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Abstract. The robust characterization ofthe mechanical behavior for some reinforced con
crete structures, such as the auxiliary buildings of nuclear plants, can be a major challenge. 
Therefore, it is necessary to identify the different energy dissipation sources: viscous dissipa
tion, numerical dissipation due to the temporal integration scheme, and material dissipation 
that includes the interaction between concrete and steel reinforcement bars. Indeed, the energy 
dissipation along the steel-concrete interface may account up to 15% ofthe total material en
ergy dissipation [1]. In addition, the consideration ofthis steel-concrete interface in numerical 
modeling has a notable importance in the realistic estimation ofthe cracking process and stress 
redistribution. The various numerical strategies proposed in the literature are not sufficient 
to provide an accurate cracking prediction at the local level of the interface (cracks spacing 
and opening) [2]. Furthermore, applying these methodologies for large scale structures is time 
consuming and has a high numerical cost [3]. Therefore, the main objective ofthis study is to 
propose an original modeling strategy to take into account the behavior of the steel-concrete 
bond for structural applications. A multi-scale approach with internal degrees offreedom is 
proposed. It consists in using a macro-element capable of reproducing the behavior of steel 
and steel-concrete interface connected by means of interface stresses. This macro-element is 
inspired by an initial formulation proposed in [4] to model a rigid inclusion encased in a soil 
volume. In the present work, this initial formulation is further developed and adapted to the 
steel-concrete interface problematic. Cyclic bond laws are considered, which allows a repre- 
sentation ofthe interface for cyclic and dynamic structure applications. Structural case studies 
are performed, showing a good reproduction of the experimental behavior of reinforced con
crete elements.
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1 INTRODUCTION

In reinforced concrète structures, the stress transfer between steel and concrète occurs along 
the interface between these materials, playing a crucial role in their mechanical functioning. As 
soon as the first cracks appear in concrete, the tensile properties of steel are used, provided that 
the steel-concrete interface transmits the corresponding internal forces. Hence, the considera- 
tion of this interface in numerical modeling has a significant importance on the cracking process 
of reinforced concrete structures and on the spatial distribution of cracks. In addition, the en- 
ergy dissipation within the steel-concrete interface constitutes about 15% of the total material 
energy dissipation [1].

Several models are proposed in the literature within different methodological frameworks 
(interface elements [5], enhanced elements [6]) to describe the interface between steel and con
crete. These models are often integrated into detailed 2D and 3D analyses to improve the pre- 
diction of the behavior of a structural element. Taking into account the steel-concrete interface 
at the scale of an industrial building with these types of approaches remains impractical.

This work aims to propose a representative modeling strategy for the steel-concrete inter
face that has the lowest possible numerical cost. For this, a multi-scale approach is proposed. 
This approach consists in defining a macro-element capable of reproducing the behavior of the 
steel and the steel-concrete interface connected by means of a density of adhesive forces. The 
macro-element of [4] initially developed to link a rigid inclusion to a surrounding soil domain 
is developed here and adapted to the problematic of the steel-concrete interface. This approach 
is integrated into 2D/3D structural calculations. The formulation of the macro-element is de- 
scribed in this article. A validation example is performed by modeling a pull-out test under 
a cyclic load path, showing the capability of the macro-element of reproducing the interface 
behavior. An application example of a reinforced concrete tie-rod test is then presented. This 
application demonstrates the model's ability to replicate the experimental cracking behavior of 
a reinforced concrete structural element.

2 THEORETICAL BACKGROUND

The considered multi-scale approach consists in defining a macro-element at two distinct 
scales: a global scale and a local one. The global scale is at the level of the studied reinforced 
concrete structure, where the macro-element is considered as a four-node element. At the local 
level, one macro-element is an assembly of different biphasic elements representing each a steel 
bar, an interface zone, and bond stresses acting between the steel and the interface. Two com- 
plementary Newton-Raphson resolution algorithms are adopted at the two levels. The coupling 
between the two levels is done by means of a static condensation technique.

2.1 Global scale: reinforced concrete structure

At this scale, the classical finite elements method is adopted. The reinforced concrete struc
ture is discretized into two types of elements: 2D/3D concrete elements and four-node macro- 
elements. A classical Newton Raphson algorithm is adopted for the resolution.

