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Abstract

Classical many-body potentials that have a rather low number of parameters and are based on physically-inspired
functional forms are expected to display a reasonable transferability, though their flexibility is limited. Ways to improve
them when their transferability is unsatisfactory and when new interesting structures/targeted properties emerge are
not clearly established. Here, model screening and sensitivity analysis techniques are combined to get insights on the
intrinsic capabilities of classical potentials for typical sets of targeted properties, and we propose to use the outcomes of
the sensitivity analysis to improve potential performances. Usefulness is illustrated on existing simple second moment
potentials (SMA), and we refit one such model for the study of small irradiation defects in α-zirconium. Application of
this approach is recommended for more complex interaction models with up to tens of parameters, such as other classical
many-body potentials or tight-binding electronic structure models, that are possible to re-optimize while gaining a better
understanding of the role of their parameters.

Keywords: Classical interatomic potentials, Sensitivity analysis, atomistic calculations, α-zirconium, irradiation
defects

1. Introduction

Classical many-body potentials having low to intermedi-
ate number of parameters are based on a physical under-
standing of the interatomic bonding, which makes them
reasonably transferable [1]. They have been extensively
used up to now to uncover mechanisms occuring at large
scales [2–5], to investigate complex defect diffusion and
potential energy landscapes [6, 7], to assist the develop-
ment of mesoscale models of materials properties [8, 9], or
to perform full phase diagram calculations of multicompo-
nent bulk alloys or nano-objects [10, 11]. None of these
results could have been obtained from ab initio atomistic
calculations: the large space and time scales accessible to
classical interatomic potentials are a prerequisite to un-
dertake such studies.

More recently, another class of interatomic potentials –
the so-called Machine Learning (ML) potentials – has be-
come very popular in the materials science community [12–
14]. In contrast to classical potentials, ML potentials have
a very high dimensionality in the parameter space [1, 15–
17]. This gives them a high flexibility, and thus very good
interpolation capabilities. Their transferability/extrapola-
tion behavior on the other hand depends on the subclass of
ML potentials [1, 13]. However, their development requires
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a very large ab initio database of structures, energies and
forces, and the numerical cost associated with their use
remains several orders of magnitude higher than those of
classical potentials [1, 18]. This places ML potentials in
between ab initio methods and classical potentials in the
multi-scale modeling chain.

Consequently, some classes of physical problems can
only be treated by classical, numerically light potentials,
e.g. embedded-atom-method (EAM) [19, 20], tight-binding
second moment approximation (SMA) [21], or modified
EAM potentials [22, 23]; so one must continue to develop
and improve them for materials studies, knowing that their
flexibility is limited. The identification of potential param-
eters for a specific system and set of targeted properties
thus remains a critical step, and calls for a better under-
standing of the actual capabilities of a given potential-type
to reproduce some properties or combination of properties.
Moore et al. [24] tackled this problem using qualitative,
one-at-a-time sampling of the MEAM potential param-
eters, and provided useful insights into how changes in
parameters propagate on several structural and thermal
material properties. However, such an approach ignores
the possible sensitivity of the interatomic potential to the
correlation between its parameters. No work has been car-
ried out to date that takes these effects into account in a
quantitative and systematic manner, and that deals with
typical realistic sets of target simulated properties (e.g.
including defects). Indeed, the current literature is either
devoted to the study of fcc bulk properties [25], and/or
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focused on the quantification of uncertainties [25–27].
In this work, we perform an analysis based on model

screening and variance-based global sensitivity analysis
tools to get insights on the above-mentioned aspects, and
propose to use the outcomes of the sensitivity analysis to
improve existing potentials. The interest and usefulness
of this approach is illustrated on the model case of SMA
potentials – simple many-body potentials having a very
low number of parameters – and examined in the context
of irradiation defects in α-zirconium. But the approach is
general, and also applies to other classical potentials.

The remainder of the article is organized as follows.
Section 2 introduces the SMA interaction model and the
selected bulk and defect quantities of interest for α-Zr.
Model screening is performed in section 3, and allows us to
identify (i) some difficulties of the SMA to describe several
defect properties, and (ii) the possible artifacts induced
by the existence of strong gradient zones in the potential
functions. After reduction of these artefacts, the most in-
fluential parameters on each of the computed properties
are identified in section 4, through a variance-based sen-
sitivity analysis. Section 5 illustrates the refitting process
of an existing potential, focusing on a reduced number
of important parameters. Interesting insights on the ac-
tual capabilities of SMA potentials for reproducing the set
of selected α-Zr properties are obtained, and an existing
SMA potential is improved for the study of small point de-
fect physics. Section 6 is dedicated to various discussions
about the SMA capabilities, the interest of our combined
approach, and its applicability to other types of interaction
models.

2. Atomistic simulation details

We first describe the functional form and parameter sets
of the SMA potentials, and then list the quantities of in-
terest for studying irradiation defects in hcp Zr, a major
component of the nuclear cladding materials.

2.1. Second Moment Approximation (SMA) potentials

The second-moment approximation of the tight-binding
scheme (TB-SMA) proposed by Rosato et al. [21], and fol-
lowing the ideas of Friedel and Ducastelle [28–31], provides
an analytical form for the energy of a particle and a par-
ticle assembly [21, 32, 33]. This family of classical inter-
atomic potentials has been designed for transition metals.
With this formalism, the energy of an atomic site i, with
i = 1...Nat for a system of Nat atoms, is written as:

Etot
i = Eb

i + Erep
i , (1)

with Eb
i the band energy term, attractive, and Erep

i the
empirical repulsive term. The band term is derived from
a simplified electronic structure of the metal and has the
following form:

Eb
i = −ξ

√∑
j 6=i

e−2q
(

rij
r0
−1
)
, (2)

where r0 represents a typical distance, close to the first
nearest neighbor atoms, and rij is the distance between
atoms located at sites i and j. ξ > 0 is an effective hopping
integral, and q describes the interatomic distance depen-
dence. Interactions are non-additive due to the presence
of the square root in Eq. 2. The repulsive interaction term
is assumed to be pairwise and described by a sum of Born-
Mayer ion-ion repulsion terms:

Erep
i = A

∑
j 6=i

e−p
(

rij
r0
−1
)
, (3)

where A > 0 provides the energy scale, and p sets the
decay. The total potential energy of the system is then
expressed as Etot =

∑Nat

i=1E
tot
i . Note that original formu-

lations of EAM and Finnis-Sinclair potentials were very
close to the SMA one.

To limit summations in Eqs. 2 and 3, a cutoff ra-
dius rcut must be chosen, and defines the range of the
SMA potential. It typically falls between two successive
atomic neighbor shells in the bulk crystalline structure
(here hcp) [32]. Numerically, this cutoff is defined as an
interval rcut ≡ [rscut, r

e
cut], which extremities correspond to

the starting and ending points of a polynomial function
smoothly linking the energy to zero. Thus, the energy of
an atomic site i for distances larger than rscut is computed
as:

Etot
i =

∑
j 6=i

α(rij)−
√∑

j 6=i

Ξ2(rij), (4)

with rscut < rij < recut, and where

α(rij) = a3(rij − recut)3 + a4(rij − recut)4 + a5(rij − recut)5,
Ξ(rij) = x3(rij − recut)3 + x4(rij − recut)4 + x5(rij − recut)5.

(5)

This SMA potential formulation is implemented in the
open source molecular dynamics (MD) software Lammps
[34], and the six coefficients (a3, a4, a5, x3, x4, x5) of the
polynomial functions are automatically computed, from
continuity conditions applied between the exponentials of
Eqs. 2 and 3 and the polynomials of Eqs. 5, up to their
second derivatives. An SMA potential developed for a
given material is thus defined by a set of four parameters
θ = {A, p, ξ, q} adjusted on the desired material properties.
In this work, r0 is not considered as an adjustable param-
eter (i.e. fixed value), and the cutoff extremities [rscut, r

e
cut]

lie between the two neighboring shells chosen at the po-
tential development stage.

