal propagation 𝑥−axis. Similarly to Morton, Taylor & Turner (1956)
for turbulent plumes, they introduced an entrainment coefficient 𝐸 to quantify
the amount of ambient fluid entrained into the current. After some algebraic
manipulations, the Richardson number Ri naturally appears in their equations. It
is defined as Ri = Δ𝜌𝑔ℎ/𝜌𝑎𝑢2, with Δ𝜌 = |𝜌𝑎−𝜌 |, 𝜌𝑎 the density of the ambient, 𝑔
the gravitational acceleration and 𝜌, ℎ and 𝑢, the mean density, thickness and mean
velocity of the current, respectively. The Richardson number, which characterises
the local stability of the current, allows three different regimes to be identified:
the supercritical regime when Ri < 1, the subcritical regime when Ri > 1 and
a so-called critical regime when Ri = 1. In addition, it allows the entrainment
coefficient to be estimated, as it will be mentioned in the next section.

Although the paper of ET59 has been widely cited, it is surprising that solving
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the equations of their model has not received much attention. The difficulty in
solving these equations comes from the fact that a mathematical singularity occurs
if Ri = 1, i.e. when the flow reaches the critical regime.

In their attempt to solve the ET59 equations, Guo, Li, Ingason, Yan & Zhu
(2021) have circumvented this problem by freezing the Richardson number at
unity once the critical regime is reached. This requires an artificial modification
of the velocity which unfortunately fails to conserve fluxes. Recently, similarly
to what has been done by Dhar, Das & Das (2020) for the flow of a thin water
film, Haddad, Vaux, Varrall & Vauquelin (2022) proposed a method to face the
singularity problem by introducing a discontinuity, similar to a hydraulic jump,
to match the supercritical and subcritical regions. In their paper, they solved the
equations numerically with an iterative procedure to determine the location of the
jump for a given value of the domain length.

Nevertheless, and this is the purpose of the present paper, it is possible to go
further and propose explicit solutions to the ET59 equations via purely analytical
means. The methodology used to obtain these analytical solutions is in the same
vein as that presented in Michaux & Vauquelin (2008) for the Morton et al. (1956)
plume equations. Two cases are considered in this article: the first where the flow
remains supercritical, and the second where the flow transitions from a supercritical
to a subcritical regime.

3 Configuration and governing equations
As depicted in figure 1, we consider a fluid of density 𝜌0 (lower than the density
𝜌𝑎 of the ambient, at rest), injected horizontally from a plane nozzle of height ℎ0
with a velocity 𝑢0 along a boundary of length 𝐿 coincident with the horizontal
𝑥-axis. The flow at the injection is therefore characterised by the Richardson
number Ri0 = Δ𝜌0𝑔ℎ0/𝜌𝑎𝑢2

0, which will be assumed to be less than unity (initially
supercritical flow). As also shown in figure 1, the current has reached the end of the
domain for a long period and therefore the steady state. For the sake of simplicity,
the velocity and density profiles along the vertical 𝑧-axis will be considered uniform
(top-hat assumption). So, at a given distance 𝑥 from the injection, 𝑢(𝑥), 𝜌(𝑥) and
ℎ(𝑥) stand for the mean velocity, the mean density and the height of the current,
respectively. As in ET59, the conservation equations for mass, momentum and
buoyancy are established over an infinitesimal element of length 𝑑𝑥 of the current.

3



Figure 1: Schematic of the studied configuration.

In the Boussinesq approximation, these equations read as:

d (𝑢 ℎ)
d 𝑥

= 𝐸 𝑢, (1)

d (𝑢2 ℎ)
d 𝑥

= −𝐶𝑑 𝑢
2 − 1

2
𝑑

d 𝑥

(
𝜂 𝑔 ℎ2

)
, (2)

d
d 𝑥

(𝜂 𝑔 𝑢 ℎ) = 0, (3)

with 𝜂 = Δ𝜌/𝜌𝑎 the density deficit, 𝐸 the entrainment coefficient and 𝐶𝑑 the drag
coefficient.

