
HAL Id: irsn-04246271
https://irsn.hal.science/irsn-04246271v1

Submitted on 7 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Quantitative analysis of 99mTc-pertechnetate thyroid
uptake with a large-field CZT gamma camera: feasibility

and comparison between SPECT/CT and planar
acquisitions

Benjamin Serrano, Régis Amblard, Tiffany Beaumont, Florent Hugonnet,
Matthieu Dietz, Frédéric Berthier, Nicolas Garnier, Rémy Villeneuve, Valérie

Nataf, François Mocquot, et al.

To cite this version:
Benjamin Serrano, Régis Amblard, Tiffany Beaumont, Florent Hugonnet, Matthieu Dietz, et al..
Quantitative analysis of 99mTc-pertechnetate thyroid uptake with a large-field CZT gamma camera:
feasibility and comparison between SPECT/CT and planar acquisitions. EJNMMI Physics, 2023, 10
(1), pp.45. �10.1186/s40658-023-00566-3�. �irsn-04246271�

https://irsn.hal.science/irsn-04246271v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Quantitative analysis of 99mTc‑pertechnetate 
thyroid uptake with a large‑field CZT 
gamma camera: feasibility and comparison 
between SPECT/CT and planar acquisitions
Benjamin Serrano1*  , Régis Amblard1, Tiffany Beaumont2, Florent Hugonnet3, Matthieu Dietz4, 
Frédéric Berthier5, Nicolas Garnier1, Rémy Villeneuve1, Valérie Nataf3, François Mocquot3, 
Christopher Montemagno6, Marc Faraggi3 and Benoît Paulmier3 

Abstract 

Purpose: The main objective of this study was to evaluate the ability of a large field 
Cadmium Zinc Telluride (CZT) camera to estimate thyroid uptake (TU) on single pho-
ton emission computed tomography (SPECT) images with and without attenuation 
correction (Tomo-AC and Tomo-NoAC) compared with Planar acquisition in a series 
of 23 consecutive patients. The secondary objective was to determine radiation doses 
for the tracer administration and for the additional Computed Tomography (CT) scan.

Methods: Cross-calibration factors were determined using a thyroid phantom, 
for Planar, Tomo-AC and Tomo-NoAC images. Then Planar and SPECT/CT acquisi-
tions centered on the thyroid were performed on 5 anthropomorphic phantoms 
with activity ranging from 0.4 to 10 MBq, and 23 patients after administration 
of 79.2 ± 3.7 MBq of  [99mTc]-pertechnetate. We estimated the absolute thyroid activity 
(AThA) for the anthropomorphic phantoms and the TU for the patients. Radiation dose 
was also determined using International Commission on Radiological Protection (ICRP) 
reports and  VirtualDoseTMCT software.

Results: Cross-calibration factors were 66.2 ± 4.9, 60.7 ± 0.7 and 26.5 ± 0.3 counts/
(MBq s), respectively, for Planar, Tomo-AC and Tomo-NoAC images. Theoretical and esti-
mated AThA for Planar, Tomo-AC and Tomo-NoAC images were statistically highly 
correlated (r < 0.99; P <  10–4) and the average of the relative percentage difference 
between theoretical and estimated AThA were (8.6 ± 17.8), (− 1.3 ± 5.2) and (12.8 ± 5.7) 
%, respectively. Comparisons between TU based on different pairs of images (Planar vs 
Tomo-AC, Planar vs Tomo-NoAC and Tomo-AC vs Tomo-NoAC) showed statistically sig-
nificant correlation (r = 0.972, 0.961 and 0.935, respectively; P <  10–3). Effective and thy-
roid absorbed doses were, respectively (0.34CT + 0.95NM) mSv, and (3.88CT + 1.74NM) 
mGy.

Conclusion: AThA estimation using Planar and SPECT/CT acquisitions on a new 
generation of CZT large-field cameras is feasible. In addition, TU on SPECT/CT 
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was as accurate as conventional planar acquisition, but the CT induced additional 
thyroid exposure.