Table 1: Nominal parameters for Dufresne’s and WM1 SMA poten-
tials, reproduced from refs. [32, 35]. A and ξ are given in eV, and
r0 is in Å. rcut column gives the atomic neighboring shells between
which the cutoff interval is fixed.

A p ξ q r0 rcut
Duf. 0.269 7.376 2.693 2.492 3.17 2nd − 3rd

WM1 0.17936 9.3 2.20142 2.1 3.17 6th − 7th
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Figure 1: Projection in the basal plane of the vacancy defect and of
several configurations of SIA defects. White spheres: bulk Zr atoms
at z = 0, gray spheres: bulk Zr atoms at z = c

2
. Blue spheres: Zr

atoms at z = 0 (BO and BS SIA configurations), and yellow sphere:
Zr atom at z = c

4
(O SIA configuration).

We select here two previously developed SMA poten-
tials for Zr: the potential developed by Dufresne et al. [35]
and the potential by Willaime and Massobrio [32], named
WM1 in the original paper and herafter. Their fitted pa-
rameters, r0 and cutoffs interval values are reproduced in
Table 1. Both were developed by fitting some Zr bulk
properties at T = 0 K. The main differences between the
two SMA potentials are their range (short and medium
range respectively, cf. Table 1) and the crystallographic
structures and properties used for the fitting procedure.
Dufresne’s potential is fitted for fcc Zr, from lattice pa-
rameter, cohesive energy, bulk modulus B and some points
of a reference energy versus distance curve [35–38]. The
WM1 potential is calibrated for hcp Zr from ab initio and
experimental values of cohesive energy, equilibrium atomic
volume and elastic constants [32]. For both potentials, de-
fect properties of any kind were not part of the adjustment
procedure and are not satisfactorily reproduced, as will be
discussed later. These two imperfect potentials are chosen
on purpose, to illustrate the usefulness of the combined
sensitivity analysis and potential refit approach.

2.2. Target properties in α-Zr

As a nuclear fuel-cladding material, hcp Zr and its al-
loys are subject to neutron irradiation, which triggers the
formation of vacancies and self-interstitial atoms (SIAs)
defects. These small point defects then diffuse into the
hcp matrix, cluster and eventually form extended defects,
mainly dislocation loops of both vacancy and intersti-
tial type [39–42]. This whole process directly affects the
macroscopic properties of the Zr cladding material, lead-
ing in particular to irradiation-induced growth and creep
[39, 43, 44]. In this context, several basic properties rel-
evant for irradiation growth are picked as quantities of
interest (QOIs); their sensitivity to the four parameters
defining the SMA potential will be evaluated. More specif-
ically, we will focus on:

• Bulk properties: independent elastic constants (C11,
C12, C44, C13 and C33), Bulk modulus B, lattice con-
stant a, c/a ratio, and cohesive energy Ec,

• Point defect properties: formation energies Ef of va-
cancy and SIAs. Three low energy SIAs configura-
tions, as predicted by ab initio calculations [45–47],
are retained: octahedral (O), basal octahedral (BO)
and split dumbbell in the basal plane (BS)1, see Fig. 1,

• Plane defect properties: stable stacking fault energies
γSF for the intrinsic (I1 and I2 configurations) and ex-
trinsic (E) faults in the basal (0001) plane, along with
stacking fault energy in the prismatic {101̄0} planes,
noted PPI in the following. Configurations are de-
tailed in Refs. [40, 42, 48].

Small point defect properties are important for early
stages of clustering, diffusion properties and defect growth,
while stacking faults can be present in dislocation loops
lying in both prismatic and basal planes. These latter -
extended - defects are the result of irradiation point defect
clustering. We note finally that the listed properties are
all T = 0 K properties, that may require some lattice re-
laxations, but are in any case deterministic quantities, i.e.
there is no stochasticity involved in their computation.

Molecular statics calculations are all performed with the
Lammps code [34], using simulation boxes having 1500
atoms for point defect calculations, and having 12 atomic
planes in the direction normal to the fault for stacking
fault calculations. These simulation sizes where already
validated in previous studies [40, 49].

3. Screening of the SMA potentials

The goal of exploring the effect of interatomic poten-
tial parameter variation on materials properties is twofold.
First, it already gives some hints on the parameter-
property relationships. Second, it is a mean to identify
possible artefacts related to the potential implementation.
Earlier model screening works [26, 27] showed indeed many
outliers and non-physical property values, e.g. extremely
negative grain boundary energies in fcc Al, even for ap-
plied parameter variations ≤ 1%. Such effects naturally
question the validity of the subsequent sensitivity analy-
sis. In our case, artefacts will be also observed, and we will
propose a method to improve the robustness of the SMA
potential implementation.

3.1. Naive model screening

To screen the two SMA potentials, we generate 200 ran-
dom parameter sets {θi} : i = 1, ..., 200, applying a 2.5 %

1In refs [45, 46], a crowdion out of the basal plane is also found
(BC’ SIA configuration), but migration pathways from this defect
configuration indicate that it is likely a saddle point configuration
instead of a fully metastable configuration, so it is not included in
the present study.
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Figure 2: Results of model screening for Dufresne’s and WM1 potentials, for a parameter variation of 2.5 % around their nominal values,
displayed as boxplots for (a-b) elastic constants Cij , (c-d) point defect formation energies Ef for the vacancy and the O, BO and BS SIAs,
and (e-f) stable stacking fault energies γSF for the I1, I2 and E basal faults, and for the PPI prismatic fault. The label ‘No Optim’ refers to
näıve model screening, and the label ‘Optim Elastic’ to model screening performed with a search for a correct cutoff interval (see main text
for details). Red crosses: reference ab initio values from Refs. [40, 46, 50].

variation around their nominal values (cf. Table 1) and
assigning an uniform probability distribution for all. The
cutoff interval is kept constant at its nominal value, i.e.
rscut is located at the 2nd (resp. 6th) nearest neighbor

position, and recut is located at the 3rd (resp. 7th) near-
est neighbor position of the nominal Dufresne’s potential
(resp. WM1 potential). Results for Cij , Ef and γSF val-
ues are shown in Figs. 2(a)-(f), in the form of boxplots
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Figure 3: Effect of the cutoff interval on an total energy versus dis-
tance curve and its second derivative (Dufresne’s potential and hcp
structure). E1 and E2 correspond to the energy curves with a larger
and smaller cutoff interval respectively.

for both potentials (‘No optim’ labels). In each box, the
horizontal line inside the box indicates the median, the
height of the box the interquartile range (IQR), and the
whiskers extend between a distance of 1.5 times the IQR
below/above the lower/upper quartile. Outliers then sim-
ply appear as points outside the whiskers.

Given the limited and symmetrically applied variation
on the four SMA potential parameters (2.5 %), the ob-
served spreading and/or skewness for a number of com-
puted QOIs appear significant. In particular, elastic con-
stant boxplots for the short-range Dufresne’s potential
(Fig. 2a) show a pronounced skewness, some outliers and
a large spreading. For instance, C11 has values ranging
from ∼ 125 GPa to ∼ 200 GPa. The medium range WM1
potential elastic constants (Fig. 2b) are less affected by pa-
rameter variations with a reduced skewness, but C11 and
C33 still show a large scatter around their median values.
For the vacancy, both potentials show a limited spread-
ing around the median Ef value, of ∼ 0.3 − 0.4 eV, in
contrast with the SIA formation energies, for which the
scatter in energy values raises 1 − 1.5 eV and 0.7 − 1 eV
for Dufresne’s and WM1 potentials, respectively (Figs. 2c
and 2d). Finally, the prismatic stacking fault has a no-
ticeable spreading of ∼ 50 mJ.m−2 for both potentials,
while the spreading of basal faults is negligible (Figs. 2e
and 2f). ‘Artefacts’ are particularly visible for elastic con-
stants, which are partial second derivatives-related prop-
erties. As the SMA potential implementation involves a
polynomial smoothing function (see Eqs. 4 and 5) whose
partial derivatives differ from the SMA potential ones, the
computed QOIs could be biased by keeping a fixed cutoff
interval for any set of parameter θi.

