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We investigate the dynamics of a low-density round jet, with a focus on the mechanisms
governing the turbulent momentum and mass transfers as well as on the entrainment of
ambient fluid. To that purpose, we combine a theoretical analysis, laboratory experiments
and numerical simulations. The theoretical analysis relies on a general formulation of the
entrainment decomposition for the case of large density differences, enlightening the role
of the processes contributing to the entrainment: turbulent kinetic energy production
and variation in the shape of mean velocity radial profiles. The spatial evolution of these
terms has been evaluated by means of challenging experiments, providing a unique data
set of combined velocity and density statistics of a low-density jet and an air jet. The same
flows are investigated by means of large-eddy simulations (LES). Other than for providing
complementary information on flow statistics, LES are here used to investigate the role
of varying conditions imposed at the source, notably concerning the shape of the inlet
velocity profile and the presence of a bottom wall, surrounding the source. Experimental
and numerical results provide a clear insight on how a reduced density within the jet
enhances the turbulent kinetic energy production (compared to an iso-density jet), and
modifies the shape of the mean velocity profiles. Despite its clear influence on the flow
statistics, the reduced density has overall little influence on the entrainment rate, which
also shows little sensitivity to varying source conditions.

1. Introduction

Variable-density round jets arise in a wide number of industrial and environmental
flows and represent therefore a widely investigated topic in fluid mechanics. For a com-
plete and exhaustive review on early research works on these flows, the reader is referred
to the book by Chen & Rodi (1980), providing an overview of data collected in labo-
ratory experiments and in the different flow regimes arising from such localised releases
of varying density. According to a well-established classification (Chen & Rodi 1980), it
is customary to identify three regions, characterised by different dynamical features: the
near-field non-buoyant region, the far-field buoyancy dominated region and the interme-
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diate region between the two, where buoyancy progressively counterbalances momentum.
In the near-field, the momentum flux overwhelms that of buoyancy. The resulting flow is
therefore referred to as a ‘variable-density jet’, since any gravitational effect can be fully
neglected, so that the momentum flux, evaluated over sections at increasing distance from
the source, is kept constant (Panchapakesan & Lumley 1993; Hussein et al. 1994b). For
increasing distances from the source, and beyond a characteristic jet-length, denoted Lm

(Morton 1959), the role of gravitational effects begins to act on the flow dynamics, giving
rise to a flow that is usually referred to as a ‘buoyant jet’ or a ‘forced plume’. Finally,
for further larger distances from the source (typically exceeding 5Lm), the momentum
generation due to buoyancy becomes the main forcing of the flow, which then behaves as
a ‘buoyant plume’ and whose dynamics do not differ from those of a plume induced by
a source of pure buoyancy (Morton et al. 1956). It is worth noting that our interest here
will be fully limited to the first (near-field) region, and we will therefore investigate effects
induced by a variable density which are not due to its coupling with the gravitational
field, i.e. which are independent from those usually referred to as buoyancy effects.
Results of early experimental works (Keagy 1949; Thring & Newby 1953; Way & Libby

1971; Aihara et al. 1974) have provided a first insight on key features of the dynamics
of these flows and the appropriate scaling to recover self-similar analytical solutions for
the velocity and density fields. Notably, this scaling was based on the definition of the
‘effective diameter’ when considering the momentum flux, by weighting the source diam-
eter with the ratio between the (square root of the) density at the source ρs and that
of the ambient fluid ρ0. In subsequent experimental works, Panchapakesan & Lumley
(1993) and Kyle & Sreenivasan (1993) succeeded in performing simultaneous measure-
ments of fluid velocity and density (or temperature), therefore providing information on
the cross-correlation statistics. Panchapakesan & Lumley (1993) measured two velocity
components and helium mass fraction concentration using a composite probe and an X-
hot-wire anemometer. They focused on the intermediate region between the non-buoyant
jet region and the plume region, provided accurate data on velocity and concentration
statistics, and presented budgets for the turbulent kinetic energy and the scalar variance.
Kyle & Sreenivasan (1993) focused instead in the near-field (up to a distance of less than
ten source radii) using hot-wire anemometry, investigating the influence of the density
ratio ρs/ρ0 on the development of instabilities and triggering of breakdown in the jet
dynamics.

Since the mid 1980s, experimental studies on variable-density jets took benefit from
the development of optical measurement techniques. Using Rayleigh light scattering Pitts
(1991a,b) analysed the concentration field within variable-density jets, focusing on the
role of density ratio and Reynolds number on the decay of time-averaged concentration
and of its coefficient of variation, that he referred to as the ‘unmixedness’ value. Sautet
& Stepowski (1995), Amielh et al. (1996), and Djeridane et al. (1996) have reported
detailed laser-Doppler anemometry (LDA) measurements of the turbulent velocity field
in the near-field region of variable-density jets, providing valuable information on: the
structure of the transition region needed by the jet to attain self-similarity conditions,
the Reynolds stress, the turbulent kinetic energy, and higher-order velocity correlations.
Combining LDA and cold wire, Pietri et al. (2000) and Darisse et al. (2013) obtained
simultaneous measurements of two velocity components and temperature, which enabled
them to estimate velocity and temperature correlations, turbulent fluxes and hence tur-
bulent viscosity and thermal diffusivity, yielding an estimate of the turbulent Prandtl
number. More recently, Charonko & Prestridge (2017) considered a vertical descending
dense jet (air - SF6 mixture), combining particle image velocimetry (PIV) and planar
laser-induced fluorescence (PLIF), analysing variable-density effects on turbulent statis-
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tics and focusing on turbulent kinetic energy (t.k.e.) budgets. Viggiano et al. (2018)
studied instead the dynamics of light jets using PIV measurements. They focused on the
effects of a varying Reynolds number on the jet dynamics and entrainment, in the very
near-field region (with a domain extent of four source diameters).
All these experimental results constitute a benchmark for the numerical simulations

of variable-density jets performed with different approaches: Reynolds-averaged Navier-
Stokes (Ruffin et al. 1994; Gharbi et al. 1996), large-eddy simulations (LES) (Wang et al.

2008; Desjardins et al. 2008; Foysi et al. 2010) and direct numerical simulations (DNS)
(Nichols et al. 2007). An exhaustive comparison between numerical results and experi-
mental data can be found in Wang et al. (2008), who demonstrated the high accuracy of
their LES results against the data set provided by the experiments by Djeridane et al.

(1996) and Amielh et al. (1996).
Notwithstanding the relevant amount of studies on variable-density jets, there are still

fundamental issues of their dynamics that require to be elucidated. On top of these is
the influence of the local density ratio on the entrainment of ambient air within the jet.
As shown by Kyle & Sreenivasan (1993), a low density ratio (notably ρs/ρ0 < 0.6) has a
deep influence on the development of instabilities and oscillatory modes within the shear
layers (for moderate Reynolds number at the source) in a free jet in its early stages of
development. It is however unclear how this influence of the density ratio may persist in
a fully turbulent jet and may influence the amount of ambient air entrained into the jet.
Therefore, the question that needs to be clarified is whether a jet that is lighter than the

surrounding fluid entrains more than an iso-density jet or than a jet that is heavier than
the surrounding fluid. The careful reader will certainly notice that the adjectives ‘light’
and ‘heavy’ are inappropriate here, since their meaning implies the relevance of the grav-
itational field, which we have discarded from the outset. According to the widespread jar-
gon, we will however adopt this misuse of language, and refer to a momentum-dominated
release which is less dense than the surrounding environmental fluid as a ‘light’ jet.
As far as we are aware, the first, and so far only, study providing insights on the

dependence on the density ratio of the flux of ambient air entrained within variable-
density releases is the seminal work by Ricou & Spalding (1961). By measuring the
pressure difference across porous screens contouring vertical light and heavy momentum-
dominated releases, they managed to estimate the variations of the mass flux, referred
to here as G, for increasing distances from the source. In scaling the evolution of G with
a corrected distance from the source, weighted by the square root of the ratio between
the density at the source ρs and that of the ambient fluid ρ0, they implicitly proposed
a model for the dependence of the entrainment rate on the jet density, predicting that
the entrainment coefficient is reduced as the jet density becomes smaller. This finding
is somehow striking, since it implies that the influence of a variable density via inertial
effects on the entrainment rate would be opposite to that via buoyancy effects, which, as
is well known, act in enhancing significantly the entrainment rate (Papantoniou & List
1989; Wang & Law 2002; Ezzamel et al. 2015; van Reeuwijk et al. 2016).

