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Abstract. Modelling cable tray fires remains a complex issue, and existing models such as the 

FLASH-CAT model still have limitations due to the lack of information on certain input data. 

This paper discusses improvements in cable tray fire modelling by finding appropriate input data 

using an artificial intelligence (AI) technique. An AI-driven expert system was developed to 

assess missing data from a fire test database of 29 large scale cable tray fire experiments in open 

atmosphere. The expert system quantifies the dependencies between input and output data, helps 

identify influential parameters and refine model inputs. It also guides modelling efforts by 

identifying areas for model improvement. In this way, the applicability of an expert system in 

obtaining reliable input data for simulation tools to simulate a real fire scenario that has already 

been tested is demonstrated. Cable tray fire simulation results show improved accuracy 

compared with the use of default values for uncertain parameters.  

1. Introduction 

Cable tray fire modelling remains a complex issue as highlighted by a recent cable benchmark exercise 

conducted for a realistic cable fire scenario in an electrical system of a nuclear power plant [1]. Given 

the multitude of parameters involved in the definition of such a fire source, no theory has yet been put 

forward on how to model all the aspects of the problem, even for simple, open atmosphere conditions. 

Some approaches in the form of experimental studies [2],[3] and more recently [4],[5] have nevertheless 

been carried out and an empirical model referred to as FLASH-CAT [3] (short for flame spread over 

horizontal cable trays) was developed by the NIST for horizontal cable tray fires in open atmosphere. It 

is a relatively simple model for predicting the growth and spread of a fire within a vertical stack of 

horizontal cable trays. To perform representative simulations, it is necessary to have all the parameters 

involved in the definition of cable trays. Unfortunately, in practice this is not the case, either because 

some parameters have not been measured, or because they are too difficult to measure. In this case, 

default values are used, leading to a deviation from experimental results. To overcome this difficulty, 

artificial intelligence (AI) techniques can be used to better interpret the deviations between experimental 

and numerical results and try to reduce them. 

Artificial intelligence can be divided into two components: connectionist artificial intelligence and 

symbolic artificial intelligence. The first is characterized by machine learning and enables the 

development of models that cannot be formalized. To achieve good performances, these techniques 

require large databases. The second aims to represent knowledge and formalize reasoning.  

In this paper, we propose a method for using symbolic artificial intelligence (1) to help exploit sparse 

experimental data corresponding to cable tray fire tests, (2) to distinguish the deviation attributable to 

imprecision in the data from that due to a poor modelling, (3) to guide modelling work and identify the 

most relevant experimental measurements to be carried out.  

 



 
 
 
 
 
 

2. Experimental data 

The tests considered are large-scale experiments involving the combustion of horizontal cable trays in 

an open environment. The data have been performed within two projects, the OECD PRISME project 

steered by IRSN and the CHRISTIFIRE project performed at NIST and are described in publications 

and technical reports [3], [6]-[8]. The fire consists of a set of cable trays positioned horizontally one 

above the other, on which unpowered electrical cables are laid to form the combustible material. The 

generic experimental procedure consists in igniting the fire in the centre of the lower cable tray and 

following combustion until it is extinguished. Measurements are taken to determine the temporal 

evolution of the fire's heat release rate (HRR). The parameters of the experiments (see Table 1) concern 

the physical properties of the cables (type, cable mass per unit length), the dimensions of the cable trays 

(length, width, vertical spacing between trays), the arrangement of the cables (loose or tight), the number 

of cables on the trays, and finally the characteristics of the surrounding environment (presence of a side 

wall or ceiling). The variable of interest is the temporal evolution of HRR. This signal, similar for all 

tests with a growth phase, a maximum and then a decay phase is characterized by a set of three scalar 

quantities: the maximum heat release rate (HRRmax), the total heat released, corresponding to the integral 

of HRR (Total heat of combustion, THC), and the fire growth index (FGI), corresponding to the ratio 

between the maximum value of HRR and the time to reach it. The parameters are the cable type 

(Thermoset and Thermoplastic), the fuel mass per unit area, the number of cable trays, the cable tray 

width, the cable tray length, the vertical spacing between cable trays, the number of cables per cable 

tray, and the cable mass per cable tray. 

 

Table 1. Tests parameters 

 



 
 
 
 
 
 

3. Methodology and tools 

3.1. Expert systems 

An expert system for cable tray fires is developed to calibrate missing data. It is an artificial intelligence 

tool capable of reasoning from observed data and generic knowledge, using an inference engine [9]. 