3.2. Influence of the rcut interval

To get an inkling of the effect of the cutoff interval on the
computed properties, we can schematically draw the en-
ergy versus distance curve and its second derivative, with

two different [rscut, r
e
cut] interval values. As shown in Fig-

ure 3, strong gradient/curvature zones exist in the neigh-
borhood of the smoothing function (polynomial here, cf.
Eq. 5). Hence, once some atoms visit these zones when
computing a property - e.g. due to an applied deformation
or to atomic relaxations around a defect - the total energy
and its derivatives will strongly vary. The choice of the cut-
off interval is then a sensitive task: reducing its width di-
rectly affects the curvature of the energy curve, and shifts
the strong gradient zone (see Fig. 3). To improve the ro-
bustness of the potential while keeping a continuous and
reasonably smooth linking of the energy to zero, one can
thus intent to position the strong gradient/curvature zone
in a region that is not explored by atoms in our molecular
simulations. This can be done by reducing the cutoff in-
terval up to a value that remains reasonable, so as to avoid
any energy discontinuity.
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Figure 4: Bulk elastic contants B and Cij (a), and formation en-
ergies Ef of the vacancy and SIA defects (b), versus length of the
cutoff interval (recut− rscut), for Dufresne’s potential. The initial cut-
off interval value is 40 % superior to the 2nd to 3rd nearest neighbor
distance. Purple dashed line: interval for which neighbors are simul-
taneously crossed. Yellow dashed line: optimized cutoff interval. See
main text for details.

We thus examine the evolution of α-Zr elastic constants
and of the formation energies Ef of the vacancy and the
various SIA defects with the length of the cutoff interval
recut − rscut, as given in Figs. 4 (a)-(b). The cutoff inter-
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val is initially set to a value that is 40 % higher than the
potential 2nd to 3rd nearest neighbor distance, which cor-
responds to a ∼ 1 Å initial cutoff interval value. It is then
reduced up to ∼ 60 % of its original length, by moving
symmetrically the initial and final points rscut and recut.
SMA parameters are kept at their nominal values using
Dufresne’s potential; similar behaviors are obtained with
the WM1 potential.

As shown in Fig. 4 (a), elastic constants Cij are highly
dependent on the cutoff interval value, and their relation-
ship with respect to the cutoff interval is nonlinear. For
instance, an interval reduction from 1 Å to 0.64 Å leads
to a decrease of more than 50 GPa for C11, and reduc-
ing further the interval does not modify C11 anymore. By
reducing the cutoff interval, all Cij are seen to reach a
plateau, that arises after both rscut and recut enter within
the 2nd and 3rd nearest neighbor (nn) interval. But the
specific threshold interval value is different for each elastic
constant. Regarding now Ef values for point defects in
Fig. 4(b), while a flat curve is obtained for the vacancy,
we note a sensitivity to the cutoff interval for the SIAs.
Again, the variation is more pronounced up to crossing
the 2nd and 3rd neighbors, which are crossed simultane-
ously for a cutoff interval of ∼ 0.7 Å. However, a smooth
variation of Ef still remains, meaning that the influence
of the cutoff interval on the computed SIA energetics can-
not be fully eliminated. Note also for the BS SIA some
small energy jumps at small cutoff intervals, correspond-
ing to changes in defect configurations. Thus, a too small
interval is not desirable.

To summarize, observed QOIs are actually impacted by
the cutoff interval value, i.e. properties are not only af-
fected by the potential parameters and potential range,
but also by the implementation details of the cutoff
smoothing function. This is problematic for (i) MD sim-
ulations where a naive cutoff implementation could lead
to uncontrolled artefacts, and (ii) for sensitivity analysis,
since we aim at identifying the influence of the ‘physical’
SMA parameters on the QOIs with an almost transpar-
ent role of the smoothing function (i.e. properties must be
controlled by Eqs. 2 and 3, and not by Eqs. 4 and 5).

3.3. Reduction of the cutoff bias and results

Following the above observations, we propose one opti-
mization technique to reduce the bias induced on the QOIs
by the cutoff interval. For each set of parameters θi, we
find a cutoff interval that makes the QOIs essentially inde-
pendent from it, for a given potential range (i.e. between
2nd and 3rd nn for Dufresne’s and between the 6th and 7th

nn for WM1 potential). This is done by initializing rscut
(resp. recut) to a value 40 % lower (resp. higher) than that
of the nominal potential, and then by systematically and
symmetrically reducing the cutoff interval until the full
set of Cij converges to values that are independent from
it. Deformations up to ±1 % are applied to the simulation

box when calculating elastic constants,2 and a tolerance
of 0.1 GPa is fixed for convergence. Note that this tech-
nique for reducing the cutoff interval bias on the QOIs
is intrinsically adapted to reasonable parameter variations
around their nominal values, but not to any parameter
values. New screening results are represented as boxplots
in Figs. 2(a)-(f) for both SMA potentials, and the corre-
sponding model screening statistics are reported in Sup-
plementary Materials. As before, 200 simulations are per-
formed and the four parameters θ = {A, p, ξ, q} randomly
vary in a 2.5 % range around their nominal values.

Overall, the skewness of all QOIs is suppressed, i.e. all
boxplots are now symmetric around their median values.
For most of the QOIs, median values are shifted as com-
pared to the previous case where the cutoff interval was
not optimized, and the spreading is significantly reduced.
The spreading stays rather important for SIA formation
energies, with likely some remaining effect of the cutoff in-
terval, cf. the smooth energy variation seen in Fig. 4(b).
The effect on the cutoff bias reduction procedure is more
visible on the short-range Dufresne’s potential, but is ef-
ficient and useful in both cases. The final shape of the
QOIs distributions are now essentially impacted by the
variation of parameters θ = {A, p, ξ, q}, the robustness of
the potential implementation is enhanced, and results of
model screening, and later on sensitivity analysis, can be
commented safely.

The small applied parameter variation affects differently
the various Cij for both SMA models: C44 and C13 dis-
play a very limited variability, in contrast to other elastic
constants. SIAs formation energies show a larger spread-
ing than the vacancy one, and the variability is similar ac-
cross different configurations. Finally, basal stacking faults
are almost insensitive to the (small) parameter variations.
This already indicates a possible difficulty of such poten-
tials to tune any γbasal value. As an aside, we compare
the nominal potentials QOIs – equal now to median val-
ues of the boxplots – to a consistent set of reference ab
initio calculations [40, 46, 50], chosen as a reference and
indicated in Fig. 2(a)-(f). While the two potentials rather
well reproduce the ab initio elastic constants, they strug-
gle to predict correct defect energetics (cf. Figs. 2(c)-(f)));
in particular, WM1 potential overestimates the SIAs for-
mation energies by 50%. Basal stacking fault energies are
underestimated by both potentials, with zero values for
Dufresne’s potential. WM1 overestimates prismatic stack-
ing fault and SIA formation energies.

3.4. Discussion of the robustness of the potential

The high gradient zones introduced in the SMA poten-
tials by the smooth cutoff function can produce artefacts
on the computed properties, leading to artificial and pos-
sibly non-physical results. We improved the robustness of

2For Cij computation during the sensitivity analysis or in Table 3
the maximum applied deformation is equal to ±1.10−4%
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the implementation of the potentials by shifting these high
gradient zones at distances that are not visited by atoms
during relaxations and/or deformation. This - at least for
the investigated QOIs - provides satisfying results.

Based on our observations, we can further propose some
explanations for the surprising results obtained by Dhali-
wal et al. [26, 27] in two studies, where they screen in-
teratomic potentials applying up to 1 % variations on
the nominal potential parameter values. In Ref. [27], a
graphene layer is modeled with an AIREBO potential,
which implementation comprises several linking functions
[51] that introduce strong gradient zones. These latter are
positioned at distances that can be explored by atoms if
the system is distorted, e.g. by a defect. It is not surprising
then to see strongly negative Stone-Wales defect energet-
ics and very large spreading and number of outliers for 2D
elastic constants, when performing model screening [27].
In Ref [26], the screening is performed on an EAM poten-
tial, for various bulk and defect properties of fcc Al. In
contrast with our SMA case, there is no separation be-
tween a ‘potential function’ and a ‘smoothing function’:
their EAM potential is defined by spline functions, with
potential parameters including spline knots (parameters
have no physical foundation here). Given the sensitivity
of spline functions, one can easily imagine that even small
parameter variations will generate strong gradient zones in
the potential function, possibly leading to important arte-
facts in the computed properties. This is what is observed
for some Al elastic constants, surface and grain boundary
energies (many outliers, large spreading and/or unphysical
values).