2.2 Local scale: macro-element

The four-node macro-element is an assembly of several biphasic elements. The formulation 
of one biphasic element is here described.

One biphasic element represents a steel bar element and an interface domain linked with 
bond stresses. Let H be the length of one biphasic element. (Ei,Si) and (Es,Ss) are the
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Young’s modulus and the cross-section of the steel and the interface zone, respectively. Virtual 
strain fields es and ei are associated to the steel and the interface.

Friction stresses Ti(ys — yi) = —ts(ys — yi) are considered between the two domains. ts 
represents the adhesion stresses applied to the steel and Ti are the stresses applied to the interface 
zone. These stresses are linear or nonlinear functions of the relative displacement (ys — yi) 
between the steel and the interface. ys and yi are the longitudinal displacements along the steel 
and the interface. Additional external forces may be applied whose associated virtual work is 
here called Pe*xt.

E i,Si 

(Es,Ss)

i---------------------------------------------------------------- 1--------- ►

0 H x

Figure 1: Two domains of the biphasic element with bond stresses rint in between.

The principle of virtual power is expressed as:

H H
/ (e*as(£s)Ss + e*Ei£iSi) dx + (y* — y*) Ti (ys — yi) Pdx
0 0

Pext (1)

P is the perimeter of the steel bar. In the current version of the macro-element model, and in the 
sake of simplicity, a linear constitutive law is associated to the interface. Hence, the stress of this 
zone, denoted ai, is expressed in equation 1 as Eiei, which represents a linear relationship with 
the value of ei. However, affecting a nonlinear constitutive law for the interface zone remains 
possible. The stress of the steel is given by as(es), which is a function that is either linear or 
nonlinear, dependent on the constitutive law of the steel.

The first term in equation 1 represents the virtual internal power:

P*P int
HH

/ (e*as(£s)Ss + £*Ei£iSi) dx + (y* — yi*) Ti (ys — yi)Pdx
00

(2)

2.2.1 Discretization procedure

A spatial discretization is done in order to resolve equation 1. Three-node bar elements are 
used in parallel connected via adhesive forces. This discretization makes it possible to express 
the displacements of a node i belonging to the interface and a node s belonging to the steel 
according to the elementary displacement vectors u* and us.

y.s(x)= N(x)us (3)

yi(x) = N(x)ui (4)

The strains es and ei are calculated as:

£s = B(x)Us (5)
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£i = B(x)ui (6)

B is the matrix of the derivatives of the interpolation functions N(x). Therefore, équation 2 is 
expressed as follows:

P *P int
H

u
*TBt S sas(Bus) + u*TBT EiSiBuidx +

0

uS )T NT Ti (yi - y s) Pdx (7)

T is the transpose operator. u* and u*s are defined as two independent virtual displacement 
vectors. The internal force vector pel of a biphasic element is composed of the contributions of 
the two three-node bar elements (steel and interface) and the internal friction forces.

pel
/0H Bt Ss^s (Bus)dx 

JoH Bt EiSiBuidx
ioH -NT Ti (yi - y s) Pdx 

JoH NT Ti (yi - y s) Pdx (8)

The subtraction of equations 3 and 4 gives:

yi - ys = —N N us
ui

NN el (9)

The derivation of equation 8 with respect to the elementary degrees of freedom vector uel gives:

dp el H
d uel

r BtCsSsB 0 1 , rH - NT ÔTi i- n
0 Bt Ei SiB dx +

0 NT d (yi- ys)
-N N Pdx (10)

is the elementary stiffness matrix of one biphasic element. Cs is the steel constitutive law
matrix. dyT-y ) is calculated due to the expression of the steel-interface constitutive bond law 
which links the stress value Ti to the steel-concrete slip ys — yi. The number of biphasic elements 
constituting one macro-element is an input parameter.

0

2.3 Coupling between the global and the local scales

At the global scale, the macro-element (seen as a four-node element) is assembled with 
2D/3D concrete elements. Kinematic relations are defined to link the degrees of freedom of the 
macro-elements to degrees of freedom of the concrete elements.

