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Abstract — The legacy subgroup method of the APOLLO3® code, denoted the SG-GR-383g method in this 
paper, relies on the fine structure equation solved by the means of the General Resonance model and of the 
mathematical probability tables (MPTs) that are computed on the fly for the resonant mixture. Because of 
the use of these MPTs, a fine energy structure of 383 groups has to be employed.

In our recent work, with the intention of decreasing computational time, a subgroup method adapted to 
coarse-group calculations has been implemented in APOLLO3. It is based on the use of physical probability 
tables (PPTs), taking into account the mixture treatment, and on the Intermediate Resonance model to derive 
the subgroup equations, as well as the application of the Superhomogenization correction to ensure the 
preservation of the reaction rates in a multigroup calculation. This method, denoted SG-IR-69g in this 
paper, uses a 69-coarse-group energy mesh. This paper presents a comparison of the SG-IR-69g method 
with the legacy SG-GR-383g method, taking as reference the continuous-energy Monte Carlo TRIPOLI-4® 
calculations on test cases of 3 × 3 pin cells, with a central cell being either a water hole or a Gd-UO2 pin cell 
surrounded by UO2 pin cells. Similar accuracy on the multiplication factor was obtained for both the SG-GR 
-383g and SG-IR-69g methods, although more error compensations were found in the multigroup reaction rates 
of the latter. Even though the calculation of PPTs is more expensive than that of the mathematical ones, overall 
the SG-IR-69g method is more time efficient thanks to the decrease in the number of energy groups.

Keywords — Subgroup methods, physical probability tables, intermediate resonance model, mathematical 
probability tables, general resonance model.  

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

The numerical solution of the neutron transport equa-
tion can be realized with deterministic codes that require 
discretizing all the variables of the phase space. In parti-
cular, the energy variable is discretized with the so-called 
multigroup approximation, where the energy domain is 
sliced into energy groups inside of which neutrons are 

assumed to be monokinetic. The multigroup cross sections, 
which are employed to solve the multigroup form of the 
neutron transport equation, are typically prepared at 
a preliminary stage through the application of a nuclear 
data processing code that condenses the continuous-energy 
nuclear data evaluation into a multigroup library by using 
a generic weight function. In most cases, this weight 
function is not representative of the specific problem, 
especially in energy groups with the presence of cross- 
section resonances where neutron flux depression around 
resonances can be spatially dependent. Consequently, only 
the application of the self-shielding procedure can provide 
the averaged cross-section values allowing for an accurate 
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solution of the multigroup transport equation. The global 
accuracy of the deterministic code therefore essentially 
relies on the quality of the self-shielding method.

Subgroup methods are a category of self-shielding 
methods relying on the use of probability tables as quad-
rature formula to compute group-averaged quantities, such 
as multigroup reaction rates. Two types of probability tables, 
mathematical probability tables (MPTs)[1] and physical 
probability tables (PPTs), are currently employed in the self- 
shielding methods of deterministic codes. The MPTs are 
generated by preserving the first powers of the neutron 
pointwise infinitely diluted cross sections. Without knowl-
edge of the neutron spectrum, the use of MPTs requires 
a fine energy structure in order to catch the detailed spectral 
variation. The legacy self-shielding methods of the 
APOLLO2[2] and APOLLO3[3] codes employ the MPTs 
and require an energy mesh of 281 or 383 groups.

Contrary to the MPTs, the PPTs are obtained through 
preserving the physical characteristics of the system, such 
as dilution-dependent effective cross sections or reaction 
rates, which are generated by neutron slowing-down cal-
culations in representative simplified neutron transport 
problems, such as infinite homogeneous media or fuel 
cell geometries. With knowledge of the physical charac-
teristics, using the PPTs together with the Intermediate 
Resonance (IR) model requires much fewer energy 
groups than using the MPTs. The PPTs have been suc-
cessfully employed for coarse-group calculations, with 
only a few tens of energy groups, obtaining good preci-
sion in lattice codes such as WIMS,[4] HELIOS,[5] 

DeCART,[6] nTRACER,[7] MPACT,[8] and NECP-X.[9] 

The DRAGON[10] code employs the PPTs without the 
application of the traditional IR model, therefore it still 
requires an energy structure of more than 100 groups.

