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Abstract

This paper presents analytical solutions for a steady turbulent miscible gravity current flowing

along a horizontal rigid boundary of finite length into a quiescent uniform environment. These

solutions are obtained from the governing equations (mass, momentum and buoyancy) originally

proposed by Ellison & Turner [J. Fluid. Mech., 6, 423 (1959)] for a buoyant layer of fluid in the

Boussinesq approximation. For a constant drag coefficient Cd and the specific entrainment law

E ∝ Ri−1, Ri being the local Richardson number, we first derived a system of coupled ordinary dif-

ferential equations describing the longitudinal evolution of the velocity u, the height h, the density

deficit η and the Richardson number Ri of the current. For an initially supercritical flow (Ri0 < 1),

explicit relations are found for u(x), h(x) and η(x) solely as a function of the Richardson number

Ri(x). The longitudinal evolution of the Richardson number is then theoretically obtained from

a universal function F which can be tabulated and, as in the present paper, also plotted. The

function F allows us to determine (and only from the knowledge of the boundary conditions at

the source) whether the flow remains supercritical over the whole length of the rigid boundary, or

might transit towards a subcritical state (Ri > 1). In this latter case, the mathematical resolution

is modified by including a discontinuity similar to a hydraulic jump. The location and amplitude

of this discontinuity are calculated from an additional universal function G and the injection condi-

tions. The method is finally extended to provide analytical solutions for other classical entrainment

laws.
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I. INTRODUCTION

A gravity current is a canonical flow that occurs when a light (heavy) fluid propagates into

a heavier (lighter) ambient fluid along a rigid boundary. This flow can involve immiscible

or miscible fluids. In the latter case, the current engulfs the surrounding fluid in a process

called entrainment, resulting in a longitudinal evolution of the current mass flow rate.

Gravity currents arise in many environmental flows such as katabatic winds (Manins and

Sawford [1]), oceanic deep currents (Cenedese and Adduce [2]) or turbidity currents (Meiburg

and Kneller [3]), to name but a few. They may also appear in hazardous situations such as

oil spreading on the sea (Hoult [4]) or fire-induced smoke propagation (Alpert [5]).

Because of both their ubiquity and academic interest, gravity currents have been widely

studied. The pioneering works of Von Kármán [6] and later Benjamin [7] were the first

to tackle this flow theoretically. One of the main objectives of these works was to deter-

mine the dynamics of the current head during the propagation phase. Several authors have

subsequently addressed the transient evolution of this flow by proposing models for gravity

currents resulting from a fixed-volume release using experimental (Huppert and Simpson

[8], Rottman and Simpson [9], Lowe, Rottman, and Linden [10]) numerical (Birman, Bat-

tandier, Meiburg, and Linden [11], Bonometti, Ungarish, and Balachandar [12]) and the-

oretical means (Shin, Dalziel, and Linden [13]), as well as from a fixed-flux release with

experiments (Longo, Ungarish, Di Federico, Chiapponi, and Addona [14], Sher and Woods

[15], Martin, Negretti, Ungarish, and Zemach [16]), numerical simulations (Shringarpure,

Lee, Ungarish, and Balachandar [17], Hogg, Nasr-Azadani, Ungarish, and Meiburg [18]) and

theory (Johnson and Hogg [19], Ungarish [20]).

In contrast to the transient phase of gravity currents, that has been addressed in a

substantial number of studies, the steady phase (i.e. after a long time subsequent to the

reaching of the exit of the rigid boundary by the flow) remains little investigated so far. In

their seminal article, Ellison and Turner [21] (hereafter referred to as ET59) have developed a

theoretical model for a fixed-flux steady gravity current based on the conservation equations

for mass, momentum and buoyancy. Through a system of coupled differential equations,

their model allows the evolution of the three variables of the current (velocity, thickness

and density deficit) to be calculated along the longitudinal propagation x−axis. Similarly

to Morton, Taylor, and Turner [22] for turbulent plumes, they introduced an entrainment
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coefficient E to quantify the amount of ambient fluid entrained into the current. After some

algebraic manipulations, the Richardson number Ri naturally appears in their equations. It

is defined as:

Ri =
η g h

u2
, (1)

with η = |ρa−ρ|/ρa the density deficit, ρa the density of the ambient, g the gravitational ac-

celeration and h, ρ and u, the thickness, the density and velocity of the current, respectively.