2.3.1 Connection between the macro-elements and the concrete elements meshes

The interface part of the macro-element is perfectly connected to the concrete. The steel 
is perfectly connected to the concrete in the normal directions, using kinematic relationships. 
Along the longitudinal direction with respect to the macro-element, the steel can slide relatively 
to the interface (while interacting with the interface via the bond stresses). The meshes of the 
macro-elements and the concrete elements may be non-coincident. In this case, shape functions 
Ni are used to establish kinematic relationships of displacements as shown in figure 2 to link 
the interface to concrete. In the same way steel is linked to concrete in the normal directions. 
It is important to note here that the interface and the steel nodes have the same initial position. 
Two distinct nodes are illustrated in figure 2 for clarification.

Incorporating the kinematic relations to link steel, interface, and concrete nodes while re- 
solving the global Newton Raphson algorithm is possible by applying classical methodologies 
such as the penalty method [7] [8] and the single or double Lagrange multipliers method [9].
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Figure 2: Global and local levels.

There are however some drawbacks to these classical approaches. Indeed, the penalty method 
efficiency depends on the choice of a penalty parameter incorporated in the resolution [10]. 
In parallel, the Lagrange method, even though it is widely used to add kinematic relations to 
a finite elements resolution system, adds additional unknowns to be calculated (the Lagrange 
multipliers) [11]. Using these classical approaches is convenient when considering Dirichlet 
boundary conditions (which are technically kinematic relations). In contrast, linking steel and 
interface zones to concrete adds kinematic relations for all the steel and the interface nodes. An 
alternative method is proposed here to incorporate steel/interface-concrete kinematic relations 
in the resolution. This approach based on a kinematic projection principle is here described.

Let F and Ftot be the internal and the external forces vectors of the reinforced concrete 
structure that take into account the Dirichlet boundary conditions, using the double Lagrange 
multipliers method. The global resolution algorithm aims to resolve the following equation:

F(Utot) = Ftot (11)

U tôt is the vector assembling the total degrees of freedom of the structure and the Lagrange 
multipliers to be determined. In a more detailed form, equation 11 is written as:

Fint(u) + LTÀ1 + LTÀ2 Fext
Lu — aÀ1 + aÀ2 = Ud (12)
Lu + aÀ1 — aÀ2 Ud

Utot =
u

À1 J Ftot
Fext
Ud

À2 Ud
(13)

u is the vector of the degrees of freedom of the studied structure. The value of a is a parameter 
of the double Lagrange method to be optimized. L is the matrix of blocking used to express the 
Dirichlet boundary conditions as:

Lu = Ud (14)
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Where Ud is the imposed boundary degrees of freedom values vector. Equation 11 takes into ac- 
count the Dirichlet boundary conditions. Considering, in addition to these Dirichlet conditions, 
the steel and interface- concrete links can be done using the kinematic projection method. The 
kinematic projection approach is proposed to incorporate the kinematic relations that link steel 
and interface nodes to concrete into the resolution. It consists of classifying the total degrees of 
freedom Utot into two complementary vectors such as:

Where:
Utot Uc (15)

• Uc is the vector of the dependent degrees of freedom.

• Ui is the vector of the independent degrees of freedom.

The kinematic relations impose that the values of the displacements of the steel and the interface 
nodes are dependent of the values of the displacements of the surrounding concrete nodes, 
which allows to define Uc as the vector of the displacements of the interface nodes in the three 
dimensions of the space and the displacements of the steel nodes in the normal directions with 
respect to the steel bars directions.

By deriving the kinematic relations equations, the vectors of the incremental values of the 
total degrees of freedom and the independent ones can be linked with a kinematic projection 
matrix P :

ÔUtot = PSUi (16)

The projection matrix here P holds the sets of the derivatives of the kinematic relations. 
Multiplying equation 11 by the transpose of the vector ôUtot gives:

5Uj P TF(Utot) = 5Uj P T Ftot (17)

So,
PT F (Utot) = PT Ftot (18)

Equation 18 is the equilibrium equation to be resolved. The residue R associated with the 
equilibrium equation is defined as:

R = PT Ftot - PT F (Utot) (19)

The iterative resolution of the global Newton Raphson algorithm aims to minimise the value of 
the residue R. It incorporates the derivation of the residue calculated as:

d R = d (P t Ftot) d (P t F (Utot))
dUi d Ui d Ui ( )

The residue R is derived with respect to Ui. The advantage of this kinematic projection ap
proach is that only Ui is calculated at each resolution iteration. Uc is deduced using the kine- 
matic relations. Equation 20 is developed as:

dR =_ r PT d F (Utot) d Utot 
dUi OUtot dUi

(21)
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Knowing that the linear expressions of the used kinematic relations impose that JU is equal to

zéro. dUtot
dUi is equal to the projection matrix P (see equation 16), so:

d R
dUi

p T dF (Utot)
0Utot

(22)

JUR is the tangent operator of the nonlinear global Newton Raphson resolution (where the 
Dirichlet boundary conditions and the kinematics relations that link the steel/interface displace
ments to the concrete nodes displacements are taken into account).