4. Identification of the most influential parameters

We now turn to the identification of the influence of po-
tential parameters on the previously mentioned α-Zr prop-
erties (important for irradiation behavior, see section 2.2).
These are zero-temperature quantities which computation
is both deterministic and numerically inexpensive. Be-
sides, the SMA potential is non-linear, so one cannot a
priori exclude indirect effects of its parameters on the
computed properties. Therefore, we select the sensitiv-
ity analysis technique based on the computation of the
Sobol indices [52]. In this section, we first describe Sobol’s
method, and then discuss results obtained for the two SMA
potentials.

4.1. Sobol indices

Sobol’s sensitivity analysis is a global sensitivity analy-
sis method that is based on variance decomposition. Its
mathematical background is widely described in the liter-
ature [52], so we recall here only the necessary matter. In
this subsection only, a property calculated with the SMA
model is denoted as Y , with Y = f(X1, . . . , Xk), and with
the {Xi} the set of potential parameters. The first order

index that quantifies the sensitivity of Y to Xi is defined
by

Si =
V (E[Y |Xi])

V (Y )
=

Vi
V (Y )

, (6)

with E denoting the expectation value. Si estimates the
part of the variance V of the property Y that is due to
the variance of Xi, and expresses the direct effect of Xi.
Sobol also introduces second order indices as

Sij =
V (E[Y |Xi, Xj ])− Vi − Vj

V (Y )
=

Vij
V (Y )

, (7)

and higher order indices Sijk, . . . defined similarly. They
express the sensitivity of the variance of Y to the inter-
action of the Xi, Xj , Xl, . . . , through the model. These
indices are easy to interpret: their overall sum is equal to
1 and they are all positive, so the closer their value is to
unity, the more the considered variable(s) – i.e. parame-
ter(s) – will be influential.

A useful concept, introduced for the first time by
Homma and Saltelli [53], is the so-called total sensitiv-
ity indices, that express the total sensitivity of the vari-
ance Y to a specific Xi, i.e. in all its forms (sensitivity
to the Xi alone and sensitivity to the interactions of this
variable with the other variables). The total sensitivity
index STi

to the variable Xi is simply defined as the sum
of all sensitivity indices relating to this variable. In the
following, we will compute for each QOI only the couple
(Si, STi) related to each potential parameter. When both
indices are similar, this means that higher order indices
are negligible, and their computation useless. Large dif-
ferences, conversely, will indicate that the observed output
is particularly affected by the interactions between poten-
tial parameters, and computation of second order indices
will be performed.

4.2. Results for irradiation-relevant QOIs in α-Zr

The number of simulations required for the sensitivity
analysis increases quickly with the number k of parameters
(here k = 4). We thus use a Latin hypercube-type Sobol
sequence sampling [54] to generate efficiently our set of
θi = (A, p, q, ξ)i, with i = 1 . . . N , and using the SAlib
package [55]. Estimation of first and second order, along
with total indices requires N × (2k + 2) simulations per
QOI. Here, N = 3750 is used, which ensures sufficiently
converged index values.

Samples are generated by considering parameter inter-
vals of ± 2.5% around the nominal values. This is done
for both potentials. It is worth pointing out that similar
results in terms of sensitivity indices are obtained for both
potentials by increasing the width of variation intervals up
to ± 10% around the nominal parameter values. First or-
der and total indices for all QOIs listed in subsection 2.2,
and for Dufresne’s and WM1 SMA potentials are given
in Fig. 5. Bulk properties (elastic and lattice constants)
are displayed in Figs. 5(a), and defect properties (point
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Figure 5: First order and total Sobol’s sensitivity indices obtained for Dufresne’s and WM1 potentials, for several QOIs: a) bulk properties (B,
Cij , cohesive energy and lattice parameters a and c/a ratio, b) point defect formation energies Ef (vacancy and O, BO and BS configurations
of self-interstitial, and stable stacking faults energies in the prismatic (γPPI) and basal planes ( γE, γI1 , γI2 ).

defect formation energies and stacking faults energies) in
Figs. 5(b-c).

Concerning bulk properties and for both potentials,
there is a very limited difference between first order and to-
tal indices related to the four potential parameters, which
means that bulk properties are essentially not affected by
the interaction between the four SMA potential parame-
ters. The only exception is the c/a ratio for Dufresne’s
potential, whose first order indices are way smaller than
the total indices. This is due to the very short range na-
ture of this potential: the c/a ratio get stuck in the ideal
value of

√
8/3 when parameters are varying, so the anal-

ysis of c/a variations becomes meaningless. Besides, and
again except for the c/a ratio, both potentials express the
same overall sensitivity to the parameters, i.e. the ranking
of the parameters with respect to their sensitivity indices
is similar. More specifically,

• for elastic constants: ξ is the most influential param-
eter in all cases but one, C44, where the sensitivity
index for ξ just follows the one for p. The influence of
A is negligible for all Cij , q (resp. p) has a moderate
to strong influence on B, C12 and C13 (resp. C11, C44,
and C33),

• the cohesive energy Ec is affected almost exclusively

by ξ,

• the lattice constant a is equally moderately affected
by all parameters.

The strong effect of ξ on Ec stems from the window of
parameters used to fix both the energy scale and an equi-
librium distance for the structure. Comparison of sensitiv-
ity indices for the bulk hcp structure to those calculated
for fcc bulk properties in Ref. [25] indicates that the dom-
inant role of ξ on Ec is retreived in the fcc case, but not
the fully negligible effect of A on all elastic constants. So
there exist structural specificities for sensitivity indices of
bulk properties.

The case of point defects is presented in Fig. 5(b).
Again, there is no significant gap between total and first
order indices (except for the O SIA configuration), mean-
ing that interactions between parameters are not impor-
tant. Interestingly, for both potentials the p parameter
plays the key role for all SIA configurations, while having
a moderate effect on the vacancy formation energy, and
(A, q, ξ) mostly do not affect SIAs energetics. This means
that one could modify the SIA formation energies with-
out modifying too much the vacancy formation energy by
changing the p parameter; this is especially true for the
WM1 potential. Finally, we note that differences between
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Figure 6: Second order sensitivity indices Sij for the basal stacking
faults, computed for the WM1 potential.

the two potentials are more pronounced for the vacancy
formation energy: for Dufresne’s potential Sp, Sq and Sξ
are similar, whereas Sξ is dominant for WM1. In any case,
A is not influential for the point defects Ef .

Sentivity indices for the stable stacking faults ener-
gies are displayed in Fig. 5(c). The prismatic fault shows
merely equal first order and total indices with both po-
tentials. We recall that as the position of this stacking
fault is not fully determined by symmetry [50], its posi-
tion was systematically determined for each set of param-
eter. Slight ordering differences are seen between the two
interaction models: Sp is dominant for Dufresne’s poten-
tial, followed by Sξ, and negligible Sq and SA. For WM1,
Sq and SA are also negligible, but Sp and Sξ are similar.
The case of the three basal stacking faults is more com-
plex. All sensitivity indices obtained for the basal faults
are rigorously the same: this is due to the fact that for rel-
atively short-range potentials like the two SMA used here,
the relationship γI1 = γE/3 = γI2/2 must be fulfilled [56].
For Dufresne’s potential, all Si are null and the various
STi

are again meaningless: this very short range poten-
tial predicts zero basal stacking fault energy whatever the
potential parameters (see Fig. 2e). Results for the WM1
potential indicate important indirect effects of the poten-
tial parameters: there exist a large difference between first
order and total indices.3 To better understand interac-
tions between parameters for this defect, we thus compute
the second order indices Sij (see Fig. 6). All resulting val-
ues are rather important for second order indices – Spq
and Spξ being the highest – meaning that basal fault ener-
gies are governed by complex interactions between model
parameters.