Trial registration Name of the registry: Thyroid Uptake Quantification on a New Genera-
tion of Gamma Camera (QUANTHYC). Trial number: NCT05049551. Registered Septem-
ber 20, 2021—Retrospectively registered, https:// clini caltr ials. gov/ ct2/ show/ record/ 
NCT05 049551? cntry= MC& draw= 2& rank=4.

Keywords: Thyroid, Absolute activity, Uptake, Quantification, CZT, Planar, SPECT/CT

Background/introduction
For more than 50 years, sodium 99mTc-pertechnetate (99mTcO4) has been used to assess thy-
roid function and thyroid uptake by planar thyroid scintigraphy [1–6]. 99mTcO4 has been 
used worldwide for thyroid gland examination because it has a short half-life (6 h) com-
pared to 131I-Iodide (8 days) and because it does not produce beta radiation, providing a 
low overall radiation dose to the gland [7]. 123I-Iodide has similar advantages to 99mTcO4 in 
planar scintigraphy, namely a short half-life (13 h) and a gamma-ray emission of 159 keV 
compared to the 140 keV of 99mTc, both of which are suitable for an Anger camera. How-
ever, cost and availability factors have made 99mTcO4 preferred over 123I-Iodide.

Positron Emission Tomography (PET) with 124I has recently been presented as a valuable 
clinical tool for the exploration of patients with thyroid disease [8, 9]. Darr et al. [10] per-
formed a blinded pilot comparison between PET with 124I and planar 99mTcO4 scintigraphy 
or its cross-sectional enhancement single photon emission computed tomography (SPECT) 
for thyroid characterization. The conclusion of the study provides superior imaging of PET 
with 124I due to higher spatial resolution. However, the lack of commercial availability of the 
tracer, the potential cost of 124I and the need to use a PET camera are significant limitations 
compared to 99mTcO4.

Tomographic acquisitions (SPECT and SPECT/CT) are powerful diagnostic tools that 
improve the diagnostic quality of conventional planar scintigraphy which is currently the 
gold standard. Absolute quantitative analysis has proven to be achievable in SPECT/CT 
[11–14], thanks to technical improvements such as iterative reconstruction, scatter correc-
tion, computed tomography (CT) attenuation correction and resolution recovery [15, 16].

A new generation of gamma cameras with Cadmium Zinc Telluride (CZT) dual detec-
tors with a large field of view have recently emerged. These cameras offer better spatial and 
energy resolutions than NaI scintillator detector [17]. All-purpose CZT cameras have been 
introduced to the market, but they are not yet widely used to study thyroid disease. Our 
aim was to investigate thyroid quantification (absolute thyroid activity and thyroid uptake) 
in anthropomorphic phantoms and in patients with planar and SPECT imaging on a latest 
generation of CZT gamma camera, with and without attenuation correction using a low 
dose CT scanner. We also aimed to investigate the respective fraction of thyroid absorbed 
dose caused by the CT scan and the isotope administration.

Materials and methods
Data acquisitions

All acquisitions were performed using a dual-head gamma camera Discovery NM/
CT 870 CZT (GE Healthcare, Milwaukee, WI, USA). The camera was equipped with a 
WEHR45 (Wide Energy High Resolution 45 mm length) low energy collimator adjusted 

https://clinicaltrials.gov/ct2/show/record/NCT05049551?cntry=MC&draw=2&rank=4
https://clinicaltrials.gov/ct2/show/record/NCT05049551?cntry=MC&draw=2&rank=4
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to the CZT detector element with pixel size of 2.46 mm. The collimator description is 
of a square hole type with a length of 45 mm, side of 2.26 mm and septal thickness of 
0.2 mm. Clinical acquisition protocols for planar and SPECT/CT imaging are detailed 
below. The acquisition analysis was carried out on XELERIS 4.1 processing software (GE 
Healthcare) workstation with Q-Volumetrix MI post-treatment application. To date, 
there is no pinhole on this equipment.
Planar images over antero-posterior incidence of cervical region were acquired 