As explained in ET59, the Richardson number, which characterises the local stability of the

current, allows three different flow regimes to be identified: the supercritical regime when

Ri < 1, the subcritical regime when Ri > 1 and a so-called critical regime when Ri = 1.

A particular feature of this model (as shown in section IIIB), which can also be found

in some hydraulic problems (Wilkinson and Wood [23]), is the presence of a mathematical

singularity which raises an additional problem when Ri = 1.

In their attempt to solve the ET59 equations, Guo, Li, Ingason, Yan, and Zhu [24] have

circumvented this problem by freezing the Richardson number at unity once the critical

condition is reached. This requires an artificial modification of the velocity which unfor-

tunately fails to conserve fluxes. Recently, similarly to what has been done by Dhar, Das,

and Das [25] for the flow of a thin water film, Haddad, Vaux, Varrall, and Vauquelin [26]

proposed a method to face the singularity problem by introducing a discontinuity, similar

to a hydraulic jump, to match the supercritical and subcritical regions. In their paper, they

solved the equations numerically with an iterative procedure to determine the location and

amplitude of the jump for given values of the domain length and the initial release condi-

tions. The authors also compared the results provided by solving the equations of ET59

extended in the non-Boussinesq configuration with the results obtained from LES simula-

tions. They found good agreement between the simulations and theory, particularly for fully

supercritical flows.

Nevertheless, and this is the purpose of the present paper, it is possible to go further

and propose explicit solutions to the ET59 equations via purely analytical means. The

methodology used to obtain these analytical solutions is in the same vein as that presented

in Michaux and Vauquelin [27] for the Morton et al. [22] plume equations.

The paper is set out as follows. The studied configuration and the governing equations are

presented in Section II. Analytical solutions to these equations are proposed in Section III

for a specific entrainment law (E ∝ Ri−1) in the case of a supercritical flow, but also for
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a flow with a regime change (supercritical to subcritical). The method is finally extended

to other classical entrainment laws in Section IV in order to apply the modeling to a wider

range of real-world cases. Conclusions are drawn in Section V.

II. CONFIGURATION AND GOVERNING EQUATIONS

As depicted in figure 1, we consider a fluid of density ρ0 (lower than the density ρa of

the ambient, at rest), injected horizontally from a plane nozzle of height h0 with a velocity

u0 along a boundary of length L coincident with the horizontal x-axis. The flow at the

injection is therefore characterised by its Richardson number Ri0 = η0 g h0/u
2
0, which will be

assumed to be less than unity (the flow is then initially supercritical). We consider that the

current has reached the end of the domain for a long period and therefore a steady state.

For the sake of simplicity, the velocity and density profiles along the vertical z-axis will be

considered uniform (top-hat assumption). Also, shape factors, used by ET59 to take into

account the deviation between the real profiles and the top-hat profiles of the velocity and

the density, are set to unity, even if they could be adjusted to non-unity values without

preventing the algebraic development presented in this article. So, at a given distance x

from the injection, u(x), η(x) and h(x) stand for the top-hat velocity, the top-hat density

deficit and the height of the current, respectively. As in ET59, the conservation equations

for mass, momentum and buoyancy are established over an infinitesimal element of length

dx of the current. In the Boussinesq approximation, these equations read as:

d (u h)

dx
= E u, (2)

d (u2 h)

dx
= −Cd u

2 −
1

2

d

dx

(

η g h2
)

, (3)

d

dx
(η g u h) = 0, (4)

with E the entrainment coefficient and Cd the drag coefficient. The terms on the right-hand

side of equation (3) represent respectively the turbulent basal drag and the pressure force

associated with the change of height and density of the current.

