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Introduction

1.1 Exposure measurement error in epidemiology

Measuring environmental exposure is an error-prone process.

Exposure measurement error is one important source of uncertainty in
risk estimates but it is rarely accounted for in epidemiology.

Ignoring measurement error may cause [Carroll et al, 2006; Keogh et
al, 2020]:

a bias in risk estimates;
an inadequate estimation of the associated confidence intervals;
a distortion of the shape of the exposure-response relationship
[Hoffmann et al, 2017];
a loss in statistical power.

⇒ It is important to account for exposure uncertainty in risk estimation
[ICRP103, 2007; UNSCEAR, 2012].
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Introduction

1.2 Different types of exposure measurement error

Let us define for an individual i at time t, Xi (t) its true exposure
(unobserved), Zi (t) its observed exposure (error-prone) and Ui (t) the
measurement error.

Classical error vs. Berkson error

Zi (t) = Xi (t)× Ui (t)

Ui (t) ⊥⊥ Xi (t)

Xi (t) = Z (t)× Ui (t)

Ui (t) ⊥⊥ Z (t)
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Bayesian hierarchical models to account for measurement errors

2.1 The Bayesian hierarchical approach for exposure
measurement error correction : general principle

Step 1 : building and combining conditionally independent
probabilistic submodels [Richardson and Gilks, 1993]

Disease submodel: to link the disease outcome - here a time to event
- and the true exposures ⇒ a survival model;
Measurement error submodel: to link the true and the observed
exposures

Measurement submodel : to describe the measurement error process
(Berkson or classical error)
Exposure submodel : to describe the probability distribution of the
true exposure (for classical error only)

Step 2 : fitting in one step the full hierarchical model using a
Bayesian learning algorithm

allows to jointly estimate corrected exposures and risk coefficients
(and their associated uncertainty);
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Bayesian hierarchical models to account for measurement errors

2.2 The disease submodel

The instantaneous hazard rate of a given disease event for an individual i
at time t is modeled as follows :

∀t ∈ [0,+∞[, hi (t;β) = h0(t) · g(β;Xi (t))

β is the unknown risk coefficient associated to a (possibly
cumulative) environmental exposure Xi (t).

h0 is the baseline hazard function : Weibull inspired function

h0 : t 7→ α
µ (

t
µ )

α−1 reparameterisation
=⇒ h0 : t 7→ ξtα−1 (ξ > 0 and α > 1)

g is the hazard ratio function. Two structures are compared:

Excess Hazard Ratio (EHR) structure ⇒ linear exposure-response
relationship : g : (β,X ) 7→ 1 + βX
Cox structure ⇒ log-linear exposure-response relationship :
g : (β,X ) 7→ exp(βX )
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Bayesian hierarchical models to account for measurement errors

2.3 The measurement error submodel

For each individual i and each calendar period p (i.e., successive time
points characterized by the same magnitude of exposure measurement
error) :

Structure 1 : Only correlated
Berkson error terms

X p
i (t) = Zp(t) · Up

i (t)︸ ︷︷ ︸
Berkson error term

Structure 2: A mixture of
classical and correlated Berkson
error terms

Zp(t) = ζp(t) · Up(t)︸ ︷︷ ︸
classical error term

X p
i (t) = ζp(t). Up

i (t)︸ ︷︷ ︸
Berkson error term
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Bayesian hierarchical models to account for measurement errors

2.4 Modelling the error components

Measurement submodel :

For the individual and period specific Berkson error terms, a
multivariate log-normal probability distribution is assumed :

Up
i =

(
Up
i (t0), ...,U

p
i (tip)

)
∼ LN

(
−σ2

p

2 1tip , σ
2
pΣ

p
i (ρ)

)
with

Σp
i (ρ) =


1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ · · · ρ 1

, ρ ∈ [0; 1[, σp > 0

For the period specific classical error terms:

Up(t) ∼i .i .d LN
(
−σ2

∗
2
, σ2

∗

)
Exposure submodel :

ζp(t) ∼i .i .d LN (µζ , σ
2
ζ )
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Bayesian hierarchical models to account for measurement errors

2.5 Prior probability distributions

β ∼ N (0, 106) [left-sided truncated at 0 for the EHR disease model
to guarantee hi > 0]

α′ = α− 1 ∼ G(0.01, 0.01)
ξ ∼ G(1, 1)
µζ ∼ N (0, 100)

σζ ∼ IG(0.001, 0.001)

Remark: When no pair of values (X p
i (t),Z

p(t)) is available, σp and ρ
must be fixed ⇒ Information required!
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Bayesian hierarchical models to account for measurement errors

2.6 Bayesian inference

Adaptive Metropolis-Within-Gibbs algorithms have been developed in
Python 3.8 to approximate the joint posterior distribution of :

θ0 = (β, α, ξ) for the uncorrected Cox and EHR disease models
θ1 = (β, α, ξ,U) for the hierarchical model with only correlated
Berkson error terms (Structure 1)
θ2 = (β, α, ξ, µζ , σζ , ζ,U) for the hierarchical model with a mixture of
classical and correlated Berkson error terms (Structure 2)
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Simulation study