with the following camera settings: 256 × 256 matrix size, zoom factor of 3, acquisi-
tion time of 900  s and a photon energy window of 140  keV ± 10%. The pixel size was 
0.74 × 0.74  mm2. The distance between the anterior head of the camera and the patients 
or phantoms was fixed at 12 cm. An advanced settings algorithm, called Clarity Zoom 
(GE Healthcare) was applied. It is described as a post-processing imaging enhancing sys-
tem that works by filtering and resampling images with contrast enhancement. The pla-
nar acquisition was considered as the reference image for the thyroid uptake estimation 
in clinical practice [1–6, 18, 19].
Tomography acquisitions were performed with a 128 × 128 matrix size, a corre-

sponding voxel size of 4.92 × 4.92 × 4.92   mm3, 60 projections (30 per detector head), 
20 s per projection and zoom factor 1. We used the option of acquiring during motion 
between steps inducing a total time acquisition of 700 s. An energy spectrum window 
of 140 keV ± 7.5% and a scatter window of 120 keV ± 5% were used. The autocontour-
ing (body contour) option was selected to ensure a minimum distance between detec-
tors and the phantoms or the patients. Data of SPECT images were reconstructed 
using an iterative Ordered Subsets Expectation Minimization (OSEM) reconstruction 
algorithm, 4 iterations and 6 subsets, which included resolution recovery reconstruc-
tion (RR) and scatter correction. A post-reconstruction filter was also applied: a Gauss-
ian filter of 1.5 mm in X, Y, and Z directions. The attenuation correction was applied 
using the CT scanner, a 16-slice Optima CT540, for the Tomo-AC dataset. Another set 
of reconstructions was made with the same parameters but without attenuation correc-
tion (Tomo-NoAC).

CT images were acquired from the maxilla to the sternal manubrium using the fol-
lowing parameters: 100 kVp tube voltage, tube current modulated with Smart mA (GE 
Healthcare, Milwaukee, WI, USA), maximum 75 mA and noise index up to 30, rotating 
time 0.9 s, pitch 1.375, 512 × 512 matrix size and slice thickness of 1.25 mm. The voxel 
size was 0.98 × 0.98 × 1.25  mm3. An iterative reconstruction algorithm, Adaptive Statis-
tical Iterative Reconstruction (ASIR), (GE Healthcare, Milwaukee, WI, USA), was used 
for the data reconstruction.

Cross‑calibration parameters of the CZT gamma camera

The cross-calibration factor was computed using the acquisition of known 99mTc activ-
ity in a standardized phantom, a Plexiglass cylindrical ANSI/IAEA (American National 
Standards Institute/International Atomic Energy Agency) neck thyroid phantom. The 
phantom’s diameter and the height are 127 mm. Its thyroid simulator is a cylindrical hole 
on which a 15 ml vial is inserted. The acquisition and reconstruction parameters with the 
phantom were strictly the same as those used in clinical cases and described above. Only 
the vial contained radioactivity; the rest of the phantom was cold. The 20 mm depth at 
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the location of the center of the vial corresponds to the thyroid depth in the neck of an 
average adult person (Fig. 1).

To ensure the linearity of the cross-calibration factor with the injected 99mTc activity, 
various acquisitions were carried out in planar and tomographic modes, with radioactiv-
ity in the vial ranging from 1 to 20 MBq.

The cross-calibration factor Fcal in counts/(MBq.s) is given by:

where NROI is the number of counts in the region of interest and Aacq (MBq) is the mean 
activity of radioactivity decay in the vial over the acquisition duration Δt (s). Therefore, 
Aacq is given by the equation:

where A0 (MBq) is the initial activity, T(s) is the half-life of the 99mTc. The quantification 
of activity was performed in the same way for the patients. More precisely, volumes of 
interest (VOIs) for Tomo-AC and Tomo-NoAC, and the regions of interest (2D ROIs) for 
Planar, were automatically segmented using a threshold of 40% of Pmax [20] for SPECT 
and SPECT/CT VOIs, and 25% of Pmax for Planar ROIs. Pmax is defined as the maximum 
counts in a voxel (or pixel) within the region. In a preliminary study to validate these 
threshold values, a vial mimicking thyroid fixation (diameter 2.2 cm and height of 4 cm) 
was acquired with SPECT and planar acquisitions. The VOIs and 2D ROIs obtained of 
the vial images, with thresholds of 40% of Pmax and 25% of Pmax, respectively, were in 
agreement with the vial’s geometric characteristics.