The entrainment coefficient has been the subject of numerous experimental
studies (the reader is referred to the extensive review of Fernando (1991)). Among
the first who investigated this issue, we can mention ET59 and Lofquist (1960)
who carried out experiments with fresh and salt water and showed a significant
dependence of the entrainment coefficient on the Richardson number. These
pioneering results, as well as those obtained in many subsequent studies, have
been compiled in the paper of Christodoulou (1986) in order to propose universal
laws for the entrainment in a gravity current. In the range of Ri = 0.1 - 10,
he reports that the entrainment coefficient might be inversely proportional to the
Richardson number as:

𝐸 =
𝛼

Ri𝑛
, (4)

where 𝛼 is a constant equal to 0.002 and 𝑛 is equal to 1. It is this model that will
be considered in the calculations presented in this paper.

4 Analytical solutions
The conservation equations (1), (2), (3) and the entrainment model (4) can be
combined to obtain the first-order derivatives of the height, velocity and density
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deficit:
d ℎ

𝑑𝑥
=
𝛼

2
4 + Ri (𝜅 − 2)

Ri (1 − Ri) , (5)

d 𝑢

𝑑𝑥
= −𝛼

2
𝑢

ℎ

2 + 𝜅 Ri
Ri (1 − Ri) , (6)

d 𝜂

𝑑𝑥
= −𝛼 𝜂

ℎ

1
Ri

, (7)

with 𝜅 = 1 + (2𝐶𝑑/𝛼). By combining equations (5), (6) and (7), we obtain the
following relation which gives the first-order derivative of the local Richardson
number Ri(𝑥):

d Ri
𝑑𝑥

=
3 𝛼

2
1
ℎ

2 + 𝜅 Ri
(1 − Ri) . (8)

We notice that equations (5), (6) and (8) present a mathematical singularity when
the Richardson number reaches unity. For an initially supercritical flow (Ri0 <

1), a quick look at the right-hand side of equation (8) reveals that Ri has to
increase monotonically towards unity. With this in mind, two situations have to
be considered: in the first one, the current remains supercritical from the injection
until the exit of the domain, i.e. the Richardson number does not exceed unity
and the equations (5), (6), (7) and (8) can be solved numerically without any
difficulties. In the second one, the Richardson number reaches unity before the
end of the domain, meaning that the flow has to transition from a supercritical
to a subcritical regime, preventing solutions to be obtained by a straightforward
integration.

In what follows, we will show how purely analytical solutions to the ET59
equations can be obtained, first for a current that remains supercritical, and then
for a current that transitions from a supercritical to a subcritical regime before the
end of the domain.

4.1 Supercritical flow over the whole domain
At first, by combining the equations (6) and (8), we easily show that the velocity
𝑢(𝑥) can be expressed as a function of the Richardson number Ri(𝑥):

−1
3

d Ri
Ri

=
d 𝑢

𝑢
=⇒ 𝑢(𝑥)

𝑢0
=

[
Ri0

Ri(𝑥)

] 1
3

, (9)

where the subscript 0 refers to values at the injection. We now combine the
equations (7) and (8) to write:

1 − Ri
Ri (2 + 𝜅 Ri) d Ri = −3

2
d 𝜂

𝜂
, (10)
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which allows the density deficit 𝜂(𝑥) to be expressed as an explicit function of the
Richardson number Ri(𝑥):

𝜂(𝑥)
𝜂0

=

[
Ri0

Ri(𝑥)

] 1
3
[
2 + 𝜅 Ri(𝑥)
2 + 𝜅 Ri0

] 2+𝜅
3 𝜅

. (11)

Finally, from equations (3), (9) and (11), the height ℎ(𝑥) of the current is expressed
as a function of the Richardson number Ri(𝑥) as:

ℎ(𝑥)
ℎ0

=

[
Ri(𝑥)
Ri0

] 2
3
[

2 + 𝜅 Ri0
2 + 𝜅 Ri(𝑥)

] 2+𝜅
3 𝜅

. (12)