In contrast to the entrainment coefficient for a turbulent plume, which can be considered

as a constant, the entrainment coefficient for a gravity current depends on the stability of

the flow and therefore on the Richardson number. This is why this coefficient has been the

subject of numerous studies. Papers by ET59 and Lofquist [28] were some of the first to
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FIG. 1: Schematic of the studied configuration.

address this issue experimentally with salt water experiments. They highlighted the marked

dependence of the entrainment coefficient on the Richardson number and proposed laws in

which E is a function of Ri only. Other significant contributions include the experimental

works of Parker, Fukushima, and Pantin [29], Dallimore, Imberger, and Ishikawa [30] and

Wells, Cenedese, and Caulfield [31]. In addition, the reader is referred to the extensive review

of Fernando [32] and Chowdhury and Testik [33] and also to the article of Christodoulou

[34] in which experimental results from the literature are compiled to provide power laws

for several ranges of Richardson number under the form:

E =
α

Rin
, (5)

where α and n are constants. This modeling can only be used for steady configurations in

which the entrainment process concerns a quasi-horizontal surface. In the unsteady regime,

and as explained and illustrated by Nogueira, Adduce, Alves, and Franca [35] and Sher and

Woods [15], the flow morphology is more complex and requires the use of specific entrainment

models for the head, the body and even the tail.

The drag coefficient has also been investigated in the literature, and it is not uncommon

to choose it as being constant (Hogg and Woods [36], Baines [37]). We have also made this

assumption in the following sections of this paper.

In the next section, when presenting the approach to analytically solving the ET59 equa-

tions, we will use, in addition to a constant drag coefficient, the submodel E = α/Ri proposed

by Christodoulou [34] for the range 0.1 < Ri < 10. The advantage of selecting this submodel

is that it theoretically encompasses a broad range of the super- and sub-critical flows with

a unique entrainment model.
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III. ANALYTICAL SOLUTIONS

By combining conservation equations (2), (3), (4) and the entrainment submodel (5) with

n = 1, we obtain the first-order derivatives of the height, velocity and density deficit as:

d h

dx
=

α

2

4 + Ri (κ− 2)

Ri (1− Ri)
, (6)

d u

dx
= −

α

2

u

h

2 + κ Ri

Ri (1− Ri)
, (7)

d η

dx
= −α

η

h

1

Ri
, (8)

where κ is a constant equal to 1 + 2Cd/α.

Additionally, the first-order derivative of the local Richardson number Ri(x) can be ob-

tained by combining equations (1), (6), (7) and (8). It reads:

d Ri

dx
=

3 α

2

1

h

2 + κ Ri

(1− Ri)
. (9)

We notice that equations (6), (7) and (9) present a mathematical singularity when the

Richardson number reaches unity. For an initially supercritical flow (Ri0 < 1), a quick

look at the right-hand side of equation (9) reveals that Ri has to increase monotonically.

With this in mind, two situations have to be considered. In the first one, the current

remains supercritical from the injection until the exit of the domain, i.e. the Richardson

number never exceeds unity. The set of equations (6), (7), (8) and (9) can be solved without

difficulty. In the second one, the Richardson number reaches unity before the end of the

domain, meaning that the flow has to transition from a supercritical to a subcritical regime,

preventing solutions to be obtained by a straightforward integration. This issue was recently

addressed by Haddad et al. [26] and discussed by Ungarish [38].

In both cases (the flow remains supercritical or becomes subcritical before the end of

the domain), analytical solutions can be obtained. This is the purpose of the following

subsections.

A. Initially supercritical flow remaining supercritical

At first, by combining the equations (7) and (9), we easily show that the velocity u(x)

can be expressed as a function of the Richardson number Ri(x):

−
1

3

d Ri

Ri
=

d u

u
=⇒

u(x)

u0
=

[

Ri0
Ri(x)

]
1
3

, (10)
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where the subscript 0 refers to values at the injection. We now combine the equations (8)

and (9) to write:
1− Ri

Ri (2 + κRi)
d Ri = −

3

2

d η

η
, (11)

which allows the density deficit η(x) to be expressed explicitly as a function of the Richardson

number Ri(x):

η(x)

η0
=

[

Ri0
Ri(x)

]
1
3
[

2 + κRi(x)

2 + κRi0

]
2+κ

3κ

. (12)