Anthropomorphic phantom analysis

Five anthropomorphic thyroid phantoms manufactured by IRSN (Institut de Radio-
protection et de Sûreté Nucléaire) were imaged using the cross-calibration factor 

Fcal =
NROI

Aacq ∗�t

Aacq =

A0.
�t

0 e
−(ln2).t/T

· dt

�t

Fig. 1 Neck phantom for thyroid cross-calibration factor determination for the planar, SPECT/CT and SPECT 
acquisitions
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determined above to estimate the absolute thyroid activity (AThA). The thyroid vol-
umes in the five phantoms were selected at 3.2, 7.5, 11.4, 19 and 30 cc, in alignment with 
ICRP recommendations for thyroid volumes and were inserted inside a neck phantom 
that contained a replica spinal cord and vertebral column (Fig. 2). These phantoms were 
designed with a realistic anthropomorphic shape. The phantoms were 3D printed using 
specific materials for an accurate simulation of the attenuation of biological tissues [21]. 
The tomography and planar acquisitions and reconstructions parameters were exactly 
the same as those used in clinical cases and described above. The range of activity in the 
99mTc solution injected into the thyroid phantoms was between 0.4 and 10  MBq. The 
theoretical absolute activity injected in the thyroid was defined as theoretical AThA. The 
estimation of the AThA was performed with the planar, Tomo-AC and Tomo-NoAC 
images.

The AThA was calculated as the following relation:

where Fcal is the cross-calibration factor, Δt (s) the acquisition duration and NROI,th the 
counts in thyroid that were automatically segmented in the same way as the cross-cali-
bration factor was determined.

Measurement methodology of thyroid uptake

The thyroid uptake (TU) was calculated as the following relation:

where Ath (MBq) is the activity measured in the thyroid ROI or VOI, Ai (MBq) is the 
activity injected to the patient and Fcal is the cross-calibration factor. The actual injected 
activity Ai was calculated by subtracting the activities of the full syringes with the empty 
ones.

AThA (MBq) =
NROI,th

Fcal ∗�t

TU (% ) =
Ath

Ai

∗ 100 =

NROI,th − Nback

Fcal · Ai

∗ 100

Fig. 2 Five anthropomorphic thyroid phantoms made by IRSN (Institut de Radioprotection et de 
Sûreté Nucléaire). The phantom volume were 3.2, 7.5, 11.4, 19 and 30 cc and were introduced in the 
anthropomorphic neck phantom
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The activity in the thyroid Ath was estimated in three different ways: static planar, 
SPECT and SPECT/CT acquisitions. The regions of interest, in which the counts in thy-
roid NROI,th were measured, were automatically segmented in the same way as for the 
determination of the cross-calibration factor: a threshold of 40% of Pmax was chosen for 
the VOI on SPECT and SPECT/CT images, and a threshold of 25% of Pmax was chosen 
for the 2D ROI on planar images. Additionally, a background region of interest  (ROIback) 
was drawn underneath the thyroid in order to obtain a background corrected 2D ROI 
Thyroid counts for planar acquisitions. This background region of interest was not 
applied for the SPECT images.

Then for SPECT acquisitions: TU (% ) =
NROI,th

Fcal·Ai
∗ 100.

Subjects’ inclusion and exclusion criteria

We compared the TU measurements on our CZT Gamma Camera with Planar, SPECT 
and SPECT/CT acquisition modes on a selected population of 23 patients. Twenty-three 
consecutive patients with hyperthyroidism, referred to our institution, were included in 
the study from October 2019 to June 2020. After the presumptive diagnosis was made, 
all subjects underwent a thyroid scintigraphy. Pregnancy was the exclusion criterion.

Our routine thyroid examination started with the planar acquisition 20 min after the 
injection and was followed immediately with a SPECT/CT acquisition. The 99mTcO4 
uptake was measured 20 min after tracer intravenous injection. Residual activities in the 
syringes after injection were considered. The reference activity of the injected 99mTcO4 
was 80 MBq.

