Radiation-induced neurotoxicity assessed by spatio-temporal modelling combined with artificial intelligence after brain radiotherapy: the RADIO-AIDE project

Sophie Ancelet, Cecilia Damon, Théo Silvestre, Alice Bressand, Michel Dojat, Benjamin Lemasson, Alan Tucholka, Guillaume Jarre, Florence Forbes, Alain Trouvé, et al.

To cite this version:
Sophie Ancelet, Cecilia Damon, Théo Silvestre, Alice Bressand, Michel Dojat, et al.. Radiation-induced neurotoxicity assessed by spatio-temporal modelling combined with artificial Intelligence after brain radiotherapy: the RADIO-AIDE project. ISoRED 2023 - International Society for Radiation Epidemiology and Dosimetry 1st meeting, May 2023, Sitges, Spain. 2023. irsn-04200854

HAL Id: irsn-04200854
https://irsn.hal.science/irsn-04200854
Submitted on 8 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Radiation-induced neurotoxicity assessed by spatio-temporal modelling combined with artificial intelligence after brain radiotherapy: the RADIO-AIDE project

Context

- **High-grade glioma**: the most frequent high-grade brain tumor in adults
- **Radiotherapy (RT)**: one of the most important treatments, generally combined with surgery and/or chemotherapy
 - increased patient survival;
 - but increase of side effects like cognitive impairments (ex: attentional, executive and memory disorders) => Altered quality of life for patients.
- **Potential toxicity of RT on the central nervous system?**
 - Which neurotoxic mechanisms are potentially associated with the initiation and progression of post-RT brain lesions?
 - Are there spatio-temporal (ST) signatures of these post-RT brain lesions?
 - Could these post-RT brain lesions be associated with the initiation and temporal progression of cognitive impairments?
 - What about the radio sensitivity of the brain structures implied in cognitive processes?

Objectives

The RADIO-AIDE project is a multidisciplinary project of 4 years, that started in April 2022.

- **Clinical objective**: To generate new knowledge about the neurotoxic mechanisms implied in the initiation and temporal progression of cognitive impairments following brain RT
- **Methodological objectives**:
 - To provide to clinicians a usable academic software to perform an automated longitudinal extraction of clinically relevant image-based biomarkers from brain magnetic resonance images (MRI) acquired in clinical routine;
 - To develop artificial intelligence (AI) tools to predict individual cognitive impairments at early stage after brain RT

![Brain MRI of a patient with brain lesions](image1)
![Segmentation of a brain lesion visible on the MRI on figure 2](image2)

EpiBrainRad cohort

<table>
<thead>
<tr>
<th>Number of patients included</th>
<th>AP-HP Pitié Salpêtrière</th>
<th>ICANS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>71</td>
<td>243</td>
<td>100%</td>
</tr>
<tr>
<td>Deceased patients</td>
<td>154</td>
<td>44</td>
<td>198</td>
</tr>
<tr>
<td>Lost (%)</td>
<td>0</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Total number of MRIs (Average per individual; Max)</td>
<td>1779 (10; 29)</td>
<td>310 (5; 13)</td>
<td>2089 (7.5; 29)</td>
</tr>
<tr>
<td>Number of patients with at least 3 MRIs</td>
<td>160</td>
<td>43</td>
<td>203</td>
</tr>
<tr>
<td>Number of MRIs per patient with at least 3 MRIs scan (Average per individual; Max)</td>
<td>1761 (11; 29)</td>
<td>277 (6; 13)</td>
<td>2038 (8.5; 29)</td>
</tr>
<tr>
<td>Number of patients with neuropsychological exams at baseline (BL) and at 12 months</td>
<td>64</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>at BL, 12 and 24 months</td>
<td>22</td>
<td>15</td>
<td>37</td>
</tr>
<tr>
<td>> 36 months</td>
<td>10</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

Results and perspectives

- An extension of the EpiBrainRad cohort is in progress. New patients will be included from 2023.
- An annotated dataset including ground truth labels for post-RT WMH, vascular lesions, brain tissues volume quantification, tumoral lesions.
- Development of ST mathematical models, radiomics and AI tools based on DL and Bayesian learning algorithms to:
 - extract, if it exists, a set of features which characterize brain lesions of different nature that may be associated either to post-RT side-effects (leukoencephalopathy, radio-necrosis, post-RT oedema) or to treatment responses (brain tumor progression, peritumoral oedema);
 - perform dose-response analyses;
 - predict individual cognitive impairments following brain RT

Methods

- **Data**: The prospective EpiBrainRad cohort including patients treated by RT for a high-grade glioma
 - For each patient: brain MRIs, computed tomography (CT) images used in brain RT treatment planning, clinical features, cognitive scores following neuropsychological exams
- **Development of fully automated algorithms based on deep learning (DL) architectures to**
 - extract clinically relevant image-based biomarkers like white-matter hyperintensities (WMH), vascular lesions, brain tissues volume quantification, tumoral lesions.
- **Development of ST mathematical models, radiomics and AI tools based on DL and Bayesian learning algorithms to**:
 - for each patient: brain MRIs, computed tomography (CT) images used in brain RT treatment planning, clinical features, cognitive scores following neuropsychological exams
 - perform dose-response analyses
 - predict individual cognitive impairments following brain RT

Authors (RADIO-AIDE consortium)

Sophie Ancialet1 (PI), Cécilia Damon1, Théo Stivel2, Alice Bressaud3, Michel Dojar4, Benjamin Lemasson5, Alan Tucholka6, Guillaume Jarret7, Florence Forbes7, Alain Trouvé4, Nadya Porotskaya8, Lucia Nichelli2, Monica Ribeiro4, Julian Jacob2, Philippe Meyer1, Catherine Jenny2, Caroline Dehais2, Alexandre Balcerac6, Jean Marie Mirebeau6, Sophie Achard5, Loïc Feuvret2, Dimitri Psimaras2, Georges Noël8, Philippe Maingon2, Damien Ricard6, Marie-Odile Bernier1.

1 Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
2 Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Assistance Publique–Hôpitaux de Paris, France
3 Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, France
4 Pixyl, France
5 University Grenoble Alpes, Inria, CNRS, Grenoble INP, UK, France
6 CNRS, ENS Paris-Saclay, Centre Borelli, Université Paris-Saclay, France
7 Sorbonne University, Paris Brain Institute—ICM, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière, France
8 Strasbourg-Europe Cancer Institute (ICANS), France

Contact
Sophie Ancialet (PI)
Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
Email: sophie.ancialet@irsn.fr
Phone: +33 (0) 1 58 35 79 89

Funding
Agence Nationale de la Recherche (Grant ANR 21 CE45 0038 01) and partners’ own resources