In their study, Ricou & Spalding (1961) could rely only on global estimates of the
jet mass flux which did not involve any velocity (nor density) measurement within the
jet itself. This inevitably led to estimates of the mass flux growth averaged spatially,
between the jet source and a characteristic distance z, preventing near-field effects to
be investigated. The near-field variations of the entrainment coefficient were instead
investigated by Hill (1972), using an experimental apparatus similar to that used by Ricou
& Spalding (1961), but allowing for estimates over shorter fetches. Hill (1972) reported
the high variability of the entrainment coefficient close to the source (within 10 source
diameters) in an air jet. Since then, few other authors (Djeridane et al. 1996; Viggiano
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et al. 2018) tackled the question of the effect of a varying density on the entrainment
rate. Notably, Djeridane et al. (1996) showed that the scaling proposed by Ricou &
Spalding (1961) was not suited to model their experimental mass flux estimates in the
near-field region. Lastly, based on PIV velocity measurements in helium jets, Viggiano
et al. (2018) estimated an entrainment coefficient in a field very close to the source (up
to a distance of 4 source diameters). Similarly to Hill (1972), they reported the variation
of the entrainment coefficient on the distance to the source and on the Reynolds number.
According to their results, for a Reynolds number larger than 7000, both the entrainment
coefficient and the normalized turbulent fluctuations become Reynolds-independent (the
issue of the influence of the Reynolds number will be further discussed in Sect. 3).
The lack of complete and detailed experimental studies of entrainment in variable-

density jets is a direct consequence of the number of technical hurdles that must be faced
when performing laboratory experiments with large differences in fluid densities. These
are primarily due to the metrological difficulties of simultaneously measuring velocity
and density fields in a turbulent flow with high density variations. Besides, increasing
safety issues have limited in several laboratories the use of specific gases that are likely
to be adopted for these experiments (e.g. hydrogen and SF6).
The aim of our study is to contribute to fill this lack of knowledge and elucidate the

mechanics of turbulent transfer and entrainment within a variable-density jet. Before
presenting our methods however, a caveat needs to be noted. Studying the effect of the
variable-density ratio on the jet dynamics implies focusing on its near-field region (within
few tens of source radii), where the density differences are actually relevant, but where the
turbulent flow is also expected to be still affected by the release conditions. In principle,
the effect of a varying density in the near field can be therefore hardly dissociated from
those induced by varying conditions at the source, in terms of shape of the inlet velocity
profile and of intensity of turbulent fluctuations (Boersma et al. 1998), and those imposed
at the boundary surrounding the source (see figure 1a-b). Considering this latter aspect,
note that several studies in the turbulent jet literature, based on experiments (e.g. Hill
(1972); Ezzamel et al. (2015); Viggiano et al. (2018)) and numerical simulations (e.g.
van Reeuwijk et al. (2016)), considered the case of releases issuing from a source placed
within a rigid wall. A legitimate question then arises, about the effects of this bottom
wall (or similarly, of varying inlet velocity profiles) on the jet near-field dynamics and
entrainment. Disentangling these effects from those induced by a variable-density ratio
is therefore a crucial point.

To tackle this problem, we adopt an innovative approach combining experimental,
numerical and theoretical methods for the investigation of the dynamics and the entrain-
ment of freely propagating variable-density jets in a quiescent ambient fluid. The theo-
retical analysis, presented in Sect. 2, relies on the so-called entrainment decomposition
(van Reeuwijk et al. 2016). This theoretical framework, originally proposed by Priestley
& Ball (1955), was adopted in recent works to analyse entrainment in iso-density jets and
Boussinesq plumes (Kaminski et al. 2005; van Reeuwijk & Craske 2015; Ezzamel et al.
2015; Craske et al. 2017) and fountains (Milton-McGurk et al. 2021, 2020). We extend it
here to the case of large density differences, i.e. formulating the plume equations using
Favre averages. This decomposition allows the entrainment coefficient to be linked to
the kinetic energy budget of the jet, via terms involving first- and second-order velocity
and density statistics, which are here estimated by means of experiments and numerical
simulations.

Two density ratios at the source are investigated: a mixture of helium and acetone gas
with ρs/ρ0 ≈ 0.4 and an iso-density air jet. Experiments combining simultaneous PIV
and LIF measurements provide both Reynolds and Favre averages of first- and second-
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order velocity and concentration statistics. Large-eddy simulations of these flows were
then performed (Sect. 3.2) in order to: (i) provide an accurate analysis of their reliability,
taking advantage of the new complete experimental data set provided by the experiments
(ii) obtain further information on flow statistics that are hardly evaluated experimentally
(other than pressure, these include also spatial derivatives of second order statistics, that
are likely to be noised when evaluated from experimental data) (iii) evaluate the effects
on flow field and entrainment due to varying shape of the inlet mean velocity profile and
the presence of a bottom wall, surrounding the source. The profiles of experimental and
numerical velocity and concentration statistics are presented in Sect. 4, while azimuthally
and radially averaged flow variables, i.e. those usually adopted in integral jet models,
and entrainment coefficient are discussed in Sect. 5.1. The results for the entrainment
coefficient decomposition and the comparison between the low-density jet and the iso-
density air jet are shown in Sect. 5.2. Conclusions are drawn in Sect. 6.

2. Theoretical aspects

We consider a release of a light fluid, having density ρs, kinematic viscosity ν and
molecular diffusivity D, issuing with a (spatially averaged) velocity ws from a circular
source of radius rs and emitted within a still ambient fluid, whose density is referred to
as ρ0 (figure 1a-b). In a general way (we limit our interest to low Mach number flows),
the dynamics of variable-density jet is governed by four non-dimensional parameters.
These are the Reynolds number Res = ws2rs/ν, the Schmidt number Sc = ν/D, the
density ratio ρs/ρ0 and a parameter quantifying the relative importance of inertial and
buoyancy effects. In the research community dealing with variable-density jets, this latter

parameter is usually expressed via the Froude number Frs =
ρsw

2
s

| ρs − ρ0 | g2rs
(e.g. Chen

& Rodi (1980); Djeridane et al. (1996)). Among researchers more interested in buoyant
(pure or forced) plumes, this is instead expressed using the Richardson number Ris.
Based on the definition proposed by van Reeuwijk et al. (2016), and adopted hereafter,

the latter is defined as Ris =
ρs
2ρ0

1

Frs
.

Our focus here is on fully turbulent flows (i.e. Res → ∞), whose first-order statistics
are unaffected by molecular diffusion. In the framework of our analysis, the influence of
the Schmidt number can therefore be discarded. Given these hypotheses, to retrieve jet
integral equations (Morton et al. 1956), we model the flow using a low-Mach number
formulation of the Favre-averaged Navier-Stokes equations of an inviscid flow. The Favre
averages are denoted by a tilde and defined as ξ̃ = ρξ/ρ (so that the variance writes σ̃2

ξ =

ρ(ξ̃ − ξ)2/ρ), where overbar denotes Reynolds average. Fluctuations from the Reynolds
and Favre averages are then noted as ξ′ and ξ′′, respectively. We adopt a cylindrical
system of coordinates z, r and θ whose origin is placed at the centre of the circular source
of the jet (see figure 1). Neglecting the role of viscosity and assuming a (statistically)
axisymmetric and steady flow, the time-averaged conservation equations for mass and
momentum (in z-direction) can be expressed as, respectively:

1

r

∂

∂r
r(ρũ) +

∂

∂z
(ρw̃) = 0, (2.1)

1

r

∂

∂r
r(ρũ w̃ + ρũ′′w′′) +

∂

∂z
(ρw̃2 + ρw̃′′2) = −

∂

∂z
p + ρ0b, (2.2)

where p is the pressure difference relative to the hydrostatic pressure p0 (defined such
that ∂

∂zp0 = −ρ0g, with g the gravitational acceleration, and where b = g(ρ0 − ρ)/ρ0 is
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the local buoyancy (Woods 1997). Multiplying (2.2) by 2w̃ and using (2.1) yields:

1

r

∂

∂r
r
(
ρũ w̃2 + 2ρũ′′w′′w̃

)
+

∂

∂z

(
ρw̃3 + 2ρw̃′′2w̃ + 2p w̃

)

= 2 ρũ′′w′′
∂

∂r
w̃ + 2 ρw̃′′2

∂

∂z
w̃ + 2p

∂

∂z
w̃ + 2ρ0bw̃.