Finally, given the buoyancy conservation (4) and equations (10) and (12), we immediately

obtain for the height h(x) of the current:

h(x)

h0
=

[

Ri(x)

Ri0

]
2
3
[

2 + κRi0
2 + κRi(x)

]
2+κ

3κ

. (13)

The three relations (10), (12) and (13) allow the calculation of the longitudinal evolution of

the characteristic variables of the current (velocity, density deficit and height) exclusively

from the knowledge of the longitudinal evolution of the Richardson number. This latter can

be determined by solving the equation (14) below, obtained from equations (9) and (13):

d Ri

d x
=

1

Λ0

(2 + κRi)
2+4κ

3κ

(1− Ri)Ri
2
3

, (14)

where the constant Λ0, which has the dimension of a length, reads:

Λ0 =
2 h0(2 + κRi0)

2+κ

3κ

3αRi
2
3
0

. (15)

By integrating equation (14) from the injection to an abscissa x, it becomes:

∫ Ri(x)

Ri0

(1− ζ) ζ
2
3

(2 + κ ζ)
2+4κ

3κ

d ζ =
1

Λ0

∫ x

0

d ξ. (16)

We then introduce a universal function F (X) defined by:

F (X) =

∫ X

0

(1− ζ) ζ
2
3

(2 + κ ζ)
2+4κ

3κ

d ζ, (17)

which allows the relation (16) to be rewritten as:

F [Ri(x)] =
x

Λ0
+ F (Ri0). (18)

In practice, once the values of α and Cd are set, the different steps of the calculation are as

follows:
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• From the injection conditions u0, η0 and h0, Ri0 and Λ0 are first calculated.

• The value of F (Ri0) is then determined with using equation (17).

• For a given abscissa x, the quantity x/Λ0 is added to this value, in order to obtain

F [Ri(x)], according to equation (18).

• Ri(x) is then obtained from F [Ri(x)] via the inverse of the universal function F .

• Finally, equations (10), (12), (13) allow the characteristic variables of the current,

u(x), η(x) and h(x), to be calculated.

Although the function F can be calculated numerically without difficulty, we propose in

figure 2 a graphical illustration of the method for several values of the constant κ.

FIG. 2: Illustration of the graphical determination of the longitudinal evolution of the

Richardson number via the universal function F for several values of κ. The dashed lines

are provided to illustrate the graphical procedure for κ = 1.

Note that, from relation (18), it is possible to determine the critical length Lc at which

the flow theoretically reaches the critical condition (i.e. Ri = 1). We therefore obtain:

Lc = Λ0 [F (1)− F (Ri0)]. (19)
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This relation is particularly interesting since it allows, from the knowledge of the injection

conditions and the length of the domain, to know immediately whether or not the gravity

current is likely to transition from a supercritical to a subcritical regime. This issue was

discussed by Kostic and Parker [39] in the particular case of a turbidity current developing

along a boundary of finite length.

B. Initially supercritical flow becoming subcritical

We now consider the case where the length L of the domain is greater than the critical

length Lc, i.e. the case when the flow transitions from a supercritical to a subcritical regime.

To take into account this transition in the equations of ET59, Haddad et al. [26] intro-

duced a mathematical discontinuity similar to a hydraulic jump at a location L1, which

leads the Richardson number and the height of the current to suddenly increase to match

the subcritical regime.

Assuming that the density deficit in the current does not change on either side of the

discontinuity, the governing equations (mass and momentum) of the jump are:

u1 h1 = u2 h2, (20)

u2
1 h1 +

η1 g h
2
1

2
= u2

2 h2 +
η2 g h

2
2

2
, (21)

in which the subscripts 1 and 2 are used for the quantities just upstream and just downstream

of the jump, respectively. By combining these two equations, we obtain the jump relation,

also known as Bélanger equation (or Rankine-Hugoniot condition):

h2

h1

=

(

Ri2
Ri1

)
1
3

= σ(Ri1), (22)

with:

σ(X) =

√

1 + 8
X
− 1

2
. (23)

The theoretical problem of ET59 can be addressed by considering the connection between

a supercritical flow (from Ri0 to Ri1 over a length L1) and a subcritical flow (over a length

L − L1, from Ri2 to the Richardson number at the exit of the domain, denoted RiL), as

illustrated in figure 3.
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FIG. 3: Representation of a gravity current including an idealized transition between the

supercritical and the subcritical flows.