Ethical approval was waived by the local Ethics Committee of our institution in view 
of the nature of the study and all the procedures being performed were part of the 
routine care. The retrospective study was registered with ClinicalTrials.gov number 
NCT05049551.

Statistical analysis

Measured data were provided as the mean ± standard deviation (SD). Correlations of 
TU between Planar, Tomo-AC and Tomo-NoAC images and between theoretical and 
estimated AThA were assessed using the Pearson correlation coefficient (r). The dif-
ference was calculated between each of the TU measurements (Planar vs Tomo-AC, 
Planar vs Tomo-NoAC and Tomo-AC vs Tomo-NoAC) using a graphical Bland and 
Altman method. The graphical correlation analysis of the AThA was done individually 
on the five anthropomorphic 3D-thyroid phantoms. The relative percentage difference 
between theoretical and estimated AThA defined as 100*(AThAEstimated −  AThATheoretical)/
AThATheoretical for Planar, Tomo-AC and Tomo-NoAC were calculated for all the five 
anthropomorphic 3D-thyroid phantoms.

The upper and lower limits for the Bland and Altman plot analysis were calculated 
using mean ± 2 × SD. P value < 0.05 was considered statistically significant.

Dosimetry estimation

For each patient, the dosimetric information included the volume computed tomogra-
phy dose index for body in mGy  (CTDIvol) and dose length product in mGy.cm (DLP) for 
the X-ray CT, and the activity injected of 99mTcO4 (in MBq) for the scintigraphy.
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Effective dose (in Sv) and thyroid absorbed dose (in Gy) were calculated using Inter-
national Commission on Radiological Protection (ICRP) reports 80 and 103 and the 
 VirtualDoseTMCT software from Virtual Phantoms, Inc [22].

Results
Cross‑calibration parameters of the CZT gamma camera

The cross-calibration factors for the three acquisition modes: Planar, Tomo-AC and 
Tomo-NoAC, are summarized in Table  1. To ensure the stability of these cross-cali-
bration factors, several activities were studied corresponding to a range of 1–20 MBq 
(Fig. 3). We verified the linear correlation coefficient (r) as 0.9999 for Planar, 0.9999 for 
Tomo-AC and 0.9996 for Tomo-NoAC, which correspond to a perfect linearity.

Measurements of the absolute thyroid activity

To generate a geometric model of thyroid that represents a human thyroid as closely as 
possible, Planar (Fig. 4) and SPECT/CT (Fig. 5) images of the anthropomorphic phan-
toms were acquired. For all five thyroids phantoms, the estimated AThA was plotted in 
comparison with the theoretical AThA for the three acquisition modes, as illustrated in 
Fig. 6. The injected activity in the five thyroid phantoms ranged from 0.4 to 10 MBq.

The Pearson correlation coefficient r for the theoretical and estimated AThA for Pla-
nar, Tomo-AC and Tomo-NoAC images were statistically highly correlated (r < 0.99; 
P <  10–4).

Table 1 Cross-calibration factors for the planar, SPECT/CT and SPECT acquisitions

Acquisition Cross‑calibration 
factors (counts.
MBq−1  s−1)

Type Mean ± SD

Planar 66.2 ± 4.9

SPECT/CT (Tomo-AC) 60.7 ± 0.7

SPECT (Tomo-NoAC) 26.5 ± 0.3

Fig. 3 Representation of the variation of the accumulated counts as a function of the activity in the vial 
ranging from 1 to 20 MBq for the SPECT/CT (Tomo-AC), SPECT (Tomo-NoAC) and Planar acquisitions
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The average of the relative percentage difference between theoretical and estimated 
AThA for all the thyroid phantoms showed an excellent agreement and were for Pla-
nar, Tomo-AC and Tomo-NoAC images (8.6 ± 17.8), (− 1.3 ± 5.2) and (12.8 ± 5.7), 
respectively.

Patients’ description

The twenty-three patients included 10 females (44%) and 13 males (56%). Their 
mean age was 58.9 ± 17  years, with a range of 29–89  years. Their mean weight was 
73.1 ± 19.3 kg, with a range of 48–112 kg. The mean net injected activity of 99mTcO4 
was 79.2 ± 3.7 MBq.