(2.3)

Integrating (2.1), (2.2) and (2.3) over r (between the jet axis and infinity) we then obtain:

dG

dz
= −2ρ0[rũ]∞, (2.4)

d

dz
(βgM) = ρ0B, (2.5)

d

dz

(
γg

M2

G

)
= δg

M5/2

Q1/2G3/2
+ θm

BM

G
, (2.6)

where the mass flux, G, momentum flux, M , volume flux, Q, and integral buoyancy, B,
are defined as, respectively:

G ≡ 2

∫
∞

0

ρw̃rdr, M ≡ 2

∫
∞

0

ρw̃2rdr, Q ≡ 2

∫
∞

0

w̃rdr, B ≡ 2

∫
∞

0

brdr, (2.7)

and where βg = βm + βf + βp, γg = γm + γf + γp, and δg = δm + δf + δp are profile
coefficients, associated with the radial variations of the mean flow (denoted with sub-
script ‘m’), velocity fluctuations (denoted with subscript ‘f ’) or with the mean pressure
(denoted with subscript ‘p’). The profile coefficients associated with the radial variations
of the mean flow are defined as:

βm ≡
2

ρmw2
mr2m

∫
∞

0

ρw̃2rdr = 1, θm ≡
2

bmwmr2m

∫
∞

0

bw̃rdr,

γm ≡
2

ρmw3
mr2m

∫
∞

0

ρw̃3rdr, δm ≡
4

ρmw3
mrm

∫
∞

0

ρw̃′′u′′
∂w

∂r
rdr, (2.8)

and those associated with the fluctuations of the velocity or with the mean pressure are:

βf ≡
2

ρmw2
mr2m

∫
∞

0

ρw̃′′2rdr, βp ≡
2

ρmw2
mr2m

∫
∞

0

prdr,

γf ≡
4

ρmw3
mr2m

∫
∞

0

ρw̃w̃′′2rdr, γp ≡
4

ρmw3
mr2m

∫
∞

0

w̃prdr,

δf ≡
4

ρmw3
mrm

∫
∞

0

ρw̃′′2
∂w

∂z
rdr, δp ≡

4

ρmw3
mrm

∫
∞

0

p
∂w̃

∂z
rdr. (2.9)

In these definitions, we have made use of a ‘top-hat’ jet width rm, velocity wm, density
ρm and buoyancy bm which are consistently defined using integral quantities as (van
Reeuwijk & Craske 2015):

rm ≡
Q1/2G1/2

M1/2
, wm ≡

M

G
, ρm ≡

G

Q
, bm ≡

BM

QG
. (2.10)

By definition of the entrainment coefficient, the radial volume flux of the entrained
ambient fluid in (2.4) is assumed to be proportional to the longitudinal velocity of the
jet:

α ≡
−[rũ]∞
rmwm

. (2.11)
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Combining (2.4), (2.10) and (2.11) the entrainment coefficient can be expressed as

α =
ρm
ρ0

rm
2G

dG

dz
. (2.12)

Equations (2.5) and (2.6) in turn become:

rm
M

d

dz
(βgM) = Ri, (2.13)

rm
G

M2

d

dz

(
γg

M2

G

)
= δg + 2θmRi, (2.14)

where Ri is the plume Richardson number, a parameter varying with the distance from
the source, defined as

Ri ≡
bmrm
w2

m

=
B

M

(
QG

M

)1/2

, (2.15)

so that Ri(z = 0) = Ris.
Finally, by re-arranging (2.13) and (2.14) we can retrieve an alternative formulation of
the entrainment coefficient:

αE = −
ρm
ρ0

δg
2γg︸ ︷︷ ︸

αprod

+
ρm
ρ0

rm
d

dz

(
ln

γ
1/2
g

βg

)

︸ ︷︷ ︸
αshape

+
ρm
ρ0

(
1

βg
−

θm
γg

)
Ri

︸ ︷︷ ︸
αRi

. (2.16)

The first term on the rhs of (2.16), referred to as αprod, represents the contribution to
the entrainment directly linked to the turbulent kinetic energy production. The second
term, referred to as αshape, depends instead on the change in shape of the mean velocity
and Reynolds stress radial profiles. The third term, αRi, is related to buoyancy effects,
and, as we will show next, is fully negligible in the variable-density jet considered here.
The scope of the present work is to unveil the influence of a variable density on the three

terms composing (2.16). Density variations will of course act directly through the density
ratio ρm/ρ0 (and eventually the Richardson number), but they will also act indirectly
by changing the values of the profile coefficients, i.e. δg, γg, and θm. Therefore, our aim
here is to i) estimate the value of the coefficients (2.8) and (2.9) by means of experiments
and large-eddy simulations, ii) analyse the relative role of the three terms composing the
entrainment relation (2.16), with a focus on αprod and αshape, iii) analyse how these are
influenced by varying boundary conditions (inlet velocity profile and presence of a bottom
wall) and iv) discuss the evolution of the profile coefficients and of the entrainment rate
with respect to data collected in iso-density jets.

3. Experimental and numerical methods

The analysis of the statistics of the velocity and density fields relies on two data sets.
One is obtained by performing laboratory experiments (sect. 3.1) and the other one by
performing large-eddy simulations (sect. 3.2). As an illustration of the flow development,
visualizations of the jet obtained by means of LES and experiments are presented in
figure 1c and figure 1d, respectively.

3.1. Laboratory Experiments

Velocity and concentration measurements were performed using two jets of different
densities expanding in air at rest and at ambient temperature and pressure (Moutte
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r r

z z

2rs 2rs

w̃c,0

w̃c(z)

2rw(z)

(a) (b)

(c) (d)

Figure 1. Schematic details of the boundary conditions at the source used for the numerical
simulations J1a-c (a) (i.e. no bottom wall and pipe flow shaped inlet mean velocity profile) and
for the simulation J3 (b) (bottom wall and top-hat inlet mean velocity profile). Also shown for
each case are the development of the jet and mean velocity profile for two distances from the
source. (c) Instantaneous snapshot of the air-helium mixture mass fraction provided by the LES
results (white: C = 0, green: C = 1). (d) Image of the jet obtained by planar laser-induced
fluorescence (schema mm× schema mm2 field of view).

l

L

Figure 2. Sketch of the experimental set-up (Moutte 2018). The main elements are as follows:
camera for PIV (0), 200mm lens (1), pulsed laser (2), camera for PLIF (3), 532nm optical filter
(4), light intensifier (5), dichroic mirror (6), optical table (7), containment box (8), jet maker
(9).

2018). Two jets are produced. One, referred to as ‘light’ and having a density ratio
ρs/ρ0 = 0.39, is produced by the release of a mixture of helium and acetone vapour. The
second, referred to as ‘iso-density jet’ and having ρs/ρ0 = 1.17, is produced by a mixture
of air and acetone vapour. Glass atomizers (perfume diffusers) provide a micronic olive
oil aerosol as seeding for PIV. As the amount of oil injected is small, it does not change
the density of each release. Note that both jet and ambient air are seeded to avoid any
bias in velocity measurements. For each experiment, the source release parameters are
given in table 1. The experimental set-up is shown in figure 2 and its main characteristics
are outlined below.

The pipe jet nozzle has a radius rs = 1.75 mm and its edge thickness is 0.35 mm.
The ratio between the length of the pipe l and the ejection radius is equal to l/rs = 80
that insures the development of a fully turbulent pipe flow as inflow conditions of the
jet. The jet spans in a square Plexiglass enclosure of L = 300 mm side, so that the
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section ratio L2/(πr2s) > 9000 is large enough to avoid confinement effects. The values of
Res and Frs (see table 1) are the same as those of the experiments by Djeridane et al.

(1996) and Amielh et al. (1996). Note that what we refer to as ‘iso-density’ jet is indeed
a slightly dense jet (due to the presence of acetone as a tracer) having Frs = 571000 and
Res = 16400, a value at which the entrainment process can be considered as Reynolds-
independent, according to the analysis presented by Ricou & Spalding (1961). For the
light release, we have instead Frs = 120000 a value sufficiently high to discard any
influence of buoyancy effects, and Res = 7000. Consider however that data by Pitts
(1991b) on dense jets suggest that, for Res > 7000, the average and the variance of
the concentration do not show any relevant effect due to the variation of the Reynolds
number. These findings have been recently confirmed by Viggiano et al. (2018), who
concluded, based on PIV measurements in helium jets, that, as Res > 7000, both the
entrainment coefficient and second-order flow statistics become Reynolds-independent.
The optical arrangement allows for the measurements of the 2D velocity field by PIV

and of the mass fraction field by PLIF, both fields being simultaneously measured in time
and space (see Fig. 2). A single, dual cavity pulsed Nd:Yag laser (2) provides illumination
with both frequency-doubled 532 nm (Quantel Big sky Laser, visible, at 170 mJ per pulse)
and frequency-quadrupled 266 nm (UV, at 31 mJ per pulse) outputs. The illumination
is synchronized by two timer boxes (National Instruments NI-PCI 6602) with the image
acquisition on two sensitive CCD cameras. The visible and UV laser beams (7) are
conditioned by successive dichroic mirrors and lenses to generate two overlying laser
beams expanded into a single sheet by a cylindrical lens that illuminates the same flow
plane in a 22 × 22 mm2 field of view. PIV images are acquired by a Hamamatsu Hisense
4M camera (12bpp, 2048 × 2048 pixels, 5Hz) (0) fitted with a 200 mm lens (1) at f/22
aperture equipped with a pass-band optical filter centered at 532nm. The fluorescence of
the acetone vapor carried within the mixture is stimulated by the 266 nm wavelength of
the laser. PLIF images (figure 1d) are obtained with a very sensitive, cooled, Hamamatsu
Hisense 4M camera (12bpp, 2048 × 2048 pixels, 5Hz) (3) coupled to a high-speed gated
Hamamatsu intensifier (Photocathode GaAsP type P46) (5) in order to increase the low
fluorescence signal collected in the 350–550 nm range. A low-pass filter is placed on the
PLIF path to cut wavelengths above 532 nm. This filter is placed in front of the 200 mm
lens at f/4 aperture (4). The observation of the same field of view is insured by a dual
camera mount (6) (Dantec Dynamics) consisting in a dichröıc mirror that reflects light
towards the PIV camera (0) and transmits light to the PLIF camera (3). To each pair
of PIV images acquired with an adjusted delay of a few µs is associated one PLIF image
synchronously acquired with the second PIV image. A total of 4000 triplets of images
documenting the velocity field and the concentration field are therefore acquired at a
rate of 5 Hz, at the same location in the same plane. The whole system is controlled by
the Dynamic Studio Software (DANTEC Dynamics). The correlation of PIV images is
performed by the adaptative PIV algorithm with 32x32 pixel boxes, with 50% overlap.
The spatial resolution of the PIV measurements was 16 pixels / 2048 pixels × 22mm =
0.17mm. To obtain the same resolution for the LIF, which was initially resolved to the
scale of one pixel, a binning of the data over 16 pixels was applied.