2.3.2 Inner resolution of the macro-element equilibrium

A local Newton Raphson algorithm aims to resolve the local inner equilibrium at the level of 
one macro-element. The coupling between the two levels is done by adopting a static conden
sation technique.

In the global resolution, four degrees of freedom are considered for each macro-element (the 
longitudinal displacements of the four outer nodes of the inner local discretization). u^at =
r iTur ub is the total degrees of freedom vector of the biphasic elements consituting one 
macro-element. r and b subscripts refer to internal and external degrees of freedom. ub repre- 
sents the degrees of freedom of the four outer nodes, and ur is the internal degrees of freedom 
vector of the inner nodes.

The resistant forces vector ftot of a macro-element is an assembly of the elementary internal 
forces vectors pel (see equation 8). Let fr be the forces vector at the level of the inner nodes 
of a macro-element, and fb be the forces at the level of the outer nodes. Hence, it is possible
to define ftot such that fT

tot fr fb T The inner resolution at the local level of the
macro-element consists in resolving the following equation:

fr = 0 (23)

Equation 23 states the inner equilibrium at the level of the inner discretization of the macro- 
element. Let kbp be the assembly of the elementary stiffness matrices of biphasic elements 
constituting one macro-element (see equation 10). It is possible to state that:

dftot kbpdutot (24)

Where dutot represents the vector of the incremental values of the total degrees of freedom of
iTT dur dub where dur and dubthe inner discretization of the macro-element. dutot 

are the vectors of the incremental values of ur and ub. According to these degrees of freedom 
subscripts r and b (internal and external degrees), the matrix kbp is composed of four parts: 
krr, krb, kbr, and kbb. In order to calculate the algorithmic tangent operator, it is necessary 
to differentiate fb according to ub. Hence, the differentiation of the internal efforts vector fb 
gives:

is* - - is* - W rt i - /4+

(25)

(26)

kbb kbr dub df b
krb krr dur 0

A static condensation provides a link between the incremental vectors dub and df b as:

kbb kbr k-r krb ) dub dfb
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In a more condensed form, équation 26 is written as:

kemdub df b (27)

Where kem is the condensed elementary stiffness matrix of one macro-element returned to the 
global resolution algorithm at the level of the whole reinforced concrete structure.

3 VALIDATION TEST: PULL-OUT MODEL

In this section, the pull-out experimental test of [12] is modeled as a validation test of the 
macro-element formulation. A simplified 1D simulation is done where one macro-element 
represents the whole test. In other terms, for this simplified pull-out model, the macro-element 
model itself represents the steel, the concrete, and the steel-concrete bond stresses. The interface 
part of the macro-element represents the whole concrete volume. A cyclic loading configuration 
is studied.

3.1 Description of the test

The experimental test geometry is composed of a concrete cube crossed by a single steel re
inforcement bar. The translation of the concrete cube is blocked by a metal plate. The concrete- 
steel slip is measured by an LVDT (Linear Variable Differential Transformer) sensor located at 
the unloaded edge of the reinforcement. The contact length is equal to five times the steel bar 
diameter which is denoted da. The adhesion value t is supposed to be constant along the steel 
bar and is calculated as follows:

F
daln

(28)

Where F is the measured reaction and l is the steel-concrete contact length. The experimental 
bond law is defined as the evolution of the calculated bond stress value t with respect to the 
steel-concrete slip.

15 dn

5 dn

Steel plate

I da
Imposed displacement

Support that prevents the steel bar from bending

Figure 3: Pull-out test geometry and boundary conditions.

3.2 Simulation

A simplified 1D model of the pull-out test is here performed. Only the central part of the pull- 
out test where a bond contact links steel and concrete is represented (with a bond length equal 
to five times the bar diameter). One macro-element represents the test. This macro-element is 
discretized into three biphasic elements.