3.1 Impact of disease submodel misspecification

Generate failure times for 2000 individuals according to the
uncorrected Cox or EHR disease model with time-varying covariates
Generate 100 replicated datasets for each scenario :

true α = 5.5; true ξ = 8.8× 10−25;

Bayesian inference without accounting for measurement error

Simulation true β Estimation Mean relative Coverage
Model Model bias on HR* rate (95%)

Cox model 2 Cox model 0.04 0.95
EHR model 5 EHR model 0.03 0.96
Cox model 0.4 EHR model 0.01 0.23
EHR model 0.5 Cox model 0.01 0.47

∗HR =

{
1 + β for an EHR model
exp(β) for a Cox model
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Simulation study

3.2 Impact of measurement error submodel misspecification

Design of the simulation study :

Generate only correlated Berkson error terms (Structure 1) or a
mixture of classical and correlated Berkson error terms (Structure 2)

Consider two calendar periods with different magnitudes of exposure
measurement error

Generate failure times for 2000 individuals from the EHR model

Generate 100 replicated datasets for each scenario :

true β = 5 ; true α = 5.5; true ξ = 8.8× 10−25; true ρ = 0.4

Bayesian inference with or without accounting for exposure
measurement error
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Simulation study

3.3 Impact of measurement error submodel misspecification

Impact of the error structure when ρ is fixed to 0.4

Simulation model Estimation model Mean relative Coverage
bias on β rate (95%)

Berkson error Uncorrected -0.08 0.92
Mixture of errors 0.04 0.96
Berkson error 0.06 0.97

Mixture of errors Uncorrected -0.08 0.89
Berkson error 0.07 0.92
Mixture of errors 0.06 0.96

Impact of a misspecification of ρ

Simulation model Estimation model Mean relative Coverage
Mixture of errors Mixture of errors bias on β rate (95%)
ρ = 0.2 ρ = 0.8 0.13 0.86

ρ = 0.8 ρ = 0.2 0.01 0.95
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Application

4.1 Risk of death by lung cancer and radon exposure in the
French cohort of uranium miners

The French cohort of uranium
miners (N = 5086):

a reference population to estimate
the health effects associated with
low-dose exposure to radon ;
Measuring radon exposure is an
error-prone process

Vital status N (%)

Alive 2580 (50.7)
Death (lung cancer) 268 (5.3)
Lost of follow-up 42 (0.8)

Vital status on the 31rd December 2014

Radon exposure (in WLM) in the French cohort of
uranium minersJulie Fendler (IRSN) JdS 2023 July, 6, 2023 14 / 19



Application

4.2 The hierarchical model

Failure time : (Right-censored) age at death by lung cancer of miner i

Disease submodel : EHR structure for the hazard ratio function

Measurement error submodel : For a miner i working in mine m at
year t

• Z 1
m(t) = ζ1m(t) · U1

m(t) σ∗ = 0.41 1945-55
X 1
im(t) = ζ1m(t) · Tim(t) · U1

i (t) σ1 = 0.84 if Z 1
m(t) is known;

X 1
im(t) = Z 1

im(t) · U1
i (t) σ1 = 0.84 otherwise;

•X 21
im (t) = Z 21

im (t) · U21
i (t) σ21 = 0.47 1956-74

•X 22
im (t) = Z 22

im (t) · U22
i (t) σ22 = 0.42 1975-77

•X 23
im (t) = Z 23

im (t) · U23
i (t) σ23 = 0.33 1978-82

•X 3
im(t) = Z 3

im(t) 1983-2001

Tim(t) is the working time of miner i in mine m during year t

Multivariate log-normal distributions for Up
i (p=1,21,22,23) with σp fixed

according to [Allodji et al., 2012] and ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.99}.
Univariate log-normal distributions for U1

m(t) and ζ1m(t)
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Application

4.3 Bayesian risk estimation and model comparison

Model HR∗ 95%CI Conditional WAIC∗∗ Marginal WAIC
Uncorrected 2.06 [1.60;2.70] 6862 6862

Corrected (ρ = 0.4) 2.40 [1.78;3.26] 6855 6853

∗ HR : Hazard Ratio for 100 Working Level Months (i.e., 1 + β × 100)
∗∗ WAIC: Widely Applicable Information Criterion

Posterior probability distribution of the
uncorrected and corrected HR for 100
WLM with ρ = 0.4
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Conclusion

Conclusion

We propose different Bayesian hierarchical models to account for
complex exposure measurement error in risk estimates when working
with right-censored survival data and time-varying exposure.

Ignoring exposure measurement error when estimating a health hazard
ratio (HR) from survival data may lead to an underestimation of
both the HR and its associated posterior variance.

A misspecification of the disease submodel seems to have the
worst consequences on risk estimation.

If ρ is known, the corrected HR does not seem to be so sensitive
to a misspecification of the measurement error submodel

An overestimation of ρ can have a very bad impact on risk estimation.

The WAIC criteria potentially lack the power to discriminate between
models in a weakly informative context, even in their marginal version.
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Conclusion
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Conclusion

Thank you for your listening !

Julie Fendler (IRSN) JdS 2023 July, 6, 2023 19 / 19


	Introduction
	Bayesian hierarchical models to account for measurement errors
	Simulation study : Impact of model misspecification on risk estimates
	Application : Risk of death by lung cancer due to radon exposure in the French cohort of uranium miners
	Conclusion