The three relations (9), (11) and (12) allow the calculation of the longitudinal
evolution of the characteristic variables of the current (velocity, density deficit
and height) exclusively from the knowledge of the longitudinal evolution of the
Richardson number. This latter can be determined by solving the equation (13)
below, obtained from the equations (5) and (8):

d Ri
d 𝑥

=
1
Λ0

(2 + 𝜅 Ri) 2+4 𝜅
3 𝜅

(1 − Ri)Ri
2
3
, (13)

where the constant Λ0, which has the dimension of a length, reads:

Λ0 =
2 ℎ0(2 + 𝜅 Ri0)

2+𝜅
3 𝜅

3𝛼 Ri
2
3
0

. (14)

By integrating equation (13) from the injection to an abscissa 𝑥, it comes:∫ Ri(𝑥)

Ri0

(1 − 𝜁) 𝜁 2
3

(2 + 𝜅 𝜁) 2+4 𝜅
3 𝜅

d 𝜁 =
1
Λ0

∫ 𝑥

0
d 𝜉. (15)

We then introduce a universal function 𝐹 (𝑋) defined by:

𝐹 (𝑋) =
∫ 𝑋

0

(1 − 𝜁) 𝜁 2
3

(2 + 𝜅 𝜁) 2+4 𝜅
3 𝜅

d 𝜁, (16)

which allows the relation (15) to be rewritten as:

𝐹 [Ri(𝑥)] = 𝑥

Λ0
+ 𝐹 (Ri0). (17)

In practice, once the values of 𝛼 and 𝐶𝑑 are set (typically 𝛼 = 0.002 according
to Christodoulou (1986) and 𝐶𝑑 = 0.0065, see for example Kunsch (2002)), the
universal function 𝐹 can be tabulated or plotted as it has been done in figure 2.
The different steps of the calculation are as follows:
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• From the injection conditions 𝑢0, 𝜂0 and ℎ0, Ri0 and Λ0 are first calculated.

• The value of 𝐹 (Ri0) is then determined with using equation (16) or graphi-
cally.

• For a given abscissa 𝑥, the quantity 𝑥/Λ0 is added to this value, in order to
obtain 𝐹 [𝑅𝑖(𝑥)], according to equation (17).

• As illustrated in figure 2, Ri(𝑥) is then obtained graphically from 𝐹 [𝑅𝑖(𝑥)]
via the universal function 𝐹.

• Finally, equations (9), (11), (12) allow the characteristic variables of the
current, 𝑢(𝑥), 𝜂(𝑥) and ℎ(𝑥), to be calculated.

This method applies if the Richardson number does not reach unity, i.e. if the
flow remains supercritical. This condition is satisfied when the length 𝐿 of the
domain does not exceed a critical length 𝐿𝑐 such as:∫ 1

Ri0

(1 − 𝜁) 𝜁 2
3

(2 + 𝜅 𝜁) 2+4 𝜅
3 𝜅

d 𝜁 =
1
Λ0

∫ 𝐿𝑐

0
d 𝜉 =⇒ 𝐿𝑐 = Λ0 [𝐹 (1) − 𝐹 (Ri0)] . (18)

This relation is particularly interesting since it allows, from the knowledge of the
injection conditions and the length of the domain, to know immediately whether
or not the gravity current is likely to transition from a supercritical to a subcritical
regime. Note that this critical length was discussed and numerically treated by
Kostic & Parker (2007) in the particular case of a turbidity current developing
along a boundary of finite length.

4.2 Supercritical flow with transition
We now consider the case where the length 𝐿 of the domain is greater than the
critical length 𝐿𝑐, i.e. the case when the flow transitions from a supercritical to a
subcritical regime.