Overall, our sensitivity analysis indicates that SMA po-
tential parameters affect differently the various QOIs con-
sidered here. The most stricking behavior is observed for
point defects, where Sp appears dominant for SIAs for-
mation energies, and not dominant for the vacancy for-
mation energy. For most of the investigated properties,
effects of parameters are reduced to their main effect, as

3Sum rules of sensitivity indices are not well fulfilled due to the
small variability of basal γSF (estimation problem).

first order indices are the most important ones. Note how-
ever that the present study is not a full global sensitivity
analysis. Potential parameters are explored in a limited
range around their nominal values, so generally speaking,
the sensitivity indices obtained could vary when exploring
the full parameter space [52]. However, given the existing
similarities between indices obtained for the two SMA po-
tentials, many observations made in this section should be
rather robust against parameter variation.

5. Sensitivity indices-oriented refit of the potential

As seen in Fig. 2, none of the two SMA potentials gives
correct overall defect energetics, as compared to ab initio
predictions. Following the previous analysis, the informa-
tion gained from the identification of influential parame-
ters on QOIs can be used to reduce dimensionality for the
potential refitting process. Assessing this strategy is the
topic of this section, where we retain the WM1 potential
as the starting point, because of the intrinsic limitations of
Dufresne’s model related to its very short range. We begin
by detailing the chosen specifications for the new potential
as well as the method followed. We then comment on the
quality and efficiency of the exploration of possible solu-
tions in the process, and end with a brief discussion of the
capabilities of the re-optimized potential.

5.1. Specifications and optimization process

Recall that given the limited flexibility of SMA poten-
tials, trying to match perfectly a too high number of quan-
tities at the same time can be too demanding. We thus
choose to test three different sets of objectives to find an
improved potential for irradiation defects studies in α-Zr:

• Set 1 : Lattice parameters, cohesion energy (a, c/a
and Ec), and point defect Ef (V and SIAs);

• Set 2 : Bulk properties (Cij , a, c/a and Ec) and point
defect Ef (V and SIAs);

• Set 3 : Bulk properties (Cij , a, c/a and Ec), point
defect Ef (V and SIAs) and stacking faults energies
γSF (prismatic PPI, basal I1, I2 and E).

For all sets, the objectives are equally weighted in the nor-
malized least-squared cost functions used in the optimiza-
tion process. As reference property values to be matched
by the new potential, we take again a set of ab initio calcu-
lations performed in identical conditions, i.e. correspond-
ing to a consistent set of data [40, 46, 50]. Specific values
are indicated in Table 3.

Remember that for the WM1 potential, parameters A
and q have little influence on most of the QOIs, p is the
most influential parameter for the SIA formation energies,
and ξ for the vacancy formation energy. Moderate ef-
fects of p exist on EV

f , and of ξ on ESIAs
f . Both p and

ξ entirely determine γPPI, and their effect on the basal
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faults is rather important, although largely indirect. Con-
sequently, we keep parameters A and q at their nominal
values of A = 0.179364 and q = 2.1, and follow two strate-
gies for optimizing the potential: either we optimize only
the p parameter and keep ξ at its nominal value, or we
optimize the potential on both p and ξ. The former case
is tested because the nominal potential was already giving
good Ec, a, Cij and EV

f , and p is not the most influen-
tial parameter for these properties (except C44); the latter
case allows more flexibility. Note that the fact that a pa-
rameter is influential for a given property does not mean
that any property value can be reached by varying this
parameter. The intervals chosen for parameter variations
are p ∈ [7.0, 13.94] and ξ ∈ [0.42, 3.0], according to a
compilation of reference values [33].

For the optimization we proceed as follows. First, to
speed up the optimization step,4 polynomial chaos expan-
sion (PCE) based surrogate models of the QOIs are de-
veloped using the Chaospy package [57], as a function of
p only, and then of the couple (p, ξ). Methodological de-
tails of the PCE are presented in Supplementary Materials.
An experimental plan for molecular statics simulations of
the QOIs is generated by randomly drawing 5000 param-
eter sets in the ranges described above, and assuming a
uniform probability distribution function (PDF) for the
parameters of interest. Legendre polynomials of degree 4
are chosen for the PCE, since they are well suited for uni-
form PDFs [58]. The number of polynomial coefficients
to be computed is thus 5 for the case p only, and 15 for
the case (p, ξ). The convergence of the surrogate models
is verified on the convergence of the first two statistical
moments of all QOIs (mean and variance). For each simu-
lation, the cutoff interval is optimised following the elastic
constant-technique introduced in Section 3.3. All PCE
surrogate models are provided in the Supplementary Ma-
terials. Once the surrogate models are up and running, the
Python-based Pymoo package is used [59] for the various
tentatives of multi-objective optimizations. The algorithm
is a genetic algorithm with a modified mating and survival
selection: the non-dominated sorting genetic algorithm II
(NSGA-II) [60]. The convergence of the search for solu-
tions by the NSGA-II algorithm is ensured by implement-
ing a population size of 250 with 50 off-springs.

5.2. Explored solutions

Fig. 7 is a parallel coordinate plot representing the total-
ity of possible solutions explored during the two optimiza-
tion attempts made by varying either p or the couple (p, ξ)
of parameters, and using the Set 1 of objectives, together
with objective and nominal WM1 values, and the found
optima solutions for the two search cases. For most of
the targeted quantities, important ranges of values are ex-
plored by the two search cases, and the objectives are well

4For one set of (A, p, q, ξ) parameters, the full sequence of QOIs
calculations with Lammps takes 90 s, whereas the same evaluation of
properties with PCE takes less than 1 s.

within these ranges. For the c/a ratio, however, the ob-
jective value is not included into the range visited by the
algorithm: reaching the desired 1.601 ab initio value is
clearly out of the capabilities of this SMA potential. This
will be commented further in section 6. We also note that
many solutions having low (resp. large) cohesive energies
Ec have large (resp. low) point defect formation energies.
This is connected to the definition of the formation energy,
that involves the subtraction of a fraction of Ec.

Solutions explored with the Set 2 and 3 of objectives
show similar trends, and for the Set 3 the limited explo-
ration of the basal stacking fault energies appears con-
nected to the limited accessible c/a values (see the paral-
lel coordinate plots in Supp. Mater.). A close correlation
exists between the c/a ratio and stacking faults in hcp ma-
terials [61], and so similarities observed during the solution
searches for improving our SMA potential reflect this (see
also section 6).

In general, all found optima have improved SIAs for-
mation energies and correct/acceptable vacancy formation
energy; other properties included in the cost functions
are not always acceptably matched (see Fig. 2 and Supp.
Mater.). As already said, the flexibility of the SMA poten-
tials is limited, and thus the various solutions found are rel-
ative optima. Optimized potentials by varying only p have
better cohesive energy and lattice parameter a than poten-
tials optimized by varying (p, ξ), but less good point defect
Ef . The overall best potential for point defects is found us-
ing the Set 1 of objectives, and by varying the couple (p, ξ).
Resulting optimized parameters are given in Table 2, in-
cluding the corresponding cutoff interval [rscut, r

e
cut]. This

new potential is named ADM potential hereafter, and its
performances and range of applicability are commented in
the next subsection. Parameters and details of property
predictions of the other optimized potentials are provided
in Supplementary Materials.