This tool makes it possible to understand the behaviour of a process (here a cable tray fire) in a given 

situation. It is done by dynamically crossing the knowledge of the physical phenomena involved, 

contained in the knowledge base, with the knowledge specific to the experimental set-up. The 

propagation of the information takes place by means of an inference engine; the algorithmic part of the 

expert system based on the Bayesian Belief Network methodology [10]. As such, expert systems derive 

the most likely diagnosis or prognosis of a cable tray fire in negligible time. 

A formal representation of the knowledge linking the input data to the output data is produced in the 

form of a causal graph to which the causal link is quantified using conditional probability tables. This 

formalism makes it possible to account for the generic information available on a cable tray fire. The 

quantification of conditional probability tables is based on a large calculation database and is 

independent of experimental conditions and results. The formalization of the reasoning is based on 

probabilistic reasoning, which makes it possible to cross generic information with contingent 

information. Probabilistic reasoning thus forms the algorithmic part of the expert system. 

Generic information corresponds to the conditions specific to each experiment, including uncertainties. 

This information is used as input to the expert system, from which it identifies the most likely values of 

the parameters and their distributions. The originality of our approach lies in proposing a method that 

takes account of the dependencies that exist between the input data induced by the observations of the 

experimental results in a rigorous and systematic way.   

The use of an expert system makes much easier to analyse the extent to which the experimental 

uncertainty can account for or, on the contrary, is insufficient to explain the discrepancies with the 

numerical model. This enables a richer exploitation of the experimental results and contributes to the 

identification of needs in terms of experiments to be carried out or numerical models to be developed. 

3.2. Cable tray fire modelling 

Cable tray fire is modelled with the SYLVIA software [11] which is a two-zone model developed by 

IRSN to predict the behaviour of mechanical/natural ventilation, fire development, hot gas and smoke 

propagation, and airborne contamination transfer in confined and mechanically ventilated enclosures.  

A FLASH-CAT-like model that simulates horizontal cable tray fire [3] was implemented in SYLVIA. 

Hypotheses used by the FLASH-CAT model suggest that the fire should propagate upward through the 

cable trays depending on an empirical timing sequence only based on the tray order in the stack model 

and assumes that, once ignited, the cables burn over a length that is greater than that of the tray below. 

The burning pattern has therefore an expanding V-shape as there is an increasing length of cable that 

initially ignite when fire propagates upwards and due to lateral propagation of fire. As the mass of 

combustible material at the centre of the V is consumed, a horizontal extinction front appears at the 

centre of the trays and the V-shape becomes an open wedge until the full length of cable is burnt. Since 

the computation time using SYLVIA is short enough to perform millions of calculations, our approach 

consists of building a database by performing a Monte-Carlo sampling. This Monte Carlo study is 

carried out by varying the input parameters of the simulation code. This database is made up of all the 

data corresponding both to the parameters and responses. It can then be interpreted as a numerical 

transcription of the generic knowledge carried by the SYLVIA software. Five parameters were 

considered in the present study, corresponding to uncertain input data of the cable tray fire model: the 

cable thermal inertia, the fuel mass fraction, the bench-scale HRR per unit of area, the ignition 

temperature, and the fire spread angle. Their discretisation is reported in Table 2. The parameters 

considered in this analysis are those used in the FLASH-CAT model. It should be noted that ignition 

HRR is not taken into account. The responses of interest are: HRRmax, FGI and THC. According to the 

number of parameters, their discretization and the number of realisations required to evaluate histograms 

of conditional probability tables, 740,000 SYLVIA calculations were performed to build the knowledge 

base (3 days of CPU time distributed over 60 cores). 



 
 
 
 
 
 

Table 2. Parameter discretisation 

Parameter Discretisation 

Thermal inertia of cables [kW2s/m4K2] [0.2 ; 0.3] [0.3 ; 0.4] [0.4 ; 0.5] [0.5 ; 0.6] 

Fuel mass fraction [-] [0.1 ; 0.2] [0.2 ; 0.3] [0.3 ; 0.4] [0.4 ; 0.5] 

Bench-scale HRR per unit area [kW/m2] [100 ; 150] [150 ; 200] [200 ; 250] [250 ; 300] 

Ignition temperature of cables [°C] [200 ; 240] [240 ; 280] [280 ; 320] [320 ; 360] 

Fire spread angle [°] [0 ; 15] [15 ; 30] [30 ; 45]  

 

4. Simulation results 

The expert system is used as a diagnostic tool. Only knowledge relating to the responses (experimental 

results through HRRmax, FGI and THC) is used as input data and the expert system informs us of the 

most likely values of uncertain parameters (cf. Table 2). This operation is repeated for all 29 fire tests. 