Thus, based on the mathematical developments presented above, the location of the jump

L1, as well as the corresponding Richardson number Ri1 just upstream, can be found by

solving the following system of equations:

F (Ri1) =
L1

Λ0

+ F (Ri0), (24)

F (RiL) =
L− L1

Λ2

+ F (Ri2), (25)

where Λ2 is given by:

Λ2 =
2 h2 (2 + κRi2)

2+κ

3κ

3 α Ri
2
3
2

. (26)

At this stage, the system composed of equations (24) and (25) contains 5 unknowns,

namely Ri1, L1, Ri2, RiL and h2. First, concerning the Richardson number RiL at the exit,

as explained by Henderson [40], it should be close to unity for a subcritical current in an

open channel. We will therefore consider hereafter that RiL = 1. In addition, the use of the

Bélanger equation (22) allows, on the one hand, to express Ri2 as a function of Ri1, and on

the other hand, by using it in the relation (13), to obtain explicitly the value of the current

height h2 after the jump:

h2 = h0

(

Ri1
Ri0

)
2
3
(

2 + κRi0
2 + κRi1

)
2+κ

3κ

σ(Ri1). (27)

After some algebra, we can show that Ri1 is given by the following relation:

G(Ri1) =
L

Λ0
+ F (Ri0), (28)
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with G a universal function defined by:

G(X) =

(

2 + κX σ3(X)

2 + κX

)
2+κ

3κ F (1)− F [X σ3(X)]

σ(X)
+ F (X). (29)

FIG. 4: Illustration of the graphical determination of the Richardson number Ri1 just

upstream of the jump via the universal function G for several values of κ. The dashed lines

are provided to illustrate the graphical procedure for κ = 1.

Practically, for a fixed value of κ, we first calculate Ri0, Λ0 and F (Ri0). Then, we add to

F (Ri0) the quantity L/Λ0 which allows Ri1 to be calculated with the equation (28) and the

inverse of the function G. A graphical illustration of the method is proposed in figure 4.

Once Ri1 is known, Ri2 is calculated with the Bélanger equation (22), L1 by equation (24),

h2 by equation (27) and Λ2 by equation (26). Finally, according to equation (16), the

longitudinal evolution of the Richardson number in the subcritical region can be obtained

graphically (see figure 5), or numerically from the following equation:

F [Ri(x)] =
x− L1

Λ2

+ F (Ri2). (30)

Once Ri(x) is known over the whole domain, the characteristic variables u(x), h(x) and

η(x) of the current are calculated immediately from (10), (12) and (13) in the supercritical
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FIG. 5: Illustration of the graphical determination of the longitudinal evolution of the

Richardson number downstream of the jump (subcritical regime) via the universal function

F for several values of κ. The dashed lines are provided to illustrate the graphical

procedure for κ = 1.

region, and in the subcritical region with the following relations:

u(x)

u2
=

[

Ri2
Ri(x)

]
1
3

,
η(x)

η2
=

[

Ri2
Ri(x)

]
1
3
[

2 + κRi(x)

2 + κRi2

]
2+κ

3κ

and
h(x)

h2
=

[

Ri(x)

Ri2

]
2
3
[

2 + κRi2
2 + κRi(x)

]
2+κ

3κ

. (31)

IV. ANALYTICAL SOLUTIONS FOR OTHER ENTRAINMENT LAWS

The methodology for obtaining analytical solutions presented in the previous section

considered the specific entrainment model E = α/Ri. In this section we propose to extend

the approach for other entrainment laws from the literature. These laws are often associated

with particular flow regimes, as it will be specified.
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A. No entrainment

A null entrainment coefficient can be associated with a strongly buoyant gravity current

for which buoyancy forces inhibit the mixing such as long-distance submarine currents with

strong stratification. The no-entrainment configuration can also correspond to hydraulic or

immiscible flows.