To take into account this transition in the equations of ET59, Haddad et al.
(2022) proposed to introduce a mathematical discontinuity similar to a hydraulic
jump at a location 𝐿1, which leads the Richardson number and the height of
the current to suddenly increase, as explicitly given by the well-known Bélanger
equation:

ℎ2
ℎ1

=

(
Ri2
Ri1

) 1
3

= 𝜎(Ri1) with 𝜎(𝑋) =

√︃
1 + 8

𝑋
− 1

2
, (19)
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Figure 2: Graphical determination of the longitudinal evolution of the Richardson
number via the universal function 𝐹 (the function 𝐹 has been drawn for 𝛼 = 0.002,
𝐶𝑑 = 0.0065, i.e. 𝜅 = 7.5). The blue solid line represents the function 𝐹 and the
dashed lines are provided to illustrate the graphical procedure.

in which the subscript 1 is used for the quantities just upstream of the jump and
the subscript 2 for these just downstream.

In this case, the theoretical problem of ET59 can be addressed by considering
the connection between a supercritical flow (from Ri0 to Ri1 over a length 𝐿1) and
a subcritical flow (over a length 𝐿 − 𝐿1, from Ri2 to the Richardson number at the
exit of the domain, denoted Ri𝐿). Thus, based on the mathematical developments
presented above, the location of the jump 𝐿1, as well as the corresponding Richard-
son number just upstream Ri1, can be found by solving the following system of
equations:∫ Ri1

Ri0

(1 − 𝜁) 𝜁 2
3

(2 + 𝜅 𝜁) 2+4 𝜅
3 𝜅

d𝜁 =
1
Λ0

∫ 𝐿1

0
d𝜉 =⇒ 𝐹 (Ri1) =

𝐿1
Λ0

+ 𝐹 (Ri0), (20)∫ Ri𝐿

Ri2

(1 − 𝜁)𝜁 2
3

(2 + 𝜅 𝜁) 2+4 𝜅
3 𝜅

d𝜁 =
1
Λ2

∫ 𝐿

𝐿1

d𝜉 =⇒ 𝐹 (Ri𝐿) =
𝐿 − 𝐿1
Λ2

+ 𝐹 (Ri2),

(21)

where Λ2 is given by:

Λ2 =
2 ℎ2(2 + 𝜅 Ri2)

2+𝜅
3 𝜅

3𝛼Ri
2
3
2

. (22)

At this stage, the system composed of equations (20) and (21) contains 5 unknowns,
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namely Ri1, 𝐿1, Ri2, Ri𝐿 and ℎ2. First, concerning the Richardson number Ri𝐿
at the exit, as explained by Henderson (1966), it should be close to unity for a
subcritical current in an open channel. We will therefore consider hereafter that
Ri𝐿 = 1. In addition, the use of the Bélanger equation (19) allows, on the one
hand, to express Ri2 as a function of Ri1, and on the other hand, by using it in the
relation (12), to obtain explicitly the value of the current height ℎ2 after the jump:

ℎ2 = ℎ0

(
Ri1
Ri0

) 2
3
(
2 + 𝜅 Ri0
2 + 𝜅 Ri1

) 2+𝜅
3 𝜅

𝜎(Ri1). (23)

After some algebra, we can show that Ri1 is given by the following relation:

𝐺 (Ri1) =
𝐿

Λ0
+ 𝐹 (Ri0), (24)

with 𝐺 a universal function defined by:

𝐺 (𝑋) =
(
2 + 𝜅 𝑋 𝜎3(𝑋)

2 + 𝜅 𝑋

) 2+𝜅
3 𝜅 𝐹 (1) − 𝐹 (𝑋 𝜎3(𝑋))

𝜎(𝑋) + 𝐹 (𝑋). (25)

Practically, for a fixed value of 𝜅, the function 𝐺, similarly to the function 𝐹, can
be tabulated or plotted as shown in figure 3. From the initial conditions, we first
calculate Ri0, Λ0 and 𝐹 (Ri0). Then, we add to 𝐹 (Ri0) the quantity 𝐿/Λ0 which
allows Ri1 to be determined graphically, according to equation (24).

