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A basic-principles SA simulator 

Need for severe accident (SA) simulators 
• Education & training 

• Accelerating the learning curve for SA codes 

• Importing plant data from existing simulators: data-centric 
approach 

 

A prototype simulator for a Western-type PWR 
• Close to best-estimate accuracy 

• Interfacing ASTEC and TEAM_SUITE® 

• Prepare the path for more realistic simulators & other 
designs & other SA codes 
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Desktop simulator 
(Westinghouse) 
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Specifications of the simulator 

Showing SA phenomenology 
• 2 scenarios:  

• LB-LOCA with SI failure  

• SBO with AFW failure 

• Synthetic screen + virtual reality display 

• Deterministic answer (no uncertainty) 

 

Running in real time or faster 
• A challenge for SA codes… an opportunity to use machine-learning! 

• Perspectives for fast running tools after the end of the project: 
uncertainty propagation, emergency response, PSA… 
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Example of virtual reality display 
(Westinghouse) 



All phases of a SA: 

• From initiating event to SA 

• Core degradation 

• Release and transport of FPs 

• Vessel rupture and MCCI 

• Containment pressurisation up to 
the filtered release of FPs 

• Some phenomena are excluded: 
steam explosion, direct containment 
heating... 

 

Ergonomic interface: 

• Simulation control (speed-up factor, 
freeze, load...) 

• Main control room sensors + 
pedagogical information 

• Plot variables & extract data 

Specifications of the simulator 
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Simulator overview Alarm display SA screen 
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ASTEC structure 
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Efficient programming 

Improving performances without impacting accuracy 
 

Algorithmic improvements: 
• Low-level optimisations (memory access, data management...) 

• New solvers to be tested 

 

Parallelisation: 
• Sequential structure of ASTEC optimised for batch calculations (more 

sequences than processors)  Run only one sequence but faster 

• Results obtained with OpenMP will be delivered to users in 2024 
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Simplification of the input deck 

Simplified models 
• ICARE+CESAR stop at vessel 

rupture 

• Limited list of incondensable 
gases in the RCS 

 

Simplified discretization 
• Circuits + containment 

• Acceptable results 

• Higher numerical sensitivity 
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Numerical sensitivity 
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Numerical noise propagation with the best-estimate (blue) and simplified 
(red) input decks for a SBO sequence (higher sensitivity) 

Containment pressure (Pa) versus 
time 

Total activity (Bq) released to the 
environment versus time 
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Data-driven surrogate models 
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Machine-learning (ML) for scientific calculation 
• ML can emulate complex models, like weather models 

• ML learns from data: in our case, precalculated sequences 

• Neural networks calculate fast, especially with GPUs 

 

Requirements 
• Computational resources to train the models 

• Representative data: the amount increases with the 
complexity of functions and number of degrees of freedom 

 Necessary to have trustworthy results 

 Models will be specific to the considered design & 
scenarios 



Global models 

Replacing the SA code completely:  
• Faster but more complex 

 

Global containment model after the vessel rupture  
• Few actions are possible during the MCCI phase 

• Large variety of initial conditions after the vessel rupture 

• Preferred option: time-series prediction with bifurcations at operator 
actions 

• JSI & Energorisk for PWR-1300 and VVER-1000 designs 

 

Melcor surrogate model: explored by KTH (BWR) 
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Hybrid models 

Replacing only a part of the code 

• Data exchange with physical models at each 
ASTEC macro time-step  

 time-stepping methods are required: error 
accumulation must be controlled 

• Interface with the native code to be developed 

• Speed-up factor limited to the share of the 
replaced model to the global CPU time 

Worth-case scenario illustrated by the chart:  
3 modules have the same computational cost 

 

3 options illustrated in the next slides 
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Share of the CPU time required by different models of ASTEC 
during the degradation phase (SBO, simplified input deck) 



Local thermal-hydraulic models 

Objective:  
• replace (part(s) of) the primary and secondary  

circuits by a surrogate model 

 

Advantages  
• Thermal-hydraulics is computationally intensive 

• Relatively few variables to predict (flow conditions + wall temperature) 

 

Challenges 
• Smaller time resolution than the native model (macro time-step vs. 

CESAR micro time-step) 

• Numerous combinations of operator actions on safety systems 
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CESAR discretization  



CESAR solver initialisation 

Accelerate the Newton-Raphson algorithm of the solver 
• A gradient descent is used to solve the non-linear system of equations. 

• The algorithm is initialised with the converged solution of the previous 
timestep. 

• The ML model should predict a first guess of the solution, to reduce the 
number of iterations to reach convergence. 

 

Advantages:  
• Same accuracy as physical models 

• Easy implementation 

 

Challenges:  
• Few examples in literature using ML 

• Impact on the computational time to be evaluated 
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Primary vessel model 

Replacing ICARE + CESAR in the vessel 
 

Advantages 
• Modelling thermal-hydraulics and core degradation 

together to account for their strong coupling 

• Possibly a higher generalisation capacity since no 
safety system is directly connected to the vessel 

 

Challenges 
• Number of variables and number of meshes to 

consider: high dimensionality 

• Complexity of physical models 
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ASTEC Vessel model 



Conclusion 

A simulator to make SA knowledge more accessible 

 

Improving ASTEC’s performances for a real time execution 

 

Explore different ML strategies (possibly in combination) to 
reach higher acceleration factors 

 

Share a high-quality database for future collaborative work  

• The ASSAS training database will be openly accessible for reuse: 

 International nuclear ML benchmark 

 Applications for emergency response 
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