Radiation-induced neurotoxicity assessed by spatio-temporal modelling combined with artificial intelligence after brain radiotherapy: the RADIO-AIDE project

Context
- **High-grade glioma:** the most frequent high-grade brain tumor in adults
- **Radiotherapy (RT):** one of the most important treatments, generally combined with surgery and/or chemotherapy
 - increased patient survival;
 - but increase of side effects like cognitive impairments (ex: attentional, executive and memory disorders) => Altered quality of life for patients.
- **Potential toxicity of RT on the central nervous system?**
 - Which neurotoxic mechanisms are potentially associated with the initiation and progression of post-RT brain lesions? Are there spatio-temporal (ST) signatures of these post-RT brain lesions?
 - Could these post-RT brain lesions be associated with the initiation and temporal progression of cognitive impairments?
 - What about the radio sensitivity of the brain structures implied in cognitive processes?

Objectives

The RADIO-AIDE project is a multidisciplinary project of 4 years, that started in April 2022.

Clinical objective: To generate new knowledge about the neurotoxic mechanisms implied in the initiation and temporal progression of cognitive impairments following brain RT

Methodological objectives:
- To provide to clinicians a usable academic software to perform an automated longitudinal extraction of clinically relevant image-based biomarkers from brain magnetic resonance images (MRI) acquired in clinical routine;
- To develop artificial intelligence (AI) tools to predict individual cognitive impairments at early stage after brain RT

Methods

- **Data:** The prospective EpiBrainRad cohort including patients treated by RT for a high-grade glioma
 - For each patient: brain MRIs, computed tomography (CT) images used in brain RT treatment planning, clinical features, cognitive scores following neuropsychological exams
- **Development of fully automated algorithms based on deep learning (DL) architectures to extract clinically relevant image-based biomarkers like white-matter hyperintensities (WMH), vascular lesions, brain tissues volume quantification, tumoral lesions.**
- **Development of ST mathematical models, radiomics and AI tools based on DL and Bayesian learning algorithms to:**
 - extract, if it exists, a set of features which characterize brain lesions of different nature that may be associated either to post-RT side-effects (leukoencephalopathy, radio-necrosis, post-RT oedema) or to treatment responses (brain tumour progression, peritumoral oedema);
 - perform dose-response analyses
 - predict individual cognitive impairments following brain RT

EpiBrainRad cohort

<table>
<thead>
<tr>
<th>Number of patients included</th>
<th>AP-HP Pitié Salpêtrière</th>
<th>ICANS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>71</td>
<td>243</td>
<td>100%</td>
</tr>
<tr>
<td>154</td>
<td>44</td>
<td>198</td>
<td>81%</td>
</tr>
<tr>
<td>Lost (%)</td>
<td>3</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Total number of MRIs (Average per individual; Max)</td>
<td>1779 (10; 29)</td>
<td>310 (5; 13)</td>
<td>2089 (7.5; 29)</td>
</tr>
<tr>
<td>Number of patients with at least 3 MRIs</td>
<td>160</td>
<td>43</td>
<td>203</td>
</tr>
<tr>
<td>Number of patients with at least 3 MRIs scan (Average per individual; Max)</td>
<td>1761 (11; 29)</td>
<td>277 (6; 13)</td>
<td>2038 (8.5; 29)</td>
</tr>
<tr>
<td>Number of patients with neuropsychological exams at baseline (BL) and at 12 months</td>
<td>64</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>Number of patients with neuropsychological exams at baseline (BL) and at 12, 24 months</td>
<td>22</td>
<td>15</td>
<td>37</td>
</tr>
<tr>
<td>Number of patients with neuropsychological exams at baseline (BL) and at 12, 24 and 36 months</td>
<td>10</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

Results and perspectives

- **An extension of the EpiBrainRad cohort is in progress. New patients will be included from 2023.**
- **An annotated dataset including ground truth labels for post-RT WMH, vascular lesions and tumoral lesions as well as many brain regions of interest implied in cognitive functions is being produced from the brain MRIs of the EpiBrainRad cohort. This large and well curated learning data set will feed the ST models and AI tools subsequently developed.**

Authors (RADIO-AIDE consortium)

Sophie Ancellet1 (PI), Cécilia Damon2, Théo Silvestre3, Alice Bressand3, Michel Dojat3, Benjamin Lemasson3, Alan Tucholka4, Florence Forbes5, Alain Trouvé6, Nadya Pyatigorskaya7, Lucia Nichelli7, Monica Ribeiro6, Julian Jacob2, Philippe Meyer8, Catherine Jenny2, Caroline Dehais2, Alexander Balcerac6, Jean Marie Mirebeau6, Sophie Achard5, Loïc Feuvret2, Dimitri Psimaras2, Georges Noël8, Philippe Maingon2, Damien Ricard6, Marie-Odile Bernier1.

1 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
2 Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique–Hôpitaux de Paris, France
3 Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, France
4 Pixyl, France
5 University Grenoble Alpes, Inria, CNRS, Grenoble INP, LIK, France
6 CNRS, ENS Paris-Saclay, Centre Borelli, Université Paris-Saclay, France
7 Sorbonne University, Paris Brain Institute – ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière, France
8 Strasbourg-Europe Cancer Institute (ICANS), France

Contact

Sophie Ancellet (PI)
Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
Phone: +33 (0) 1 58 35 79 89
Email: sophie.ancellet@irsn.fr

Funding

Agence Nationale de la Recherche (Grant ANR 21 CE45 0038 01) and partners’ own resources