Successive steps are considered in order to obtain the concentration field from raw PLIF
images. The shot-by-shot laser intensity variation was estimated through the standard
deviation of the spatial mean of the raw gray levels for the 4000 PLIF images, giving
1.9% on the whole image surface and 1.2% in the potential core at the jet exit. These
standard deviations include also the fluctuations of the saturated pressure of acetone
vapor in helium that is obtained by bullying a helium flow part in a liquid acetone tank
maintained at 24.2°C±0.5°C in an open heating bath circulator. The background noise
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level Gnoise is estimated with the space-time averaging of one hundred images of the field
of view acquired with laser but without any flow, Gnoise is substracted from the gray
level G(x, y, t)raw of each raw PLIF image,

G(x, y, t) = (G(x, y, t)raw −Gnoise)/(L(x)).
The streamwise spatial inhomogeneity L(x) of the laser intensity profile was determined
by illuminating with the UV laser sheet a quartz tank filled by the helium jet marked by
acetone vapor. For this procedure, the averaged image over one hundred acquired images
is used. A final adjustment of L(x) is made by checking the conservation of mean acetone
quantity obtained for each section during measurements (Sarathi et al. 2011; Charonko
& Prestridge 2017). Since the optical density (OD = 57 mm) is estimated to be one
magnitude order greater than the radial expansion of the more dense region of the jet
(Dj = 3.5 mm) for a 13.9% molar fraction of acetone vapor in helium, the Beer law
was not considered for any laser beam attenuation correction (Lozano et al. 1992). The
induced error measurement is estimated to 2% on the jet axis concentration value in the
very near region of the jet development. The gray level G(x, y, t) is then related to molar
fraction χ by a linear transformation, imposing χ = 1 in the jet potential core and χ = 0
in the ambient air, outside the jet. The mass concentration C is finally deduced from χ

as C =
χρs/ρ0

1− χ(1− ρs/ρ0)
. Velocity, mass fraction and their coupling statistical moments

are calculated with home-made Matlab programs. Eight fields of view are successively
investigated to describe the jet development, longitudinally and radially, from its exhaust
up to 64 rs.

Following Sciacchitano & Wieneke (2016) and Milton-McGurk et al. (2020), we con-
sider that, at first-order, the most relevant source of the experimental errors is due to
precision uncertainty, due to the finite number of samples. They have been estimated
here according to the procedure presented by Benedict & Gould (1996), which we have
applied focusing on three distances from the source (z/rs = 2, 16, 36) and two radial po-
sitions (jet centre, and jet half-width), considering a 95% confidence interval. Concerning
the mean longitudinal velocities, the experimental error is of order 1%, except in the very
near field, where it accounts for approximately 3 % on the axis and attains 9 % on the
jet half-width. The mean radial velocity is instead affected by significant errors (60 %)
in the very near-field, that reduce to 30 % in the rest of the domain. The uncertainty
on the mean and standard deviation of concentration is similar, with a maximal value
that slightly exceeds 1 %, at the jet border in the far field. Uncertainty for the standard
deviation of the velocity is generally between 2 % and 3 %. Finally, Reynolds stress is af-
fected by an error of about 7 %, which is also representative for the velocity-concentration
correlations in the far-field. Errors for this latter variable are instead larger in the very
near field and can almost attain 15 %.

3.2. Numerical Simulations

The light (J1a-c, J2 and J3) and iso-density (J0) jets were numerically simulated using
the code CALIF3S (developed at the Institut de Radioprotection et de Sûreté Nucléaire-
IRSN), solving a low-Mach-number formulation of Favre-filtered Navier-Stokes equations
adopting a large-eddy simulation approach. In Cartesian coordinates, the mass, momen-
tum and species transport equations are:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0, (3.1)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= −

∂p

∂xi
+

∂Sij

∂xj
−

∂τij
∂xj

+ ρgi, (3.2)
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Experiment
Gas

at the source
Us

(in m.s−1)
ρs/ρ0 Res Frs

Symbols
used

Light jet
Helium

+ acetone vapor
80 0.39 7000 120000

black
circles

Air jet
Air

+ acetone vapor
53 1.17 16400 571000

green
crosses

Table 1. Experimental conditions. The main results concern the light jet (Figs. 3-5 & 6-11)
and they are compared to air jet results in figure 11.

∂(ρC)

∂t
+

∂(ρCui)

∂xi
=

∂

∂xi

(
ρD

∂C

∂xi
+

µs

Scs

∂C

∂xi

)
, (3.3)

where ui is the Favre-filtered velocity, p is pressure, gi is the gravitational acceleration, C
is helium mass fraction, D is the molecular diffusivity of the air-helium mixture, µs is the
sub-grid turbulent dynamic viscosity, and Scs is the sub-grid turbulent Schmidt number.

The density ρ is the filtered density of the fluid computed as ρ =

(
C

ρs
+

1− C

ρ0

)
−1

. In

(3.2), τij represents the sub-grid scale Reynolds stress, here evaluated by means of three
different models: the Vreman model (Vreman 2004) for simulations J0, J1a, J2 and J3,
the dynamical Smagorinsky model (Germano et al. 1991) for J1b and the WALE (Wall
Adapting Local Eddy) model (Nicoud & Ducros 1999) for J1c. For the six simulations,
the corresponding boundary conditions and sub-grid model used are given in table 2.
The term Sij = −(2/3)µ(∂uk/∂xk)δij + µ(∂ui/∂xj + ∂uj/∂xi) is the filtered strain
rate tensor where µ is the molecular dynamic viscosity calculated as a function of the
individual viscosities and molar masses as well as the corresponding mass fractions. In
(3.3), the simple gradient diffusion hypothesis (SGDH) is used to close the problem with
a turbulent sub-grid Schmidt number Scs set equal to 0.7. We use a staggered grid with
a cell-centred piece-wise constant representation of the scalar variables and a marker and
cell (MAC) type finite volume approximation for the velocity. For the time discretisation,
we employ a fractional step algorithm decoupling balance equations for the transport of
species and Navier-Stokes equations which are solved by a pressure correction technique.
Since we consider jets in an infinite (open) environment, the computational domain must
be bounded by artificial boundary conditions which perturb as less as possible the flow
in the interior of the domain. In our simulations, the imposed boundary conditions are
based on the usual control of the kinetic energy and allow to distinguish between the
flow that enters the domain and the flow that leaves it. This type of boundary condition
was originally established for the incompressible case by Bruneau & Fabrie (1994, 1996)
and its extension to compressible flows was tackled by Bruneau (2000).

The domain is a cube of size 40 rs. A refined Cartesian grid is used with a uniform
square mesh (∆x ×∆y) in the central part of the domain Ω1 = [−5rs : 5rs], where the
horizontal grid size is rs/14. Outside Ω1 and along the horizontal direction, the domain
is divided into three successive subdomains, namely Ω2 = [−6rs : −5rs] ∪ [5rs : 6rs],
Ω3 = [−10rs : −6rs]∪ [6rs : 10rs] and Ω4 = [−20rs : −10rs]∪ [10rs : 20rs]. The horizontal
grid spacing is equal to rs/10 over Ω2 and rs/5 over Ω3. Over the last subdomain Ω4,
the grid is progressively stretched for increasing distance from the jet axis and the grid
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Simulation
number

J0 J1a J1b J1c J2 J3

Bottom
condition

free free free free free wall

Inlet velocity
profile

pipe flow
type

pipe-flow
type

pipe-flow
type

pipe-flow
type

top-hat top-hat

Sub-grid
used

Vreman Vreman WALE Smagorinsky Vreman Vreman

ρs/ρ0 1 0.4 0.4 0.4 0.4 0.4

Symbols
or lines
used

green
dashed
line

black
dotted
line

brown
plusses

purple
stars

red
dashed
line

blue
dashed
line

Figures 11 3-11 6 6 3-5 & 8 3-5 & 8

Table 2. Boundary conditions, sub-grid models and density ratio at the source adopted in the
numerical simulations.

points are spread according to a geometric sequence of ratio 1.2 starting at an horizontal
distance of 10rs with an initial grid size of rs/3.