Fig. 4 Planar scintigraphy of the 19 cc anthropomorphic thyroid phantom

Fig. 5 SPECT/CT (A: transverse slice, B: coronal slice, C: frontal slice) fusion views and maximum intensity 
projection view (D) of the 19 cc anthropomorphic thyroid phantom
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Clinical results

Thirteen patients (56%) were found to have one or several hot nodules. Among this subset 
of patients, SPECT/CT was able to detect all nodules seen with planar images. It was easier 
to localize nodules with a 3D representation of the thyroid in SPECT/CT images than pla-
nar image, as illustrated in Fig. 7 of the same patient (case #23). In Fig. 7K, the planar scin-
tigraphy indicates a pathological, principally a large hot nodule in the right para-isthmic 
region. SPECT/CT, in contrast, reveals not only the large right para-isthmic hot nodule, but 
also two additional areas of focal uptake in the upper pole of both lobes, which are consist-
ent with hot nodules (Fig. 7A, B, C, D, E, F, G, H, I, J).

Measurements of the patients’ thyroid uptake

Comparisons of TU between different pairs of images (Planar vs Tomo-AC, Planar vs 
Tomo-NoAC and Tomo-AC vs Tomo-NoAC) are shown in Fig. 8. Planar, SPECT/CT and 
SPECT images show statistically significant correlations (r = 0.972, 0.961 and 0.935, respec-
tively; P <  10–3). The Bland and Altman analysis, as represented in Fig. 9, indicates a good 
agreement of the calculated TU between the Planar versus Tomo-AC, Planar versus Tomo-
NoAC and Tomo-AC versus Tomo-NoAC images, with a mean difference, respectively, of 
0.338 (− 0.563 to 1.239), − 0.208 (− 1.019 to 0.602) and 0.546 (− 0.805 to 1.898).

Dosimetry results

Dosimetric information from CT and SPECT examinations of the 23 patients were used 
to calculate the thyroid absorbed dose. The mean activity of the injected 99mTcO4 was 
79.2 ± 3.7 MBq. The mean of the  CTDIvol and DLP were estimated at 2.21 ± 0.2 mGy and 
49.5 ± 9 mGy.cm, respectively. The mean effective dose and the thyroid absorbed dose, for 
the CT and the nuclear medicine (NM) parts, were found to be 0.34CT + 0.95NM mSv and 
3.88CT + 1.75NM mGy, respectively. All of these results are summarized in Table 2.

Discussion
In order to quantify 99mTcO4 TU on planar, SPECT and SPECT/CT series using a large 
field of view CZT gamma camera, we first determined cross-calibration factors using a 
thyroid phantom. Then, the AThA was calculated for planar and SPECT/CT acquisitions 

Fig. 6 Correlations curves (A, B, C, D and E) between theoretical and estimated activity of Tomo-AC, 
Tomo-NoAC and Planar acquisitions for anthropomorphic thyroid volumes of 3.2, 7.5, 11.4, 19 and 30 cc
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Fig. 7 CT, SPECT and fusion in, respectively, coronal (A, E, H), sagittal (B, F, I), transvers (C, G, J) images, MIP 
(D) and Planar scintigraphy (K) of patient case #23, showing for Planar mainly the hot right nodule and for 
SPECT/CT the same hot right nodule and also hot nodules in the upper pole of right and left lobes

Fig. 8 Correlations between TU based on different pairs of images Tomo-AC versus Tomo-NoAC (A), Planar 
versus Tomo-NoAC (B) and Planar versus Tomo-AC (C)
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on five anthropomorphic 3D thyroid phantoms, and the TU was calculated for the 
acquisitions performed on 23 consecutive patients. To our knowledge, the feasibility of 
such thyroid quantification using a large field of view CZT gamma camera has not been 
previously demonstrated in the literature.