In this case, the density deficit turns to be a constant of the problem and the two primary

variables u(x) and h(x) are immediately expressed as a function of the local Richardson

number as:

u(x)

u0
=

[

Ri0
Ri(x)

]
1
3

and
h(x)

h0
=

[

Ri(x)

Ri0

]
1
3

. (32)

Substituting h(x) into equation (9) by its expression as a function of the Richardson number,

the integration is straightforward and we obtain the longitudinal evolution of the Richardson

number from the following implicit equation:

[4− Ri(x)] Ri(x)1/3 =
4

3Λ0
x+ [4− Ri0] Ri

1/3
0 , (33)

with

Λ0 =
h0

3CdRi
1/3
0

. (34)

B. Constant entrainment coefficient

A constant entrainment coefficient (as in plumes and jets) can be associated with a

strongly inertial gravity current for which the stable density gradient of the flow weakly

affects the mixing, as in the case of a ceiling jet from an impinging plume. However, this

model is no longer appropriate when the Richardson number increases and the effects of

buoyancy appear (when Ri reaches 0.01 according to Christodoulou [34]).

From a mathematical point of view, returning to the equations (2), (3) and (4) with

E = α, a pure constant, the first derivatives of the primary variables and the local Richardson
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number read:

d h

dx
=

α

2

3 + κ− Ri

(1− Ri)
, (35)

d u

dx
= −

α

2

u

h

1 + κ+ Ri

(1− Ri)
, (36)

d η

dx
= −α

η

h
(37)

d Ri

dx
=

3 α

2

1

h

Ri (1 + κ+ Ri)

(1− Ri)
, (38)

with κ = 1 + 2Cd/α.

In the same way as in Section III, we first express the primary variables as a function of

the Richardson number:

u(x)

u0
=

[

Ri0
Ri(x)

]
1
3

,

η(x)

η0
=

[

Ri(x) + 1 + κ

Ri0 + 1 + κ

]

2(2+κ)
3(1+κ)

[

Ri0
Ri(x)

]
2

3(1+κ)

,

h(x)

h0
=

[

Ri0 + 1 + κ

Ri(x) + 1 + κ

]

2(2+κ)
3(1+κ)

[

Ri(x)

Ri0

]
3+κ

3(1+κ)

, (39)

and by substituting h(x) in equation (38), we introduce the universal function F :

F (X) =

∫ X

0

(1− ζ)ζ
−2κ

3(1+κ)

(ζ + 1 + κ)
7+5κ
3(1+κ)

d ζ, (40)

which allows the longitudinal evolution of the Richardson number to be determined from

the following relation:

F [Ri(x)] =
x

Λ0

+ F (Ri0), (41)

where Λ0 is a constant equal to:

Λ0 =
2 h0 (Ri0 + 1 + κ)

2(2+κ)
3(1+κ)

3 α Ri
(3+κ)
3(1+κ)

0

. (42)

C. Entrainment law in the Parker-style

In their paper on turbidity currents, Parker et al. [29] proposed to express the entrainment

coefficient as :

E =
α

β + Ri
, (43)
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with α and β two constants. This model is justified by the fact that it allows the entrainment

coefficient to tend towards a universal asymptotic value for low Richardson numbers.

Mathematically, with this entrainment law, after a few algebra, the conservation equations

allow the primary variables u(x), η(x) and h(x) to be written as a function of the local

Richardson number Ri(x) as:

u(x)

u0
=

[

Ri0
Ri(x)

]
1
3

,

η(x)

η0
=

[

σ + κRi(x)

σ + κRi0

]

2(κ+σ)
3 κ σ

[

Ri0
Ri(x)

]
2
3σ

,

h(x)

h0
=

[

σ + κRi0
σ + κRi(x)

]

2(σ+κ)
3 κ σ

[

Ri0
Ri(x)

]
2+σ

3σ

, (44)

with κ = 1 + 2Cd/α and σ = 2 (1− β + βκ).

