

Development of new low-level iodine 129 analysis methods applied to the understanding of iodine's transfer mechanisms in the environment

Coralie Carrier, Azza Habibi, Celine Augeray, Didier Hebert, Denis Maro, Lucilla Benedetti

▶ To cite this version:

Coralie Carrier, Azza Habibi, Celine Augeray, Didier Hebert, Denis Maro, et al.. Development of new low-level iodine 129 analysis methods applied to the understanding of iodine's transfer mechanisms in the environment. 60 ans de la CETAMA, Oct 2021, Nîmes (France), France. . irsn-04186994

HAL Id: irsn-04186994 https://irsn.hal.science/irsn-04186994

Submitted on 24 Aug 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

DEVELOPMENT OF NEW LOW-LEVEL IODINE 129 ANALYSIS METHODS APPLIED TO THE UNDERSTANDING OF IODINE'S TRANSFER MECHANISMS IN THE ENVIRONMENT

C.CARRIER^{1,2,3}, A.HABIBI¹, C.AUGERAY¹, D.HEBERT², D.MARO², L.BENEDETTI³ ¹Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SAME/LERCA, Le Vésinet, 78116, France ²Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRC, Cherbourg-Octeville, 50130, France ³Univ. Aix-Marseille, CNRS, IRD, INRAE, Coll. France, UM 34 CEREGE, Aix-en-Provence, 13545, France

INTRODUCTION

Iodine is a chemical element that could exist under many organic and inorganic forms and has 37 isotopes. ¹²⁷I is the only stable isotope and ¹²⁹I is the only natural radio-isotope with the natural isotopic ratio (¹²⁹I/¹²⁷I) \leq 10⁻¹¹[1]. Iodine 129 is chronically released in the environment by nuclear fuel reprocessing plants [2]. This radionuclide is highly volatile and could easily be absorbed by the thyroid [3], it is then important to quantify ¹²⁹I and ¹²⁹I/¹²⁷I in order to study the complex transfer mechanisms and measure the health and environmental impact.

¹²⁹ | and ¹²⁹ / ¹²⁷ |

STOF

- Often measured by gamma spectroscopy: Low intensity emission at low energies
- High detection limits with this technic
- \checkmark No access to the isotope ratio
 - \rightarrow Chemical treatment could decrease the detection limit
 - → ICP-MS* [4] and AMS** [5] provide isotopic ratio information

• Reemission of iodine from the marine compartment to the coast under the form of aerosols or gases emission

 \rightarrow Never quantified versus direct atmospheric releases

OBJECTIVES

METHOD