8



For this 1D model, the cross-section of the interface part of the macro-element is taken equal 
to the section of the concrete cube specimen of the pull-out test, which is equal to 15da x 15da, 
where da is the steel bar diameter equal to 12 mm.

Linear elastic constitutive laws are affected to steel and concrete (the interface zone of the 
macro-element here). There is only one source of non-linearity in the problem, which arises 
from the non-linear expression of the bond stress law at the steel-concrete interface.

The cyclic bond law of [13] is here used. It is defined by three parameters: the maximum 
bond strength n, the slip g1 for which r1 is reached, and the slip g3. For slip values bigger than 
g3, the total stress of the monotonic version of the law remains constant. For the monotonic 
initial envelope curve of the law, the bond stress is assumed to be the sum of two types of 
stresses: the friction stress Tf and the bearing stress rb. This envelope curve is reduced due to 
the unloading/reloading cycles. The cyclic law is defined with no additional input parameters 
with respect to the monotonic envelop (see [13] for the detailed bond law formulation).

A Cyclic load configuration is tested. Boundary conditions are modified between the two 
configurations of figure 4 every time the imposed displacement is equal to zero.

(a)

%——•——•——•—
Imposed displacement

----A 4-------►
Imposed displacement

m— n n cv

Z
A

m— —m

(b)
■4

—•

Figure 4: Configurations (a) and (b) for the cyclic 1D pull-out model.

Table 1 sums up the material properties used for the 1D pull-out model. These parameters 
are chosen to match the experimental material properties given by [12].

Parameter Description Value Unit
Ec Concrete Young’s modulus 28 GPa
Es Steel Young’s modulus 200 GPa
Ti Input parameter of the bond law 22.5 MPa
gi Input parameter of the bond law 1.45 mm
g3 Input parameter of the bond law 10 mm

Table 1: Material properties for the 1D pull-out model.

Figure 5 illustrates an imposed cyclic displacement scheme with the corresponding reaction 
curve.

The reaction force curves show that the constitutive expression of a pullout-test that links the 
force F to the bond stress r (equation 28) is fullfilled. The 1D pull-out model is a simplified yet 
representative model of the pull-out test where one macro-element is capable of reproducing 
the experimental pull-out test behavior.

4 APPLICATION: TIE-ROD MODEL

The macro-element formulation is used here to model a reinforced concrete tie-rod. The 
experimental test of [14] is considered (see figure 6).

This test has been modeled by [12] and [15]. The aim here is to test the possibility of 
reproducing the experimental behaviour of the tie-rod with the macro-element model. Two
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Figure 5: Cyclic 1D pull-out model: imposed displacement (a) and reaction curves.

Figure 6: Presentation of the tie-rod test.

types of simulations are performed: one with a linear behavior assigned to concrete and a 
second one with a non-linear concrete behavior. For each type of simulation, the options of 
perfect steel-concrete bond and nonlinear bond behavior are tested.

4.1 Linear concrete behavior simulations

For this type of simulation, a linear behavior is associated to concrete, the aim being to focus 
the study on the consideration (or not) of a non-linear behavior of the interface. The mesh 
shown in figure 7 is considered. Each macro-element is discretized into two biphasic elements.

(a)

One macro-element

Figure 7: Tie-rod test mesh: 3D mesh view (a); 2D cut-section view.

For the perfect bond simulation option, bar elements are used to mesh the steel. Kinematic 
relationships impose a perfect steel-concrete adhesion. The interface non-linear behavior option
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is achieved by connecting macro-elements to concrète volumetric elements.
Experimentally, the steel is plasticizes at the end of the tie-rod test. The interest here is to 

study the phase of concrete cracking during which the steel behavior remains linear. A linear 
behavior law is associated to steel with a Young’s module equal to 200 GPa. For concrete, a 
linear law with a Young’s module of 30.4 GPa and a Poisson’s ratio of 0.22 is used (for linear 
concrete simulations).

In order to study the influence of the interface model rigidity on the resulting reaction curve, 
figure 8 shows reactions curves with linear bond laws compared to the perfect bond curve. 
When increasing the slope of the linear bond law, the reaction curve gets closer to the perfect 
bond curve. In other terms, the perfect bond case is equivalent to a infinitely rigid interface.

