

Liberté Égalité Fraternité

DEVELOPMENT OF NEW LOW-LEVEL METHOD FOR THE ANALYSIS OF IODINE 129 AND THE ISOTOPIC RATIO ¹²⁹I/¹²⁷I DETERMINATION

<u>C.CARRIER¹</u>, A.HABIBI¹, C.AUGERAY¹, D. MARO², L.BENEDETTI³ ¹IRSN, Le Vésinet, France; ²IRSN, Cherbourg-Octeville, France; ³CEREGE, Aix en Provence, France

3RD INTERNATIONAL CONFERENCE ON RADIOANALYTICAL AND NUCLEAR CHEMISTRY

> 7–12 May 2023 Budapest, Hungary

IODINE : ORIGIN AND INTEREST

Volatil halogen

- Exist under many organic and inorganic forms
- -I, 0, +I, +III, +IV and +VII
- IO₃⁻, I⁻, I₂, CH₃I, HOI, HIO₄, HIO₃, I₃⁻, IO₅H²⁻, IO₅³⁻.....

The only natural radioisotope of iodine $T_{1/2} = 16.1 \times 10^6$ years

Natural origin:

- Reactions of cosmic rays with ¹²⁹Xe in the upper atmosphere
- Spontaneous fission of ²³⁸U
- Anthropogenic origin: produced by neutron-induced fission of ²³⁵U and ²³⁹Pu
- Released simultaneously with 131 I ($t_{1/2}$ = 8.02 days) in case of nuclear power plant accident
 - \rightarrow ¹²⁹I excellent tracer

Objectives : 3 steps

ACID DIGESTION : DESIGN OF EXPERIMENTS (DOE)

/!

ACID DIGESTION : DESIGN OF EXPERIMENTS (DOE)

Parameter	Value		
Pump flow rate	ite 15 L/min		
Acid volume	100 mL		
HNO ₃ concentration	8 M		
Na_2CO_3 concentration	50 mL		
Na ₂ CO ₃ volume	6 mM		
Temperature	410 °C		
Duration	30 min		

Flow rate + temperature

Variation of extraction yield with temperature and pump flow rate

Purification ?

Sample purification

SOLID PHASE EXTRACTION (SPE): CL RESIN INITIALLY DESTINATED TO LSC* MEASUREMENT

- Purification duration < 40 min with optimized flow rates
 - ✓ Optimization of the sample quantity
 → pre-concentration > 200
- Elimination of all the polyatomic interferences during ICP-MS measurement

IRSN

	Element	Interferent	Interference type	Origin
¹²⁹ l	Xe	¹²⁹ Xe ⁺	Isobaric	Argon's impurety
	L	¹²⁷ IH ₂ ⁺ , ¹²⁷ ID ⁺ ,	Polyatomic	Sample
	Мо	⁹⁷ MoO ₂ ⁺		
(m/z 129)	Cd	¹¹³ CdO ⁺		
	In	¹¹³ InO ⁺ , ¹¹⁵ In ¹⁴ N ⁺		
	Y	⁸⁹ Y ⁴⁰ Ar ⁺		

3.1 x 10⁷

2.6 x 10⁷

2.1 x 10⁷

1.6 x 10⁷

1.1 x 10⁷

6.0 x 10⁶

0.0

¹²⁷l signal intensity (cps)

After purification

Non spectral interferences

Direct

Na₂S medium after purification → Tween[®]20 added (surfactant)

Measurement medium [1] : 0.06 M Na₂S 4.7% Tween[®]20

Sensitivity gain ~ 2

Medium used for the rest of this study

8% O₂ mass-shift

ELIMINATION OF ¹²⁹Xe⁺ INTERFERENCE WITH ICP-MS/MS

Polyatomic interference of IOH₂⁺ and IOD⁺ and abundance sensitivity

Significant contribution at m/z 145 start at 10 mg/L [1]

Suppression with a $^{127}IOH_2^+/^{127}IO^+$ correction with to a reference material

And the other polyatomic interferents?

¹²⁹|/¹²⁷|

Other polyatomic interferents

All interferents were suppressed

¹²⁹I measurement?

RSN

¹²⁹I Quantification – Isotopic dilution

SAMPLES: GASEOUS ¹²⁹I IN CHARCOAL TRAPPED NEAR REPROCESSING PLANT [1]

Conclusion

- Sample extraction compatible with iodine's physicochemical properties
- Sample purification adapted to ICP-MS measurement
- Excellent purification recovery (> 90%)
- Mass-shift mode used with O₂ to supress interferences
- \checkmark LOD of this work : ~ 11 mBq/L and 2 mBq after chemical treatment
- ✓ Reached isotopic ratio ¹²⁹I/¹²⁷I = 3.8 x 10⁻⁹

What's next?

- Validation of the method by AMS and certificated materials
- Application to others samples (soil, grass, etc...)
- Other gas in the collision-reaction cell to improve the sensitivity

*Fan et al, 2013, Hou et al, 2012

Thank you for your attention

Carrier *et al.*, Mass-shift mode to quantify low level ¹²⁹I in environmental samples by ICP-MS/MS, JAAS

IRSN

Carrier *et al.*, Determination of environmental gaseous ¹²⁹I trapped in charcoal cartridges by ICP-MS/MS, JRNC

CARRIER Coralie IRSN – France coralie.carrier@irsn.fr +33(0)1.30.15.50.13