At the source, in order to trigger the transition to turbulence, the inlet flow has been
perturbed with the method presented by Jarrin et al. (2006). This latter has been con-
ceived in order to reproduce inflow conditions in wall-bounded flow (even characterised
by complex geometries) with prescribed first- and second- order one point statistics, char-
acteristic length and time scales. For the time discretization, a CFL (Courant-Friedrichs-
Lewy) number close to unity has been imposed for each calculation even if time step sizes
for which CFL numbers greater than one are allowed with the use of implicit schemes.
Each simulation lasted 1000T , being T = rs/ws a characteristic time scale. Results for
the first 400T have been discarded and flow statistics have been then computed over an
interval of 600T . Mehaddi et al. (2015) and Vaux et al. (2019) compared results pro-
vided by the aforementioned LES approach of turbulent miscible Boussinesq and non-
Boussinesq flows with experimental data, showing the reliability of the CALIF3S code
to properly reproduce the dynamics of turbulent buoyant flows characterised by large
density differences.

To investigate the effect of varying source conditions (shape of inlet profile and presence
of bottom wall) on the light jet dynamics, we have performed three numerical simulations
using systematically Vreman as sub-grid model. The reference simulation, referred to
hereafter as J1a (see figure 1a), represents a free jet (no bottom wall) with a typical pipe
flow (a 1/7 power-law) as the mean velocity profile at the nozzle, similar to that used in
the experiments. For the second simulation (J2), the mean velocity profile at the source
is uniform, usually called ‘top-hat’. In the third simulation, referred to as J3, we impose
a top-hat inlet mean velocity profile and add a bottom wall surrounding the source (see
figure 1b).
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Figure 3. Decay of the mean streamwise velocity (a) and the mean helium concentration (b)
along the jet axis. (c) Increase of the mean streamwise velocity half-width (rw) and the mean
concentration half-width (rC). Axial evolution of the longitudinal (d) and radial (e) velocity
fluctuations, and of the concentration fluctuations (f). Black circles: experiments. Black dotted
lines: reference simulation (J1a). Red dashed lines: simulation without bottom wall and top-hat
profile for the inlet velocity (J2). Blue dot-dashed lines: simulation with bottom wall and using
top-hat profile for the inlet velocity (J3).

4. Local flow statistics

The starting point of our analysis is a detailed comparison between our experimental
and numerical data. We will examine longitudinal profiles on the jet axis (Sect. 4.1) and
radial profiles at different distances from the source (Sect. 4.2). Aims of this analysis are
to evaluate (i) the reliability of the LES simulation in reproducing the variable-density
jet dynamics, (ii) the influence of varying source conditions (inlet velocity profile and
presence of a bottom wall) on the flow statistics (iii) the sensitivity of the LES simulation
to varying sub-grid scale model. For brevity, in the following analysis we only report data
concerning the low-density release. In a general way however, the considerations made
hereafter (with respect to the three aforementioned aspects) apply equally to the iso-
density case.

4.1. Longitudinal profiles on the jet axis

The comparison between experimental and LES data along the jet axis is presented in
figure 3. The results show that the numerical results for the mean longitudinal velocity
(figure 3a) are sensitive to the shape of the inlet profile. The results for the simulation
reproducing the pipe flow follow accurately the trend of the experimental data, with a
slight discrepancy at the farthest measurement station (z/rs = 36). The two simulations
performed imposing a top-hat velocity profile show instead a clear trend in underestimat-
ing the centreline velocities (figure 3a). Despite these differences between the simulations,
the profiles of the mean helium concentration, for the three cases considered, are very
similar to each other and show very good agreement with the experimental data (figure
3b). Similarly, the estimates of the jet half-width, evaluated as the radial distance at
which the centreline velocity and concentration are halved (and referred to as rw and rc,
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respectively) are very well reproduced by the numerical simulations (both considering the
mean velocity and concentration) regardless of the inlet profiles imposed at the source
(figure 3c). The ratio between the two half-widths, usually referred to as φ (Wang & Law
2002; Ezzamel et al. 2015), is larger than unity and exceeds 1.3 far from the source. This
is a common feature in iso-density jets, for which literature data indicate values in the
range 1.1 < φ < 1.4 (Craske et al. 2017).

The three plots (figures 3d-e-f) presenting the longitudinal profile of the r.m.s. of
the velocity (streamwise and radial components) and concentration provide a coherent
picture. In the very near-field (z/rs < 10) the numerical simulations (regardless of inlet
profile and presence of the wall) reproduce accurately the rise of turbulent fluctuations.
The numerical results tend subsequently to overestimate the experimental data, over a
fetch of about ten source radii, over which the LES results attain more rapidly r.m.s.
values characterising the far field of iso-density jets, typically σ̃w/w̃c ≃ 0.26 and σ̃u/w̃c ≃
0.2 (Wygnanski & Fiedler 1969; Hussein et al. 1994a). This higher rapidity observed in
the rise of r.m.s. along the jet axis is likely to be due to the way in which inertial
instabilities are triggered in the numerical simulations. Typically, these can be produced
by forcing the inlet flow with an uncorrelated random noise (van Reeuwijk et al. 2016)
or, as in this case, adopting more sophisticated algorithms (Jarrin et al. 2006) in which
velocity fluctuations are correlated one to the other, reproducing a synthetic turbulent
velocity field characterised by typical length and time scales.

4.2. Radial profiles

To widen our understanding about the velocity and concentration fields we extend our
analysis to the radial profiles of the flow (first- and second-order) statistics, which are
here presented at three different distances from the source. First-order statistics are
presented in figure 4, normalised with their respective centreline value. The near-field
(z/rs = 2) streamwise velocity profiles are, as expected, influenced by the shape of the
profile imposed at the source (figure 4a). The simulations with an inlet top-hat profile
show clear discrepancies with the measured data, which are instead very well reproduced
by imposing a pipe-flow profile. Placing the inlet on a rigid wall has very little influence
on the core of the radial profile and affects only its tails. To appreciate this, we have
reported in figure 4a also the profiles plotted with a logarithmic scale on the vertical axis.
For the experimental case, we can observe then the presence of a light co-flow (induced
by the jet) away from the source, accurately reproduced by the LES data (irrespective of
the shape of the inlet profile imposed). This co-flow is instead suppressed when placing a
rigid wall at the bottom boundary of the domain. For increasing distance from the source
(z/rs = 16), the presence of the wall still induces slight differences between the shapes
of the tails of the profiles (figure 4b). At the farthest distance, z/rs = 36 (figure 4c), the
results for the three simulations are almost identical, and in good agreement with the
experimental data. We will further discuss these features in Sect. 5.2, when analysing
how the inlet profile and bottom wall affect the profile coefficients (notably γm) and the
entrainment rate. Shape variations of the inlet velocity profile, and the presence of a
bottom wall, have instead no particular effect on the mass fraction field (figures 4d-e-f).

The radial profiles of C̃(r, z) are very similar for the three simulations and agree well with
the experimental data, with only slight discrepancies on the jet borders in the far field.
The mean radial velocity ũ(r, z) is the variable that presents the main discrepancies
between experimental and numerical estimates (figures 4g-h-i). This is not surprising,
since, as discussed in §3.1, the radial velocity is the variable that is affected (by far) by
the largest precision uncertainty, attaining almost 60 %. Further note that bias error
induced by slight uncertainties in the orientation of the measurement plane (even though



Turbulent transfer and entrainment in a low-density jet 15

0 1 2 3
0

0.5

1

0 1 2 3

0.01

0.1

1

0 2 4 6
0

0.5

1

0 2 4 6

0.01

0.1

1

0 2 4 6 8
0

0.5

1

4 8

0.01

0.1

1

0 1 2 3
0

0.5

1

0 1 2 3

0.01

0.1

1

0 2 4 6
0

0.5

1

0 2 4 6

0.01

0.1

1

0 2 4 6 8
0

0.5

1

4 8

0.01

0.1

1

0 1 2 3
-4

-2

0

2

4

0 2 4 6
-4

-2

0

2

4

0 2 4 6 8
-4

-2

0

2

4

z/rs = 2 z/rs = 16 z/rs = 36

r/rs r/rs r/rs

r/rs r/rs r/rs

r/rs r/rs r/rs

w̃

w̃c

w̃

w̃c

w̃

w̃c

C̃

C̃c

C̃

C̃c

C̃

C̃c

ũ
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Figure 4. Radial evolution of the mean streamwise velocity (a,b,c), the mean concentration
(d,e,f) and the mean radial velocity (g,h,i). The distance to the source of the jet is fixed to
z/rs = 2 (a,d,g), z/rs = 16 (b,e,h) and z/rs = 36 (c,f,i). Same symbols and lines as in figure 3.

specific attention was paid to the fact that both ũ and w̃′′u′′ must be equal to zero on the
jet axis), may significantly affect the PIV estimate of the radial velocity. In any case, the
discrepancies observed for ũ(r, z) are much larger than those observed on the streamwise
component. However, since these two variables, w̃(r, z) and ũ(r, z), are strictly linked
together via the continuity equation, there is no grounded physical justification for these
differences.