We then introduce the universal function F:

F (X) =

∫ X

0

(1− ζ)ζ
2−2 σ

3 σ (β + ζ)

(σ + κ ζ)
κ(2+3 σ)+2 σ

3 σ κ

d ζ, (45)

which allows us to calculate the evolution of the Richardson number with the relation:

F [Ri(x)] =
x

Λ0
+ F (Ri0), (46)

where Λ0 is a constant defined as:

Λ0 =
2 h0 (σ + κRi0)

2(κ+σ)
3 σ κ

3 α Ri
2+σ

3 σ

0

. (47)

For the sake of brevity, we do not discuss here the implementation of the results introduced

in the section IV when a jump appears. However, it is entirely possible to combine these

results with the methodology presented in section IIIB to adapt the entrainment law before

or after the jump. A new function G is then obtained in order to determine the magnitude

and the location of the jump.

V. CONCLUSIONS AND DISCUSSIONS

This paper reports an analytical method to solve the equations of Ellison and Turner [21]

describing the longitudinal evolution of a steady Boussinesq miscible gravity current. The
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buoyant fluid that forms the current is continuously injected from a plane nozzle along a

horizontal rigid boundary of finite length.

First, expressions of the primary variables of the current (velocity u, height h and density

deficit η) as explicit functions of the Richardson number Ri(x) are established. Then, the

longitudinal evolution of the Richardson number is obtained from a universal function F

(that depends only on the entrainment and drag coefficients). This universal function is given

by an indefinite integral which can be easily calculated or, alternatively, tabulated. Here,

we have illustrated the method by means of a graphical representation which, for prescribed

injection conditions, allows the Richardson number value to be determined readily at any

abscissa x along the horizontal boundary.

The ET59 equations presenting a mathematical singularity when Ri = 1, the developed

method applies therefore easily as long as the flow remains supercritical (Ri < 1) on the

whole domain. Note that from the knowledge of the injection conditions and the length

of the domain, it is possible to determine theoretically thanks to the universal function F

whether the flow remains supercritical or should transition to a subcritical state (Ri > 1).

If there is a transition (i.e. if the Richardson number reaches unity before the exit of

the domain), the two regimes (supercritical and subcritical) can be matched by introducing

in the ET59 equations a mathematical discontinuity similar to a hydraulic jump. For the

sake of simplicity, we have modelled this jump using the Bélanger relation, as that was

previously done by Haddad et al. [26]. In practice, the location of the jump is obtained from

the injection conditions and a second universal function G. The evolution of the primary

variables is then obtained for each zone (upstream and downstream of the jump) from the

first function F .

The approach presented in this article has led to analytical solutions to the ET59 equa-

tions for different entrainment laws: E = 0, E ∝ Ri0, E ∝ Ri−1 and E ∝ (β +Ri)−1. It can

also be applied to other laws proposed in the literature, such as those of ET59, Hebbert,

Patterson, Loh, and Imberger [41], Dallimore et al. [30], Wells et al. [31], Johnson and Hogg

[19] and van Reeuwijk et al. [42] for example.

Finally, in this article, we have studied theoretically a gravity current in a steady state,

which is obviously the consequence of a transient development. In some configurations, we

have had to introduce a mathematical discontinuity in the theoretical model (similar to a

hydraulic jump). This raises the question of the existence (or not) and development of this

16



discontinuity in the transient phase. Ungarish [38] has recently addressed this issue using

the shallow water equations. He has provided interesting results, but no definitive answers,

making this a still-open question.

17



[1] P. C. Manins and B. L. Sawford, A model of katabatic winds, J. Atmos. Sci. 36, 619 (1979).

[2] C. Cenedese and C. Adduce, A new parameterization for entrainment in overflows, J. Phys.

Oceanogr. 40, 1835 (2010).

[3] E. Meiburg and B. Kneller, Turbidity currents and their deposits, Annu. Rev. Fluid Mech.

42, 135 (2010).

[4] D. P. Hoult, Oil spreading on the sea, Annu. Rev. Fluid Mech. 4, 341 (1972).

[5] R. L. Alpert, Turbulent ceiling-jet induced by large-scale fires, Combust. Sci. Technol. 11, 197

(1975).
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