Table 2: Optimized parameters of the ADM potential after multi-
objective optimization on the Set 1 of objectives, adjusting both p
and ξ. Other SMA parameters are kept at their nominal values, i.e.
A = 0.179364 and q = 2.1, and we have r0 = 3.17 Å. The num-
ber of digits corresponds exactly to our potential implementation in
Lammps.

p ξ rscut recut [Å]
ADM 7.68796909 2.29290971 6.2901771952 6.82170733956

5.3. Performances of the ADM potential

Various physical properties calculated with the newly
optimized ADM potential are given in Table 3, that also
contains values from the nominal WM1 potential [32], and
from the two mostly used EAM potentials for α-Zr: the
EAM #2 and #3 developed by Mendelev and Ackland [62].
Finally, reference ab initio values are given – some of them
were targeted values for the ADM potential optimization
and others are used to assess its transferability/extrapo-
lation capability – and some available experimental values
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Figure 7: Parallel coordinates plot for the optimization process using the Set 1 of objectives. Gray lines represent the possible solutions
explored by the NSGA-II algorithm, the dark line represents objectives ab initio values, the blue line the nominal WM1 potential values, and
the bold red and yellow lines the optima found by varying either p or the couple of (p, ξ) parameters.

as well. The relative difference of various interatomic po-
tential predictions with respect to the reference ab initio
values are provided in Fig. 8 to assist visual comparison of
the potentials.

Overall, the ADM potential has improved properties as
compared to the nominal WM1 potential, i.e. the refitting
procedure proposed here is operative. Referring to ab initio
calculations, elastic constants of the bulk hcp Zr matrix
are rather well described, although not part of the Set 1
of objectives. More specifically, B, C11, C44 and C13 are
very close to ab initio values, and C12 (resp. C33) is a bit
overestimated (resp. underestimated). Both EAM #2 and
#3 potentials have similar level of agreement with respect
to ab initio calculations (see Fig. 8). It may be noted that
low-temperature experiments of elastic constants slighty
differ from the ab initio predictions, as commonly observed
for metals. Cohesive energy was part of the adjusment
process, and is reasonably described as compared to ab
initio; less accurate than the original WM1 potential, but
similar to EAM #2 and #3 predictions. ADM potential
predicts an hcp structure more stable than the bcc one,
although the energy difference is underestimated as com-
pared to other interaction models. Lattice constants a and
c/a ratios are less accurate: a is a bit underestimated while
perfectly described with all other potentials, and c/a ratio
is improved as compared to the WM1 potential, but still
too close to the ideal ratio. As discussed above, the tar-
get value cannot be reached by this type of SMA potential
having this specific range.

The most stricking improvements of the ADM potential
concern the description of point defect properties. Their
formation energies were part of the cost function used in
the optimization process. Considering first SIAs, the right
stability ordering of defect configurations is obtained with

the ADM potential, i.e. EBO
f < EBS

f < EO
f , and each

specific value is also very close to the ab initio reference.
This correct ordering is not retrieved by the EAM #2 po-
tential. EAM #3 gives the correct ordering, but the BS
configuration is too close in energy to the O SIA config-
uration. We further compare the elastic dipole tensors
Pij with precise values extracted from ab initio calcula-
tions [49]. These second rank tensors fully describe the
long range interactions of point defects with strain/stress
fields of various origins [67]. They were not part of the ob-
jective function, and comparing ADM values with ab initio
reference ones is thus a first transferability check for this
potential (see values in Table 4). All Pij values for the SIA
defects were largely overestimated by the nominal WM1
potential. ADM values are in overall very good agreement
with ab initio results: agreement is almost perfect for both
O and BO SIA configurations, and the right order of mag-
nitude and specific ordering between Pij components is
predicted for the BS configuration, though P11 and P22

are closer to each other than expected from ab initio. Po-
tentials EAM #2 and #3, on the other hand, both fail to
predict correct Pij components for the various SIA defects.
In particular, Pij values for the three SIA defect configu-
rations are underestimated by the EAM #2 potential, and
#3 predicts the wrong ordering of Pij components for the
BS defect while underestimating the magnitude of the Pij
for the BO SIA. So the ADM potential represent an im-
proved description of SIAs as compared to both WM1 and
the widely used EAM potentials.

Next, considering vacancies, the ADM vacancy forma-
tion energy is lower than the ab initio value, but less un-
derestimated than that of the EAM #3 potential, and
still higher than the lower-bound estimate from experi-
ments [63, 64], so we consider this value as suitable. The
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Table 3: Physical properties calculated with various interatomic potentials for α-Zr: WM1 [32], ADM (this work), and EAM #2 and #3
[62]. The ‘Ref.’ columns correspond to a consistent set of ab initio calculations from Refs. [40, 46, 50]. Bold values are quantities pertaining
to the Set 1 of data included in the objective function during the optimization process. Experimental values come from Refs [63–66], the
vacancy migration barrier is only an isotropic estimation (*).

Ref.[50] Exp. WM1 ADM EAM #2 EAM #3 Ref.[40, 46] Exp. WM1 ADM EAM #2 EAM #3
[GPa] [eV]
B 94.2 97.34 98.98 93.5 100.2 99.3 EV

f 2.07 ≥ 1.5 2.06 1.84 2.26 1.67

C11 140 155.4 142.3 131.2 149 142 EBO
f 2.72 4.308 2.79 2.87 2.79

C12 70 67.2 89.4 84.3 75 75 EBS
f 2.839 4.26 2.82 3.21 2.93

C44 26 36.3 28.62 23.6 44 44 EO
f 2.915 4.27 2.96 3.13 2.96

C13 65 64.6 63.12 64.7 76 76 E
Va

2

b 0.176 0.22 0.18 0.3 -0.01

C33 168 172.5 175.84 151.7 168 168 E
Vb

2

b 0.094 0.23 0.21 0.31 0.07
Ecmig 0.65 0.65* 0.91 0.62 1.12 0.72

Ebas
mig 0.54 - 0.88 0.61 1.03 0.63

Ref.[50] Exp. WM1 ADM EAM #2 EAM #3 Ref.[40] WM1 ADM EAM #2 EAM #3
[mJ.m−2]

Ec [eV] -6.17 -6.17 -6.17 -6.522 -6.469 -6.635 γI1 147 9.93 20.6 55 99
a [Å] 3.23 3.23 3.19 3.08 3.22 3.23 γI2 213 19 41.1 110 198
c/a [/] 1.601 1.603 1.631 1.628 1.619 1.598 γE 274 29.8 61.6 164 297
∆Ebcc

hcp

[eV/atom]
0.071 0.027 0.007 0.03 0.054 γPP1 211 367.5 299.8 357 135

Bulk C11 C12 C44 C13 C33 EV
f EO
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Figure 8: Relative gap between properties computed with ab initio calculations from Refs [40, 50] and with the original WM1 potential [32],
the optimized ADM potential, and EAM#2 and #3 potentials developed by Mendelev and Ackland [62].

Table 4: Elastic dipoles in eV of the vacancy (V), of BO, O and
BS SIA configurations in hcp Zr. Dipole components are obtained
using the residual stress method [49]. Results are given for the ADM
potential, the nominal WM1 potential [32], and the EAM #2 and
EAM #3 from Ref. [62].

V BO BS O
P11 P33 P11 P33 P11 P22 P33 P11 P33

DFT [49] -5.14 -7.62 17.0 10.6 14.2 22.1 9.3 14.9 17.0
WM1 -4.27 -4.33 30.5 16.9 31.3 30.2 15.6 24.5 29.5
ADM -4.73 -4.83 18.1 11.5 18.74 18.96 10.6 15.5 16.7
EAM #2 -0.65 -0.79 14.0 6.0 13.6 14.8 6.6 11.6 8.36
EAM #3 -5.43 -5.51 11.7 6.32 13.5 11.6 8.2 15.5 16.4

magnitude of the elastic dipole components is rather good
although anisotropy is not sufficiently marked, similar to
all tested potentials. To further check ADM potential
transferability, we compute the vacancy migration ener-
gies between nearest neighbor positions in the basal plane
Ebas

mig and out of the basal plane Ec
mig (having a compo-

nent along the 〈c〉 axis). ADM values are closer to the
ab initio ones than those of all other potentials, especially
compared to those obtained with the WM1 and EAM #2

potentials. The relative order is well Ebas
mig < Ec

mig, but the
difference is not as large as in ab initio calculations. This
means that the diffusion anisotropy of the vacancy will
be underestimated by the ADM potential, but this com-
ments applies to other potentials too. We also compute
the binding energy between two vacancies with the usual
definition EV2

b = 2E(V1) − E(V2) − E(bulk) [40], with a
positive value implying an attractive interaction between
the two vacancies. Two divacancy configurations are con-
sidered: first nearest neighbors out of the basal plane Va

2

and within the basal plane Vb
2 . Results for the ADM po-

tential indicate that E
Va

2

b almost perfectly matches the ab

initio value, but E
Vb

2

b is too high. Nevertheless, a better
prediction of the two binding energies than all other many-
body potentials is achieved, in particular as compared to
EAM #3 that gives no binding between vacancies, and to
the binding overestimation of EAM #2. The overall at-
tractive behavior is important for early stages of vacancy
clustering under irradiation [39], and the ADM potential
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is improved with this respect as compared to other poten-
tials.