2

1.8 

1.6 

1.4 

g 1.2

£Z
1

0.8 

0.6 

0.4 

0.2 

0
0 0.5 1 1.5 2

Imposed displacement (m) x10-3

Figure 8: Reaction curves with linear bond laws compared to the perfect bond reaction curve.

x105

4.2 Nonlinear concrete behavior simulations

For the nonlinear concrete behavior simulations, the Mazars’ damage behavior law is used(see
[16] for the description of the law). Hillerborg method [17] is used for the energy regularization 
of the Mazar’s law, in tension. Table 2 resumes the regularized law parameters.

Parameter Description Value Unit
ft Tensile strength 2.6 MPa
£d,0 Damage threshold f = 8.5526 x 10-5

-
At Local Mazars’ model input Not used - the law is regularized -
Bt Mazars’ model input Regularized

-
Ac Mazars’ model input 1.2 -
Bc Mazars’ model input 700 -
P Mazars’ model input 1.06 -
Gf Fracture energy 150 J/m3

Table 2: Concrete properties used for the concrete nonlinear simulations.

The parameter At that characterizes the local Mazars’ law is not used for the regularized law 
(where an exponential expression is used for the damage evolution). The non-linear bond law 
of the interface is the one shown in figure 9. The different slip - bond stress values indicated in 
figure 9 are linked with linear expressions.
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Figure 9: Nonlinear bond law used for the tie-rod model.

The finite elements mesh is identical to the one used for the linear concrete simulations. 
An aleatory strain-based damage threshold distribution is affected to concrete elements. This 
distribution follows an average Gaussian law with a mean value equal to the ratio of the tensile 
strength of the concrete to its Young’s modulus (value indicated in table 2) and a coefficient 
of variation of 5%. An isotropic correlation is used with a correlation length equal to the size 
of the concrete elements. The tuming bands method is used to generate the damage threshold 
distribution [18].

1 IM
Experimental cracks pattern

Damage field: macro-element simulation

Damage field: perfect bond simulation

Figure 10: Concrete damage field compared to the experimental cracks pattern.

Figure 10 compares the experimental cracking path with the numerical damage distribution 
result. It demonstrates the importance of taking into account the behaviour of the steel-concrete 
interface in the simulations of reinforced concrete elements to better estimate the number of 
cracks and their spacing. Indeed, the distribution of the damage in the concrete volume better 
represents the experimental cracking pattern for the simulation where the non-linear behavior 
of the interface is taken into account.

Visualizing the horizontal strain instead of the damage field in concrete makes it easier to 
count the total number of cracks (see figure 11).

5 CONCLUSIVE REMARKS AND PERSPECTIVES

In this work, a modeling approach of the steel-concrete interface is proposed. This multi- 
scale strategy consists of defining macro-elements capable of representing the behavior of the 
steel, an interface zone and the bond stresses between the steel and the interface. The macro- 
element is defined at the global scale of the reinforced concrete structure. A local scale is
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Horizontal strain field: macro-element simulation

Horizontal strain field: perfect bond simulation

Figure 11: Horizontal concrète strain.

defined to perform internai discretization at the macro-element level, regardless of the size of 
the global mesh. A static condensation technique is used to couple the two scales. A more 
detailed presentation of the proposed modeling strategy is done in [19]. A validation test of 
a 1D pull-out model is performed using the macro-element formulation. The model is able to 
reproduce the interface behavior. An application is presented where a tie-rod test is modeled. 
This application justifies the importance of considering this interface behavior in reproducing 
the cracking phase of concrete in a reinforced concrete structural element. From the perspective 
of enhancing the current version of the macro-element formulation, an alternative approach is 
to use beam elements for discretizing the steel and interface areas of the macro-element, rather 
than selecting bar elements. By incorporating a behavior law that characterizes normal stresses 
as a function of relative displacement in the normal direction, it becomes feasible to introduce 
stresses between the two domains that are perpendicular to the direction of the macro-element. 
With this extension, numerical simulations of reinforced concrete structures can incorporate a 
more accurate depiction of the wedging action caused by steel bar ribs (see [20]). In addition, 
since cyclic bond laws are easily introduced in the macro-element formulation, using this inter
face model is possible to perform complex dynamic applications. This can be useful to assess 
the energy dissipation at the level of the steel-concrete interface for different loading configu
rations and to study the importance of taking into account the interface behavior to accurately 
simulate the dynamic behavior of reinforced concrete structures.
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