Once Ri1 is known, Ri2 is calculated with the Bélanger equation (19), 𝐿1 by
equation (20), ℎ2 by equation (23) and Λ2 by equation (22). Finally, according
to equation (15), the longitudinal evolution of the Richardson number in the
subcritical region can be obtained by the following equation:

𝐹 [Ri(𝑥)] = 𝑥 − 𝐿1
Λ2

+ 𝐹 (Ri2). (26)

The graphical determination can be done by means of the graph in figure 4 on
which the universal function 𝐹 is now plotted in the range of Richardson numbers
between 1 and 10, corresponding to subcritical flows.

Once Ri(𝑥) is known over the whole domain, the characteristic variables 𝑢(𝑥),
ℎ(𝑥) and 𝜂(𝑥) of the current are calculated immediately from (9), (11) and (12) in
the supercritical region, and in the subcritical region with the following relations:

𝑢(𝑥)
𝑢2

=

[
Ri2

Ri(𝑥)

] 1
3

,
𝜂(𝑥)
𝜂2

=

[
Ri2

Ri(𝑥)

] 1
3
[
2 + 𝜅 Ri(𝑥)
2 + 𝜅 Ri2

] 2+𝜅
3 𝜅

and
ℎ(𝑥)
ℎ2

=

[
Ri(𝑥)
Ri2

] 2
3
[

2 + 𝜅 Ri2
2 + 𝜅 Ri(𝑥)

] 2+𝜅
3 𝜅

. (27)
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Figure 3: Graphical determination of the Richardson number just upstream of the
jump Ri1 via the universal function 𝐺 (the 𝑥−axis is logarithmic and the function
𝐺 has been calculated for 𝛼 = 0.002, 𝐶𝑑 = 0.0065, i.e. 𝜅 = 7.5). The blue solid
line represents the function 𝐺 and the dashed lines are provided to illustrate the
graphical procedure.

Figure 4: Graphical determination of the longitudinal evolution of the Richardson
number in the subcritical region via the universal function 𝐹 (the function 𝐹

has been drawn for 𝛼 = 0.002, 𝐶𝑑 = 0.0065, i.e. 𝜅 = 7.5). The blue solid
line represents the function 𝐹 and the dashed lines are provided to illustrate the
graphical procedure.
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5 Conclusions and discussions
This paper reports an analytical method to solve the equations of Ellison & Turner
(1959) describing the longitudinal evolution of a gravity current at steady state.
The buoyant fluid that forms the current is continuously injected from a plane
nozzle along a horizontal rigid boundary of finite length.

First, expressions of the primary variables of the current (velocity 𝑢, height
ℎ and density deficit 𝜂) as explicit functions of the Richardson number Ri(𝑥)
are established. Then, the longitudinal evolution of the Richardson number is
obtained from a universal function 𝐹 (that depends only on the entrainment and
drag coefficients). This universal function is given by an indefinite integral which
can be tabulated or represented graphically. Here, we have illustrated the method
by means of a graphical representation which, for prescribed injection conditions,
allows the Richardson number value to be determined readily at any abscissa 𝑥

along the horizontal boundary.
The ET59 equations presenting a mathematical singularity when 𝑅𝑖 = 1, the

developed method applies therefore easily as long as the flow remains supercritical
(𝑅𝑖 < 1) on the whole domain. Note that from the knowledge of the injection
conditions and the length of the domain, it is possible to determine theoretically
thanks to the universal function 𝐹 whether the flow remains supercritical or should
transition to a subcritical state (𝑅𝑖 > 1).

If there is a transition (i.e. if the Richardson number reaches unity before the
exit of the domain), the two regimes (supercritical and subcritical) can coexist
by introducing in the ET59 equations a mathematical discontinuity similar to a
hydraulic jump. For the sake of simplicity, we have modelled this jump using
the Bélanger relation. In practice, the location of the jump is obtained from the
injection conditions and a second universal function 𝐺. The evolution of the
primary variables is then obtained for each zone (upstream and downstream of the
jump) from the first universal function 𝐹.

Moreover, this method can be extended for various entrainement laws proposed
by Christodoulou (1986) (i.e. 𝑛 = 0 and 𝑛 = 1/2), allowing a greater flexibility of
the model as well as a wider range of Richardson number.
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