The TU value obtained with planar acquisition after injection of 99mTcO4 is one of the 
parameters used in nuclear medicine for the diagnosis of thyroid diseases and for patho-
logical follow-up. Its clinical value is limited, as it depends on many factors such as thy-
roid volume, patient’s iodine supply, hormonal status and patient’s age [3–5, 18, 23, 24]. 
Its use is recommended by the European Association of Nuclear Medicine (EANM) and 
the Society of Nuclear Medicine and Molecular Imaging (SNMMI) practice guideline for 
thyroid scintigraphy [18].

However, one of the main issues with this parameter is that its normal reference range 
is not clearly defined [25–30]. Estimated of TU and thyroid scintigraphy are established 
according to guidelines [18, 19] using planar acquisitions on a NaI scintillation detector 
equipped with an Anger-type gamma camera with parallel and pinhole collimators. The 
pinhole collimator is used just for diagnostics, but not for the estimation of TU. Attenua-
tion correction (AC) and scatter correction (SC), resolution recovery (RR) and the itera-
tive OSEM algorithm allow a quantitative SPECT/CT approach [12, 31–33], despite the 

Fig. 9 Bland and Altman plot analysis of TU calculated between Tomo-AC versus Tomo-NoAC (A), Planar 
versus Tomo-AC (B), and Planar versus Tomo-NoAC (C) images

Table 2 Thyroid and effective dosimetry data of the 23 patients

*ICRP‑103 and Virtual‑Phantoms, Inc. software, ** ICRP‑80

Mean SD Range

Injected Activity (MBq) 79.2 3.7 (71.5–86.7)

CTDIvol (mGy) (body) 2.21 0.2 (1.6–2.5)

DL P(mGy cm) 49.5 9 (33–65)

CT-effective dose (mSv)* 0.34 0.03 (0.24–0.38)

99mTcO4-effective dose(mSv)** 0.95 0.04 (0.86–1.04)

CT-Thyroid absorbed dose (mGy)* 3.88 0.36 (2.82–4.38)

99mTcO4-thyroid absorbed dose (mGy)** 1.74 0.08 (1.57–1.91)
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relatively poor spatial resolution and the partial volume effects that limit quantitation of 
radioactivity for objects smaller than three times the spatial resolution [34].

Ahmed et  al. performed a bibliographic evaluation [35] with iodine-131 on hybrid 
SPECT/CT imaging compared to planar scintigraphy. The aim of that study was to treat 
differentiated thyroid carcinomas. The authors concluded that SPECT/CT was supe-
rior to planar in distinguishing pathologies from physiological uptake by increasing the 
accuracy of image interpretation. SPECT/CT improved the accuracy of differentiating 
the stages of thyroid cancer and subsequent patient management. Their conclusion was 
mainly based on the lack of anatomical detail in planar gamma cameras images and 
the superimposition of areas leading to false positive results and potential to over-treat 
patients.

Zaidi [36] investigated comparative methods on a thyroid phantom to quantify thy-
roid volume using planar and SPECT imaging with technetium-99 m on a scintillation 
(NaI) gamma camera. He concluded that images from SPECT with attenuation and 
scatter corrections provided the most accurate determination of thyroid phantom vol-
ume, but failed at smaller volumes where errors caused by the partial volume effect were 
significant.

In contrast, Iizuka et  al. [37], using iodine-131 scintigraphy, compared planar with 
SPECT images for quantification of radiation intensity, concluding that planar images 
provided better accuracy for determining the radiation dose. Their approach differed 
from ours and was based on an iodine-131 reference capsule placed next to the patient 
during image acquisition. Iodine-131, as a high photon energy radioisotope, has poor 
sensitivity to the gamma camera due to collimator penetration, a factor that could 
explain those results.

The CZT digital detector, based on cadmium zinc telluride technology, provides 
high resolution SPECT images by directly converting gamma radiation into an electri-
cal signal. The high performance of the CZT detector with its specific acquisition and 
reconstruction parameters (WEHR collimator, energy window set at 15%, iterative 
reconstruction with AC, SC and RR corrections) provides several major advantages for 
our purpose. First, it was not necessary to increase the injected 99mTcO4 activity while 
maintaining the quantitative accuracy of the SPECT and SPECT/CT image data [32]. 
Second, the high spatial and energy resolutions of the CZT, compared to the Anger cam-
era, result in an improved image quality in terms of contrast and spatial resolution [17].