Second-order flow statistics, including velocity-concentration correlations, are presented
in figure 5. In a general way, the numerical simulations reproduce well the shape of the
experimental profiles. This is notably the case of the r.m.s. of the velocity fluctuations,
whose intensity however is clearly overestimated by the numerical results (see figures 5b
and 5e) in the intermediate field (z/rs = 16). As already pointed out when commenting
on the longitudinal profiles (presented in figure 3), this is due to a tendency of the numer-
ical simulation to evolve more rapidly toward a fully turbulent flow within the core of the
jet, due to the disturbances generated at the inlet by a synthetic eddy method (Jarrin
et al. 2006). Despite this, the profiles of the r.m.s. of the concentration are very well
reproduced numerically (figures 5g-h-i). The only discrepancies can be observed at the
farthest position where the experimental profile shows an anomalous peak at r/rs = 5,
that is likely to be due to measurement errors (figure 5i).
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The radial turbulent momentum transfer, as quantified by the normalised Reynolds
stress profiles, is also simulated quite accurately (figures 5j-k-l) in terms of both the
shape of the profiles and their peak value, with apparent discrepancies in the core of
the jet in the near-field (reasonably due to variation of the inlet conditions) and at
the jet boundaries in the far field (for z/rs = 36). Concerning the radial turbulent
mass transfer, the general picture is more critical. The radial turbulent mass flux (figure
5m-n-o) is undoubtedly the flow variable (among those considered here) characterised
by the highest discrepancies between numerical and experimental estimates. These can
be explained, at least partially, by the relevant (approximately 14 % in the near-field)

precision error on C̃ ′′u′′ (§3.1). Note however that, among the variables analysed here,

C̃ ′′u′′ is the most difficult to estimate experimentally, since it requires the coupling of
two independent (but simultaneous) acquisitions. Therefore, even slight bias errors in the
estimate of the velocity field, on one side, and on the concentration field, on the other,

would boost then the overall experimental uncertainty in the estimate of C̃ ′′u′′. Consider

for example the profiles of C̃ ′′u′′ in the very near-field, i.e. z/rs = 2 (figure 5m), where the
discrepancy between the two sets of data is significantly larger than that observed in the
relative profiles of σ̃u (figure 5d) and of σ̃c (figure 5g). In the intermediate field, z/rs = 16
(figure 5n), the discrepancies between experiments and simulations are reduced. At the
farthest measurement station, i.e. z/rs = 36 (figure 5o), we instead observe a very good
agreement in the core of the jets, with a discrepancy between the two data sets that
persists at the jet boundaries.

Taking advantage from these direct measurements of the turbulent fluxes of radial

momentum ũ′′w′ and mass fraction C̃ ′′u′′, we could obtain estimates of the turbulent

viscosity νt and diffusivity Dt, based on a zero-order closure model, i.e. ũ′′w′′ = −νt
∂w̃

∂r

and C̃ ′′u′′ = −Dt
∂C̃

∂r
. We could then evaluate the turbulent Schmidt number Sct = νt/Dt

(whose radial profiles are plotted in figure 5p-q-r), a key parameter quantifying the
relative efficiency of the radial turbulent transfers of momentum and mass. Discrepancies
between the experimental and numerical data are evident in the near field, i.e. z/rs = 2
(figure 5p), where the experimental data exhibit a significant scatter due to both the
uncertainties in the measurements of the fluxes (that attain 15 % in the near field)
and those related to the estimates of the radial derivatives of the (mean) velocity and
concentration. Despite this, we observe a general agreement between the trends outlined
by the two data sets, indicating that the turbulent Schmidt number is characterised by a
constant value over the jet width. According to our estimates, we have 0.7 < Sct < 0.8,
a value that is typically observed in iso-density jets (Craske et al. 2017).

The effect of imposing a different shape of the inlet velocity profile can be detected
only very close to the source, i.e. z/rs = 3, for the r.m.s. of the streamwise σ̃w (figure 5a)
and the radial σ̃u (figure 5d) velocity components. The interpretation of these differences
is however not straightforward. Imposing a pipe-flow profile allows the near-field radial
profile of σ̃u to be reproduced much more accurately. The inlet top-hat velocity profile
leads instead to a better agreement on the peak value of σ̃w (although slightly translated
radially). A possible explanation for this relies on the fact that, in our J1a simulation
(pipe-flow profile), we did not include the presence of the pipe walls at z = 0, and
allowed instead the inlet flow to bleed smoothly into the outer flow. This is in contrast to
the actual experiment, in which there is a wake region behind the pipe edges that may
enhance turbulence production and mixing near the source (the ratio of wall thickness to
diameter in the experiments is about 20%, so quite thick). This enhanced shear observed
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Figure 6. Influence of the sub-grid model used on the numerical results. Black dotted lines:
J1a (Vreman). Brown plusses: J1b (WALE). Purple stars: J1c (Dynamic Smagorinsky).

experimentally is likely to be more similar to the top-hat condition imposed in simulation
J1c. This is also likely to be the cause of the inward shift of the turbulence peak compared
to the simulations. Except for these influences detected in the profiles of σ̃u and σ̃w in
the very near field (and that rapidly fade out moving away from the source) all other
flow variables reported in figure 5 appear to be insensitive to variations in the source
conditions (shape of inlet profile and presence of the bottom wall).

Other than by varying source conditions, it is of primary importance to evaluate how
the numerical results are affected by different formulations of the sub-grid fluxes. To that
purpose, the reference configuration J1 (see figure 1) has been run adopting three different
sub-grid models, notably the Vreman model (Vreman 2004), the dynamic Smagorinsky
(Germano et al. 1991), possibly the most used model in the literature, and the WALE
model (Nicoud & Ducros 1999), originally formulated to deal with other flow typologies,
such as those developing within complex geometries. Results are presented in figure 6,
where we plot radial profiles of flow statistics for two distances from the source. These
show that changing sub-grid model has no relevant influence on the flow dynamics. In
other words, the eventual discrepancies that could be observed when comparing radial
profiles of the flow statistics produced by the three simulations are smaller than those
observed when altering the inlet conditions and adding a bottom wall. Furthermore,
these discrepancies are much lower than those observed when comparing experimental
and numerical results and, most of all, much lower than the experimental uncertainty
detected in the experiments.

Finally, taking advantage of the simultaneous measurement of the velocity and density
fields, we could perform a detailed comparison between the spatial evolution observed in
Reynolds and Favre averages of the flow statistics. An overview on these comparisons is
given in figure 7, where we plot radial profiles of the averaged streamwise velocity and
the Reynolds stress, issued both from experimental and numerical data. Interestingly, the
results show no differences between Reynolds and Favre averages. This could be actually
expected in the far field (z/rs = 36), where the density differences (between ambient air
and the jet flow) are relatively small (i.e. lower than 10 %). This is however also observed
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in the middle field (z/rs = 16) and in the near-field (z/rs = 2), where the density gra-
dients are relevant. It is worth noting that the accordance between Reynolds and Favre
averages is observed both in numerical and experimental data. When considering the
mean streamwise velocity (see figures 7a-c), there is a perfect match between the curve
plotted using the two averaging procedures, as well as using experimental and numerical
data. As discussed earlier in this paragraph, the Reynolds stresses are characterised by
some discrepancies between the experimental and numerical results, both in the interme-
diate and far fields (see figures 7e-f). The values provided by Favre and Reynolds averages
however do not differ in any location of the domain. Even if somewhat surprising, this
close agreement between Favre and Reynolds averages confirms previous experimental
results by Charonko & Prestridge (2017), who examined the dynamics of a dense jet
(with density ratio larger than 1). This feature has of course relevant implications in the
formulation of mathematical models to simulate these flows.