We finally comment predictions for the stacking fault en-
ergies. The prismatic γPPI of the ADM potential is some-
what acceptable and improved as compared to the original
WM1 and the EAM #2 potentials, but still less accurate
than the EAM #3 prediction. Basal stacking faults are the
most problematic case. In addition to following the rela-
tion γI1 = γE/3 = γI2/2, basal stacking fault energies are
way too small for the ADM potential, and definitely less
accurate than those predicted by the two EAM potentials.
Thus, modelling physical phenomena for which stacking
fault energies matter, such as dislocation properties and
glide of the 〈a〉 dislocation [50], or the stability/mobility
of extended dislocation loops in both prismatic and basal
planes [40, 42], are clearly beyond the capabilities of the
ADM potential.

To conclude, the new ADM potential is clearly an im-
provement of the WM1 one, for both properties part of the
objective function and others not part of it (Pij of PDs and
vacancy binding and migration behavior), thus showing
its rather good transferability for point defect properties.
It is also a good compromise between EAM #2 and #3
potentials for bulk and small point defect properties. It
has been obtained after optimization of only 2 parameters
over the 4 parameters of the SMA potential, thus illustrat-
ing – on this simple interaction model – the viability and
usefulness of the combined approach to refit a potential:
identification of influential parameters on targeted proper-
ties, development of surrogate model and multi-objective
optimization process by playing with the most important
potential parameters.

6. Discussion and conclusion

Although not perfect, the ADM potential is available to
the community for further benchmarks and to tackle mod-
eling studies like point defect diffusion and elasto-diffusion
(recall elastic dipoles are well described), or like small de-
fect clustering in α-Zr. This at a very reduced numerical
cost, given the simplicity of this potential. On the other
hand, all SMA potentials used in this work (Dufresne’s,
WM1 and ADM) struggle to reproduce both c/a ratio and
basal stacking fault energies. The short range Dufresne’s
potential gives an ideal c/a ratio and zero basal stacking
fault energies, whereas all medium range potentials gener-
ated in the various optimization attemps starting from the
WM1 potential do explore a limited range of c/a ratio and
too small basal γSF values (see Fig. 7 and Supplementary
Materials). To further illustrate the effect of the potential
range on both quantities, we used the ADM potential -
keeping fixed its (A, p, q, ξ) values - and moved the cut-
off interval between the 4th and 5th nearest neighbors of
the hcp structure. The c/a ratio immediately decreased to
the targeted ∼ 1.6 value, and γI2 = 140 mJ.m−2, a value
that is closer to the ab initio one. The same c/a ratio was

obtained by Willaime and Massobrio for another SMA po-
tential having similar range [32]. The potential range thus
represent an intrinsic limit for the range of accessible c/a
and basal γSF values: this is typical for potentials having
no angular terms [? ]. Note however, that shifting the po-
tential range also modifies other physical quantities, e.g.
both SIA formation energies and γPPI are not at all ac-
curate after this change. Obtaining both accurate small
point defect and stacking fault energies thus seems to be a
difficulty for SMA interaction models. To further improve
and confirm/explore the capabilities of SMA potentials for
our selected QOIs, both rscut and recut could be explicitly
considered as adjustable parameters, though not having a
well-defined physical meaning.

Our proposed approach to re-optimize a potential, us-
ing a combination of model screening, global sensitivity
analysis, parameter selection/model reduction and multi-
objective optimization, could theoretically be applied to
the development of an entirely new potential. To this aim,
a more global screening and sensitivity analysis – i.e. ex-
ploring the full parameter space and not only a reduced
zone around nominal values – should be performed. How-
ever, naively applying such a process will face two difficul-
ties. First, a wide exploration of the parameter space can
occasionally lead to unsuccessful energy minimization or
to nonphysical values (unstable phase, negative formation
energy, etc.). Second, and this is perhaps more subtle,
sensitivity indices obtained after a wide exploration of the
parameter space can differ from those obtained in a re-
duced zone around nominal parameter values5 [52]. Con-
sequently, at the model reduction stage, we may eliminate
parameters that are not important globally, but that be-
come important in certain zones of the parameter space. If
these regions are of interest for our potential specifications,
then the multi-objective optimization process following the
model reduction will not allow us to reach them. Thus, the
extension of our work for the purpose of developing a new
potential would require to handle these situations.

General specifications required – when screening,
analysing the sensitivity and developing/refitting a clas-
sical interatomic potential for a specific physical context
– can comprise of quantities more numerous and complex
than the QOIs considered in this work, that are all deter-
ministic. Stochastic quantities, typically phase transition
temperatures, would require a much higher number of en-
ergy and force computations than deterministic quantities.
The combined approach proposed in this work would still
be applicable, but with a more systematic use of surrogate
models, like e.g. PCEs [58, 68, 69].

Importantly, the approach could be straightforwardly
applied to any empirical or semi-empirical method having
typically up to tens of parameters, and for realistic sets of
QOIs. This embeds not only all classes of classical inter-

5an inkling of this is given by Dufresne’s and WM1 potentials
(different range and parameter values): they have similar indices for
some properties and different for others (EV

f , EO
f , γPPI).
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atomic potentials, e.g. EAM [19, 20], Finnis-Sinclair [70],
modified EAM [22, 23], but also approaches derived from
a simplified electronic structure, either analytic bond or-
der potentials (BOP) [71, 72], or tight-binding Hamiltoni-
ans [73–75]. Interaction models for multi-component sys-
tems can be equally considered. The case of potentials
using spline functions, like some of the EAM [76, 77] and
MEAM [78] potentials, deserves one more comment. Vary-
ing naively spline parameters can induce strong gradient
zones that both impact sensitivity analysis results and gen-
erate not physically acceptable QOIs [26, 27]. Thus a fil-
tering, discarding of such functions with strong gradients
should be added in such cases.

The computational cost associated to Sobol’s sensitiv-
ity analysis for the above cited interaction models can be
important and must be discussed. Keeping the same sam-
pling method as in section 4.2, the same N = 3750 and
with k = 15 parameters, we thus have N × (2k + 2) =
120000 simulations to run to compute the {Si, Sij , STi

} for
each target property. For an EAM potential, who runs in
less than a minute when computing our full sequence of
QOIs, we would have around 80 days of simulation time
on a single processor. The sampling process can be effi-
ciently parallelized, and thus 1 day of simulation time on
80 processors will be enough to get the results of Sobol’s
analysis. MEAM (or ADP) potentials would require 5-10
times that simulation time for the same calculation se-
quence, thus ∼ 5-10 days on 80 CPUs. This is typically
manageable with standard laboratory/university compu-
tational resources. Finally, in the case of more computa-
tionally expensive interaction models like simplified elec-
tronic structure models and/or of models having a too high
number of parameters, a quantitative sensitivity analysis
will be challenging to perform, and more qualitative ap-
proaches should be adopted [79? ]. For instance, screening
and sensitivity analysis can first be performed by groups
of parameters [80], thus providing a simplification of the
whole study, and then a more quantitative study can be
done on a reduced number of parameters. Alternatively,
Morris’ method [4] provides qualitative sensitivity indices.
Using Morris’ formula and choosing r = 20 trajectories,
there are typically (k+1)×r = 320 simulations to run. For
MEAM/ADP potentials this would require roughly 2 days
of computation on a single processor, and thus would be
tractable for more complex interaction models like tight-
binding Hamiltonians or analytical BOPs.