The perfect linearity of the change in accumulated counts as a function of activity for 
Planar, Tomo-AC and Tomo-NoAC images, with r = 0.9999, 0.9999 and 0.9996, respec-
tively (Fig.  3), ensures the stability of the cross-calibration factors. Estimation of the 
AThA of the five anthropomorphic phantoms show evidence that the cross-calibration 
factors are validated for all five thyroid sizes (from 3.2 cc to 30 cc) and for variable activ-
ity in the phantoms ranging from 0.4 to 10 MBq, which represents the typical uptake of 
99mTcO4 activity in a patient thyroid.

The average of the relative percentage difference between theoretical and estimated 
AThA for all the thyroid phantoms showed an excellent agreement, particularly for 
the Tomo-AC, and were for Planar, Tomo-AC and Tomo-NoAC images (8.6 ± 17.8), 
(− 1.3 ± 5.2) and (12.8 ± 5.7), respectively. The results in Figs.  8 and 9 show a good 
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agreement among the TU values calculated with planar and tomographic images using 
cross-calibration factors. In addition, the correlation between Planar versus Tomo-AC, 
Planar versus Tomo-NoAC and Tomo-AC versus Tomo-NoAC (Fig.  8) was excellent 
(r = 0.972, 0.961 and 0.935, respectively; P <  10–3), offering the possibility of using either 
SPECT or SPECT/CT for TU quantifications. The thyroid’s proximity to the skin, induc-
ing a low level of attenuation and scattering, partly explains the excellent correlation val-
ues between Planar, SPECT and SPECT/CT images. In addition, SPECT imaged limited 
patient exposure compared to SPECT/CT.

Regarding the contribution of 3D imaging (Tomo-AC and NoAC), although it did 
not directly influence the therapeutic strategy in our 23 cases, a potential superiority of 
tomographic images in the detectability and localization of thyroid nodules in compari-
son with planar conventional acquisitions was evident. This finding is consistent with 
previous studies [12, 20, 31, 32, 35, 36, 38] that have demonstrated the utility of SPECT 
for accurate localization of thyroid tracer uptake. Clearly, the CT scan associated with 
SPECT enhances the anatomic localization of hot thyroid nodules and could likely be 
relevant to patient care.

A factor of consideration in this study’s procedure is the potential radiation exposure 
to patients with CT acquisitions, especially for the thyroid glands. Nonetheless, in our 
configuration of a CZT coupled with an efficient CT scan, we were able to inject a low 
activity of 99mTcO4 around 79.2 ± 3.7 MBq. Using low activity was possible due to the 
high performance of the CZT technology, along with specific SPECT reconstruction 
parameters and corrections. In addition, we used a low tube voltage (100 kVp) and the 
CT reducing methods such as current modulation (smart mA) and iterative CT recon-
struction (ASIR).

The estimated effective dose of the patients was 1.29  mSv: 0.34  mSv for CT plus 
0.95 mSv for the injection of 99mTcO4. This is an acceptable effective dose, considering 
that the annual individual exposure among the population in France is 4.5 mSv [39] and 
the typical effective dose of an abdomen CT is 8.1 mSv [40]. However, the total organ 
absorbed dose for the thyroid was 5.63 mGy: 3.88 mGy for CT plus 1.74 mGy for the 
injection of 99mTcO4 which should definitely motivate to reduce radiation exposure, 
especially for CT.

Conclusion
Using CZT technology, cross-calibration factors, validated through anthropomorphic 
thyroid phantoms using the same acquisition conditions as the patients, provide the abil-
ity to validate the TU value on a small series of patients with SPECT and SPECT/CT 
images. The Planar gold standard acquisition for TU could be substituted by SPECT or 
SPECT/CT acquisitions.

Although CT for AC reduces the errors on estimated AThA as compared to no AC 
and CT combined with SPECT enhances the anatomic localization of hot thyroid nod-
ules, the additional value of combined CT remains to be confirmed in larger studies and 
involves an increase in the exposure. Patient radiation exposure remains a concern, espe-
cially because the thyroid is considered as a highly sensitive organ to ionizing radiation.
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