The results are shown in Figure 1 for each of the responses of the study, in the form of parity plots for 

calculations performed with default values of the uncertain parameters and calculations refined by AI. 

 

Figure 1: Comparison between simulations and experimental data for the 3 responses 

 

The use of default values for some input parameters led to deviations from experimental data for the 3 

responses of interest (R2 scores less than 0.68). The expert system informs us that of the five uncertain 

input parameters, one or more are influential on the responses of interest. The Pearson’s correlation 

coefficients [12] were used to determine the degree of influence of parameters. Results are shown in 

Figure 2. For the THC response, the only influential parameter is the fuel mass fraction, the other 

parameters playing a role in the kinetics of the fire development. The five parameters have the same 

weight on the HRRmax response, which requires information on all the parameters for a good estimation 

of the instantaneous burning surface area. Indeed, the fuel mass loss rate plays a role on the position of 

the extinction front, the bench-scale HRR per unit surface, on the HRR level, the fire spread angle, on 

the ignition length of cables, and the thermal inertia of cables and the ignition temperature, on the fire 

spread velocity. In the original FLASH-CAT model, the fire spread velocity is a user input while in 

SYLVIA it is calculated. For the FGI response, the most influential parameter is the bench-scale HRR 

per unit surface which, in addition to playing a role in the HRR, also plays a role in the time to reach 

HRRmax, through the radiative heat flux from flames to the cable surface for the fire spread within the 

stack. In the original FLASH-CAT model a “minute rule” is used for the spread of the fire within the 

stack. In SYLVIA, thick targets, whose thickness corresponds to that of the cable sheath, are used for 

the spread of the fire within the stack. Targets exchange with the surrounding gas by convective and 



 
 
 
 
 
 

radiative heat transfers and by conductive heat transfer in their thickness. The ignition of cables is then 

operated on a temperature criterion, corresponding to the temperature of the mesh in contact with the 

inner face of the target. In this way, the ignition of the cables is related to the thermophysical properties 

of the combustible, ambient conditions, and incident heat fluxes. 

 

 

Figure 2: Influence of parameters on responses of interest 

 

Using AI, new values are assigned to uncertain parameters. The R2 score increased from 0.61 to 0.97 

for HRRmax and from 0.67 to 0.99 for THC. For the FGI response, even though the R2 score increased 

from 0.65 to 0.78, the expert system informs us that this response is poorly modelled and that 

improvements need to be made. Indeed, a uniform ignition of cables across the entire width of the cable 

tray is assumed (1D flame propagation) in the model. Depending on the width of the cable tray, the 

ignition of the cable may not be uniform along the entire length of the cable tray. In addition, in SYLVIA 

obstacles along an optical path (such as cable trays) are not considered in the radiative heat transfer from 

flames to the cable surface, resulting in an error in the ignition delay of cable trays.  

To assess their physical relevance, the input data optimized by the expert system is compared with the 

default data. Figure 3 shows the results for 3 inputs, comparing the distribution of optimized values with 

the default value(s). For the fuel mass fraction, the value that best reproduces the experimental results 

may be significantly different from the default value. This indicates that this parameter may be the cause 

of modelling that is too far from experiment. The findings on the other two input quantities also indicate 

that the default values are probably too restrictive to reproduce the experiments. 

 

 
Figure 3: Comparison between the probability density functions of three input parameters (mass 

fraction, the bench-scale HRR per unit of area and ignition temperature) and their default values for 

thermoset (TS) and thermoplastic (TP) cables 
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5. Conclusion 

Modelling cable tray fires remains a complex issue, given the multitude of parameters involved in 

defining such a fire source. To overcome the difficulty of obtaining reliable input data on cable tray 

fires, an AI-driven expert system was developed to analyse experimental uncertainties and guide 

modelling efforts by identifying areas for model improvement. Expert systems are powerful tools for 

improving the representativeness of simulations by identifying the most relevant parameters, as 

highlighted in this paper. The variability of the default values of the uncertain parameters was also 

highlighted, indicating that using the same default values to simulate all the fire tests is too restrictive 

to reproduce the experiments. 

Expert systems based on Bayesian networks are ergonomic and comprehensible tools because they use 

symbolic AI based on formal reasoning that is easy to interpret. This is fundamental for modellers, who 

cannot be satisfied with experimental results alone. They need to understand the progression of 

phenomena that led to the result. In this way, expert systems act as a bridge between experimenters and 

modellers, ensuring a deeper understanding of modelling outcomes and driving further improvements 

in fire safety simulations. 
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