To summarize, model screening, sensitivity analysis,
metamodeling and optimization tools can be efficiently
combined to (i) provide a better understanding of the ca-
pabilities of many interaction models in predicting some
targeted properties, and (ii) propose a scheme for refitting
such a potential, which is based on the identification of the
most influential parameters on objective quantities. We
demonstrated this with a simple many-body potential, and
in the context of irradiation defects in α-Zr. Despite the
generally accepted idea that the accuracy of classical inter-
atomic potentials cannot be systematically improved [1],

our proposed approach gives useful guidance on the direc-
tions – rather locally in the parameter space – to follow
in order to refine an existing potential. For instance, each
time new ab initio calculations or reference data emerge,
e.g. being more precise, or involving new relevant configu-
rations for a specific study, a given potential can be refit-
ted using the approach presented here, without changing
the potential functional form nor adding parameters. Of
course, as the flexibility of classical potentials is limited, it
is likely that some properties or combinations of properties
will not be perfectly reproduced. Calculations performed
with such interaction models should then be accompanied
by a quantification of the associated uncertainties [81–83].
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G. Tréglia, Tight-binding modeling of interstitial ordering pro-
cesses in metals: Application to zirconium hydrides, Phys. Rev.
B 101 (2020) 224106. doi:10.1103/PhysRevB.101.224106.

[76] Y. Mishin, D. Farkas, M. J. Mehl, D. A. Papaconstantopou-
los, Interatomic potentials for monoatomic metals from experi-
mental data and ab initio calculations, Phys. Rev. B 59 (1999)
3393–3407.

[77] M. Wen, S. M. Whalen, R. S. Elliott, E. B. Tadmor, Interpola-
tion effects in tabulated interatomic potentials, Modelling and
Simulation in Materials Science and Engineering 23 (7) (2015)
074008. doi:10.1088/0965-0393/23/7/074008.

[78] R. G. Hennig, T. J. Lenosky, D. R. Trinkle, S. P. Rudin, J. W.
Wilkins, Classical potential describes martensitic phase trans-
formations between the α, β, and ω titanium phases, Phys. Rev.
B 78 (2008) 054121. doi:10.1103/PhysRevB.78.054121.

[79] S. T. Etienne de Rocquigny, Nicolas Devictor, Uncertainty in
Industrial Practice: A guide to Quantitative Uncertainty Man-
agement, Wiley, 2008.

[80] G. S. Watson, A study of the group screening method, Techno-
metrics 3 (3) (1961) 371–388.

[81] A. Del Masto, Bulk and point defect properties in α-Zr: Un-
certainty quantification on a semi-empirical potential, in: Phys.
Sci. For., 2022. doi:https://doi.org/10.3390/psf2022005003.

[82] F. Cailliez, P. Pernot, Statistical approaches to forcefield cali-
bration and prediction uncertainty in molecular simulation, J.
Chem. Phys. 134 (5) (2011) 054124. doi:10.1063/1.3545069.

[83] L. Kulakova, G. Arampatzis, P. Angelikopoulos, P. Hadji-
doukas, C. Papadimitriou, P. Koumoutsakos, Data driven infer-
ence for the repulsive exponent of the Lennard-Jones potential
in molecular dynamics simulations, Sci. Rep. 7 (1) (2017) 16576.
doi:10.1038/s41598-017-16314-4.

16

http://dx.doi.org/10.1080/09500839.2012.745653
http://dx.doi.org/10.1080/09500839.2012.745653
http://dx.doi.org/http://dx.doi.org/10.1016/j.actamat.2016.09.049
http://dx.doi.org/http://dx.doi.org/10.1016/j.actamat.2016.09.049
http://dx.doi.org/10.1103/PhysRevB.96.224103
http://dx.doi.org/10.1103/PhysRevB.96.224103
http://link.aps.org/doi/10.1103/PhysRevB.86.144104
http://link.aps.org/doi/10.1103/PhysRevB.86.144104
http://dx.doi.org/10.1103/PhysRevB.86.144104
http://dx.doi.org/10.1103/PhysRevB.86.144104
http://link.aps.org/doi/10.1103/PhysRevB.86.144104
http://dx.doi.org/10.1088/0953-8984/14/4/312
http://dx.doi.org/10.1088/0953-8984/14/4/312
http://www.sciencedirect.com/science/article/pii/0951832096000026
http://www.sciencedirect.com/science/article/pii/0951832096000026
http://dx.doi.org/10.1016/0951-8320(96)00002-6
http://www.sciencedirect.com/science/article/pii/0951832096000026
http://www.sciencedirect.com/science/article/pii/0951832096000026
http://dx.doi.org/https://doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/https://doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.21105/joss.00097
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2015.08.008
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2015.08.008
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1409982
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1409982
http://dx.doi.org/10.1115/1.2888303
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1409982
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1409982
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1080/13642818408227636
http://dx.doi.org/10.1080/13642818408227636
http://dx.doi.org/10.1080/09500830701191393
http://dx.doi.org/10.1080/09500830701191393
http://dx.doi.org/http://dx.doi.org/10.1016/0022-3115(86)90170-4
http://dx.doi.org/http://dx.doi.org/10.1016/0022-3115(86)90170-4
http://dx.doi.org/http://dx.doi.org/10.1016/0022-3115(84)90536-1
http://dx.doi.org/http://dx.doi.org/10.1016/0022-3115(84)90536-1
http://dx.doi.org/http://dx.doi.org/10.1016/0022-3115(80)90061-6
http://dx.doi.org/http://dx.doi.org/10.1016/0022-3115(80)90061-6
https://journals.aps.org/pr/abstract/10.1103/PhysRev.135.A482
https://journals.aps.org/pr/abstract/10.1103/PhysRev.135.A482
http://dx.doi.org/10.1103/PhysRev.135.A482
https://journals.aps.org/pr/abstract/10.1103/PhysRev.135.A482
https://journals.aps.org/pr/abstract/10.1103/PhysRev.135.A482
http://dx.doi.org/https://doi.org/10.1016/j.commatsci.2018.01.053
https://pdfs.semanticscholar.org/21f9/b472fd25dcd75943d5da7f344cf23cfacabf.pdf
http://dx.doi.org/10.2307/2371268
https://pdfs.semanticscholar.org/21f9/b472fd25dcd75943d5da7f344cf23cfacabf.pdf
https://pdfs.semanticscholar.org/21f9/b472fd25dcd75943d5da7f344cf23cfacabf.pdf
http://link.springer.com/10.1007/978-3-642-25847-3
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1007/978-3-642-25847-3
http://link.springer.com/10.1007/978-3-642-25847-3
http://link.springer.com/10.1007/978-3-642-25847-3
http://dx.doi.org/10.1103/PhysRevB.59.8487
http://dx.doi.org/10.1088/0953-8984/26/19/195501
http://dx.doi.org/10.1051/metal/2014046
http://dx.doi.org/10.1103/PhysRevB.101.224106
http://dx.doi.org/10.1088/0965-0393/23/7/074008
http://dx.doi.org/10.1103/PhysRevB.78.054121
http://dx.doi.org/https://doi.org/10.3390/psf2022005003
http://dx.doi.org/10.1063/1.3545069
http://dx.doi.org/10.1038/s41598-017-16314-4

	Introduction
	Atomistic simulation details 
	Second Moment Approximation (SMA) potentials 
	Target properties in -Zr 

	Screening of the SMA potentials 
	Naive model screening
	Influence of the rcut interval
	Reduction of the cutoff bias and results 
	Discussion of the robustness of the potential

	Identification of the most influential parameters 
	Sobol indices
	Results for irradiation-relevant QOIs in -Zr 

	Sensitivity indices-oriented refit of the potential 
	Specifications and optimization process 
	Explored solutions 
	Performances of the ADM potential 

	Discussion and conclusion 