5. Integral flow variables and entrainment

As a second step in our analysis, we focus on radially averaged flow variables, notably
those explicitly defined in Section 2. Our objective is twofold: (i) evidence the role of
varying boundary conditions (inlet velocity profile and bottom wall) on the coefficients
and (ii) discuss differences and similarities between what is observed in a low-density
jet and in an iso-density jet, in order to highlight the role of a variable density in the
entrainment dynamics.
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5.1. Fluxes, top-hat variables and entrainment coefficient

We start by analysing the evolution of the momentum (M), volume (Q) and mass (G)
fluxes, whose evolution for increasing distances from the source is plotted in figure 8(a).
We stress on the experimental estimate of M , which shows a constant value over the
whole range of distances from the source investigated here. Note that the experimental
data are in agreement with the numerical results, provided by simulation in which the
gravitational constant g has been set to zero. This provides a proof of the fact that the
generation of momentum by buoyancy is actually negligible in the flow dynamics, which
can therefore be referred to as a jet. The volume (Q) and mass (G) fluxes instead show a
monotonic increase, which, as is well known, is due to the entrainment of ambient fluid.
The fluxes M , G, and Q allow the top-hat variables wm, ρm and rm to be computed
(figures 8b-c). As customary in plotting the results, we compare our experimental results
with those provided by the LES, obtained by imposing different boundary conditions (i.e.
simulations J1a, J2 and J3). The results show very good agreement between experimental
data and the reference simulation J1a (figures 8a), with slight overestimation of the
volume and mass flux when varying boundary conditions that are in turn reflected in
the estimates of wm (figures 8b). In a general way, however, the values of the fluxes (and
therefore of the top-hat variables) show very little influence of the shape of the inlet
profile and of the presence of the bottom wall.

Based on the estimate of the mass flux G and the top-hat variables, we can then
provide a direct estimate of the entrainment coefficient α, computed according to Eq.
(2.12) and shown in figure 9(a) for increasing distances from the source. The variations of
α are detectable within a distance of 15rs from the source. At larger distances, estimates
of α exhibit relevant fluctuations but without showing any further trend. Note that, for
z > 15rs, the values of α oscillate around 0.07, a reference value in literature data for iso-
density jets (Craske et al. 2017). Again, the shape of the inlet profile and the presence of
the bottom wall have almost no influence on the estimate of α. Indeed, the discrepancies



Turbulent transfer and entrainment in a low-density jet 21

induced by these varying boundary conditions turn out to be lower than the scatter of
the experimental estimates, which are particularly sensitive to the errors in the numerical
estimate of the derivative of the mass flux in Eq. (2.12).

To push our analysis further, we compare the estimate of α provided by Eq. (2.12)
with those obtained in case where simultaneous measurements of the velocity and density
fields would not have been available (as in almost all experiments performed so far). We
consider two different cases. A first one in which we actually would dispose of density
measurements, but uncorrelated from the velocity data. A second one, in which we would
instead rely on velocity data, only. In both cases, Favre averages could not be properly
computed, which would therefore not allow to estimate the entrainment coefficient by
means of Eq. (2.12).

In the first case, we would have to rely only on approximated estimates of the averaged
fluxes of mass G ≡ 2

∫
∞

0
ρ wrdr, and momentum M ≡ 2

∫
∞

0
ρ w2rdr (i.e. without taking

into account the ‘turbulent’ contribution w′ρ′), and on the volume flux Q ≡ 2
∫
∞

0
wrdr,

through which we can compute the respective top-hat width, velocity and density, defined
as

rm ≡

(
QG

M

)1/2

. wm ≡
M

G
, ρm ≡

G

Q
. (5.1)

Instead of referring to a mass balance, we would therefore assume volume conservation,
and therefore a balance equation for the volume flux

dQ

dz
= 2 lim

r→∞

(−ru). (5.2)

In that case, the entrainment coefficient is defined as

α ≡
− limr→∞(−ru)

rmwm
, (5.3)

which, using (5.3) and (5.2), leads to

α =
rm
2

d(lnQ)

dz
. (5.4)

This estimate can be further approximated, discarding all information on the fluid density
in the estimates of the jet radius, as customary when dealing with iso-density jets or
Boussinesq plumes. In this case, we infer that

αap =
rap
2

d(lnQ)

dz
, (5.5)

where rap = Q/(Map)
1/2 and Map ≡ 2

∫
∞

0
w2rdr.

A comparison of the three different estimates of the entrainment coefficient is presented
in figure 9, which shows that these are basically equivalent, i.e. with differences that are
lower than the experimental uncertainties. This is a direct consequence of the close match
between Favre and Reynolds averages of the flow statistics observed in figure 7. Other
than for the adoption of simplified models, this result has also relevant implications
concerning the experimental approaches required to investigate these flows.

Note that the reduced entrainment rate in a light jet (compared to its far-field value)
observed close to the source is consistent with recent experimental observation by Vig-
giano et al. (2018). In their analysis, Viggiano et al. (2018) ascribe this lowered entrain-
ment rate to the effect of the reduced density within the jet, as predicted by the scaling
proposed by Ricou & Spalding (1961). Indeed, according to Ricou & Spalding (1961), the
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entrainment rate is expected to be smaller as the density of the jet decreases, scaling as

α = αj (ρm/ρ0)
1/2

(Rooney 1997), where αj ≃ 0.07 stands for the far-field entrainment
rate of an iso-density jet. However, a similar trend of increasing entrainment rate in the
near-field was reported in early experiments by Hill (1972) for an iso-density jet, as well
as by recent experimental (Ezzamel et al. 2015) and DNS (van Reeuwijk et al. 2016)
results of iso-density jets and Boussinesq plumes (whose dynamics, by definition, is not
influenced by a varying density ratio). In these latter cases, the reduced entrainment close
to the source and its subsequent rise were proven to be mainly the result of the trend of
the turbulent kinetic energy (t.k.e.) production in the near-field region, therefore fully
independent of the influence of density effects. It is therefore questionable to ascribe the
behaviour observed in figure 9 to the reduced value of density ratio in the near-field. To
verify this, and clarify the role of the density ratio on the flow dynamics, we turn to the
entrainment decomposition.

5.2. Entrainment decomposition

As shown by several recent works (Ezzamel et al. 2015; Craske & van Reeuwijk 2015; van
Reeuwijk et al. 2016; Milton-McGurk et al. 2021, 2022), the entrainment decomposition
(Eq.2.16) is a suitable tool to physically interpret the variations of α in jets and (positively
and negatively) buoyant plumes. We apply this here for the first time to the case of a
release characterised by large density differences.

As a first step, we limit our attention to the experimental case and the reference
simulation J1a, and consider subsequently the effect of varying boundary conditions in
the simulations. We begin then by considering the momentum flux balance (see Eq.
(2.5)) and focus on the β coefficients. The evolution along z of βf (related to the velocity
variance) and βp (related to the pressure) is shown in figure 10. Concerning βf , we
observe a good agreement between experimental and numerical results, except in the
intermediate field where, as enlightened in previous section, numerical simulations tend
to overestimate the intensity of the turbulent fluctuations. Values of βf increase from the
source up to a distance z = 15rs where they reach a value of 0.2, i.e. about 20 % of the
contribution of βm (equal to unity). Note that estimates of βp can only rely on numerical
simulations, since the pressure could not be determined experimentally. As observed by
van Reeuwijk et al. (2016) for iso-density jets and Boussinesq plumes, the values of βp are
negative, and their magnitude is very similar to that of βf . Their overall contributions
therefore cancel out, so that, as a first approximation, βg ≃ βm = 1.

When focusing on the mean kinetic energy budget (2.6) two sets of coefficients are
involved: those related to the mean kinetic energy fluxes, included in γg (lhs of (2.6)),
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and those related to its dissipation, contributing to δg (rhs of (2.6)). In the global flux
γg (see figure 10b), the dominant term is that related to the mean velocity, γm, whose
value is fully determined by the shape of the streamwise velocity. Close to the source,
γm slightly exceeds 1.5 and progressively tends to 4/3, the value corresponding to a
Gaussian profile, observed in the far field of jets and plumes (van Reeuwijk et al. 2016).
Good agreement is also observed in the evolution of the turbulent fluxes, i.e. γf , that
qualitatively behave like βf , but attaining a higher far field value γf ≈ 0.4. In this case,
the numerical evaluation of the pressure term γp shows that its contribution is almost the
same as that of the turbulent term γf , but with opposite sign, so that their cumulative
effect is small (less than 10 %) and therefore γg ≃ γm. Concerning the dissipation term
δg (figure 10c), its pattern is simpler: the coefficients δp and δf are negligible over the
whole domain, so that δg = δm. The term δm, whose evolution is well captured by the
numerical simulations, goes from zero at the source to a constant value as z/rs ≥ 10.

Having at our disposal the estimates of all coefficients, we can compute the three terms,
αprod, αRi, αshape, contributing to the entrainment, according to Eq. (2.16). Among the
three, the contribution due to αprod is by far the most important. Indeed, the increase of
the entrainment coefficient in the near-field is primarily due to the progressive increase
in the production term αprod (figure 10d). The contribution of the buoyancy term is
fully negligible and is of order αRi ≃ 10−4, as estimated by the experimental data (the
numerical simulations have been performed imposing null gravity). The shape, which we
will analyse subsequently, plays also a minor role. Note that, since the ‘mean’ coefficients
(i.e. βm, γm and δm) are dominant compared to the turbulent and pressure terms, the
entrainment relation can be rewritten as

αE ≃ −
ρm
ρ0

δm
2γm︸ ︷︷ ︸

αm
prod

+
ρm
ρ0

rm
d

dz

(
ln γ1/2

m

)

︸ ︷︷ ︸
αm

shape

. (5.6)
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Given the excellent agreement between α and αE (see figure 10e) computed relying on
data of the mean streamwise velocity and the Reynolds stress, only, we can then conclude
that Eq. (5.6) represents an accurate approximation of the entrainment coefficient.

In examining the role of different boundary conditions, we therefore limit our analysis
to γm (figure 11a) and δm (figure 11b). As shown in figure 11a, imposing a top-hat profile
(instead of a pipe flow profile) at the source has a relatively little impact on the evolution
of γm. What greatly modifies the picture (for the mean motion) is instead adding a
bottom wall. As already discussed in Sect. 4.1, this modifies the induced ambient flow
away from the core of the jet and therefore the tails of the radial profiles of the streamwise
velocity. Even though this effect is hardly detectable when plotting the profiles on a linear
scale (figure 4a-b-c), this has a great impact on the value of its integral over the jet section.
As a result, the combined effects of a bottom wall and a top-hat inlet profile imply that
the value of γm at the source level is fixed equal to unity. For increasing distances from
the source, we observe then a progressive increase of γm over a fetch of approximately 10
source radii, during which the radial profiles relax to a Gaussian shape. These variations
of γm in case of the presence of a bottom wall are of course reflected on αshape, whose
numerical estimates plotted in figure 11c, are however lower than 10−2 (we do not plot
experimental estimates since these are affected by high uncertainty). The evolution of δm
(figure 11b) shows instead very little sensitivity on the boundary conditions and so does
the term αm

prod (figure 11d). Due to this feature, and a lower-order contribution related
to αshape, the entrainment coefficient appears to be almost insensitive to variations of
the boundary conditions, as observed in figure 9(a).

5.3. Comparison between light and iso-density jets

To clarify the role of variable density on the flow dynamics, it is instructive to compare the
results obtained for an acetone-helium jet to those for an iso-density jet. The comparison
between the two cases is presented in figure 12, where we plot the evolution with z of
the entrainment coefficients, determined both experimentally and numerically (only the
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configuration J1a is here considered). Again, we restrain our attention to γm and δm. In
the numerical results, other than our LES data, we also include the DNS data by van
Reeuwijk et al. (2016) for an iso-density jet. As expected, the increase of the mass flux is
more pronounced for the light jet (figure 12a). The jet radius rm (figure 12b) is instead
less sensitive to the density ratio variations. Note that the evolution of the entrainment
coefficient α (figure 12c), as estimated from the mass balance, i.e. eq. (2.12), for the
low- and iso-density jets are almost identical over most of the domain, with discrepancies
arising only very close to the source (i.e z/rs < 5). These are all tendencies that are very
well reproduced numerically by our LES results, which by the way show a general good
agreement with the DNS data.

Relevant differences between the light and iso-density jets are however evident in the
evolution of the profile coefficients γm and δm. The experimental values of γm in the
near-field (z/rs < 15) are systematically larger for the light jet (figure 12d), a tendency
very well captured by the LES data. Note that the different behaviour of the DNS is due
to the presence of a wall bounding the domain (the configuration adopted in the DNS
by van Reeuwijk et al. (2016) is the same as that referred to here as J3). The effect of
density variations on δm (figure 12e) is even more relevant. A reduced density ratio clearly
induces an increased t.k.e. production. In case of the low-density jet, the δm evolution
exhibits a rapid enhancement in the intermediate field (5 ≤ z/rs ≤ 15) with values that
can be twice larger than those observed for the iso-density jet. This feature is confirmed
by the trend in the numerical data, which reproduce accurately the experimental results,
with the exception of an intermediate region (5 ≤ z/rs ≤ 15) within which results for
both the low- and the iso-density jets show a tendency in overestimating the experimental
data. As discussed in Sect. 4, these discrepancies have to be ascribed to the way in which
turbulence fluctuations are triggered in the simulations and do not depend on the effect
of sub-grid scale modelling. A proof of this is provided by the trend of δm computed from
the DNS data by van Reeuwijk et al. (2016) (figure 12e), which exhibits an even sharper
increase in the very near-field, that makes the jet attaining more rapidly its ‘self-similar’
asymptotic dynamics.

The increased t.k.e. production observed in the light jet is not however directly reflected
on the entrainment rate (figure 12c). Indeed, the contribution to the entrainment due
to t.k.e. production is mitigated by the enhancement of γm (see Eq. (5.6)) and damped
by the factor ρm/ρ0 (see Eq. 5.6), which is of course lower for the light jet. As a result,
according to our experimental data, the values of αprod (figure 12f) for the light jet
are almost identical to those for the iso-density jet. Slight differences can be observed
when comparing the numerical estimates, due to the sensitivity of δm on the numerical
artifacts used to trigger turbulence at the source, whose effects persist over the whole
domain. Given that the contribution of αshape (not shown here) is of second order, we
can therefore conclude that the trend observed in the entrainment coefficient α, with
reduced values in the near-field and a progressive enhancement for increasing distances
from the source, is not sensitive to density variations (as evidenced in figure 12c). This
trend is indeed very similar to that observed for both low- and iso-density jets, and is
due to the role of t.k.e. production in the near-field, which progressively increases as the
turbulence dynamics develops, moving away from the source.

6. Conclusions

We have studied the turbulent transfer and the entrainment within a variable-density
jet. Our aim was to elucidate the role of a variable density on the mechanics of turbulent
entrainment in the jet and to disentangle its effects from other eventual factors that could



26 P. Salizzoni et al.

0 10 20 30

2

4

6

8

0 10 20 30

2

4

6

0 10 20 30
0

0.05

0.1

0 10 20 30
1

1.4

1.8

0 10 20 30
0

0.2

0.4

0 10 20 30
0

0.05

0.1γm −δm αm
prod

G

Gs

rm
rs

α

z/rs z/rs z/rs

z/rs z/rs z/rs

(a) (b) (c)

(d) (e) (f)
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(2016) for an iso-density jet (green solid line).

alter the jet dynamics in the near field, such as a varying shape of the inlet velocity profile
and the presence of a bottom wall. To that purpose we have made use of a theoretical
analysis supported by innovative laboratory experiments and large-eddy simulations. Our
results show the following main features:

(a) Large-eddy simulations reproduce well the dynamics of a variable-density jet, no-
tably the evolution of the first- and second-order statistics for increasing distances from
the source.

(b) The main differences between experimental and numerical results are detected
in second-order statistics, in the intermediate field (approximately in the range 5 <
z/rs < 15). These are likely to be due to the numerical artifacts used to trigger turbulent
transition in the simulations, in our case the synthetic-eddy method by Jarrin et al.

(2006).
(c) Despite these differences, the simulations are extremely accurate in reproducing

the jet dynamics, as represented by integral variables, as well as the evolution of the
entrainment rate.

(d) The near-field evolution of the entrainment coefficient shows an increasing trend
very similar to that observed both in light (Viggiano et al. 2018) and iso-density (Hill
1972; van Reeuwijk et al. 2016) jets.
(e) The main effects of varying boundary conditions are obtained when adding a bot-

tom wall, which has an influence on the streamwise velocity component away from the
core of the jet. These variations have however no relevant effect on the entrainment rate,
even in the very near field.

(f) Favre and Reynolds averages almost coincide in the whole domain, irrespective of
the variations in the density ratio. This confirms recent findings by Charonko & Pre-
stridge (2017). As a consequence of this, the entrainment coefficient estimated through a
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mass balance equation does not differ from that estimated considering a volume balance
equation.

(g) The turbulent Schmidt number is constant across the jet section, with typical
values (0.7 < Sct < 0.8) that are similar to those observed in iso-density jets.

(h) As in iso-density jets, the entrainment is essentially due to the ratio of t.k.e. pro-
duction (over the mean kinetic energy flux) to the mean kinetic energy flux, and therefore
related to two flow variables, only: the mean streamwise velocity w̃ and the Reynolds

stress ũ′′w′′.
(i) A low-density ratio induces enhancement on t.k.e. production, i.e. δm. The role of

this excess on the entrainment coefficient is however mitigated by the enhancement of
γm and damped by the factor ρm/ρ0. As a result, the overall trend of the entrainment
coefficient α of a light jet does not induce any significant variation to that observed in
an iso-density jet.

Summarising, our experimental and numerical results do not enlighten any effect on
the entrainment rate due to density variations, even though these modify the profile co-
efficients that determine the entrainment. This evidence puts into question the reliability
of the previous models of the entrainment coefficient, such as those derived from the ex-
periments by Ricou & Spalding (1961), which predict a reduction of the entrainment rate
for decreasing density ratios. Further studies are needed to clarify this feature, possibly
extending over more than one order of magnitude the variations of the density differ-
ence, so as to amplify as much as possible their eventual influence on the entrainment
dynamics.
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