The legacy subgroup method of the APOLLO3 code, 
the SG-GR-383g method,[11] relies on the fine-structure 
equation[11] solved by means of the General Resonance 
(GR) model[12] and of the mixture MPTs[13] that are com-
puted on the fly for the resonant mixture. This method has 
been successfully applied to typical pressurized water reac-
tor (PWR) calculations with a few tens of pcm (10−5) of 
error on the multiplication factor[11] compared to 
a TRIPOLI-4 continuous-energy Monte Carlo reference 
calculation,[14] but at the price of expensive computational 
time.[15] The development of the Equivalent Dancoff-factor 
Cell method[15] has consequently led to an acceleration of 
the calculations while preserving equivalent precision in 
a typical PWR assembly calculation, but the online genera-
tion of mixture MPTs and the use of a fine energy mesh of 
383 groups still leads to a prohibitively long CPU time for 
industrial applications.

Decreasing the number of energy groups in 
APOLLO3 lattice calculations is one ongoing axis of 
improvement to reduce the computational time, as the 
number of transport equation solutions in flux calculation 
is linearly dependent on the number of groups; hence, the 
interest in the use of PPTs. Recent efforts have led to the 
implementation in APOLLO3 of a module capable of 
calculating on the fly the PPTs for a resonant mixture 
by preserving effective cross sections in an infinite homo-
geneous medium (IHM).[16] Because the GR model is not 
suitable for coarse-group calculations, a subgroup method 
based on the use of the IR model[17] following the meth-
odology presented in Refs. [9,18] has been implemented 
in APOLLO3. This newly implemented method, denoted 
SG-IR-69g in this paper, is utilized on a coarse 69-group 
energy mesh adapted from the energy structure available 
in the WIMS-D library.[19]

The objective of this paper is to analyze the accu-
racy and computational time of the SG-IR-69g method 
by comparing it with the SG-GR-383g method, taking as 
reference the TRIPOLI-4 continuous-energy Monte 
Carlo calculations. In Sec. II, a summary of the SG- 
GR-383g method is first presented. In Sec. III, the 
theory of the SG-IR-69g method is detailed. Section 
IV gives the results obtained with both the SG-GR 
-383g and SG-IR-69g methods for a benchmark com-
posed of 3 × 3 pin cells. Section V provides the conclu-
sions of this study.

II. A BRIEF REMINDER OF THE SG-GR-383G SUBGROUP 
METHOD

The current subgroup method of APOLLO3, denoted in 
this paper as SG-GR-383g, is based on the use of the MPTs. 
For a given mixture of resonant isotopes, a probability table 
is a discrete set of parameters fωg

k ; σ
g
k ; σ

g
ρ;x;k; k ¼ 1; :::;Kg, 

where g is the energy group index and k is the subgroup 
index, with K being the order of the probability table. ωk is 
the weight associated with the subgroup total cross section σg

k 
of the mixture and the subgroup partial cross sections for 
reaction ρ (absorption, scattering, etc.) and resonant isotope 
x, σg

ρ;x;k .
This subgroup method is based on the solution of the 

following fine-structure equation[11]:
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where 

i, j = region indexes

0, 1 = resonant and moderator mixtures, respectively,

Σ, Σs = total and scattering macroscopic cross sections

Pij = probability for a neutron born uniformly and 
isotropically in region j to first collide in 
a region i

N = number density

V = volume

ϕ = fine-structure factor

rϕ = resonant scattering source.

Equation (1) is derived from the collision probability 
formalism of the neutron transport equation with the 
application of the fine-structure assumption.[20]

According to the fine-structure assumption, for 
a lethargy u in an energy group g and for a given region 
i, the neutron flux ΦiðuÞ is approximated as follows:

where χ is called the macroscopic flux, varying smoothly in 
space, and ϕ is the fine-structure factor containing the 
resonant part of the neutron flux. Next, the GR model[12] 

is employed to approximate the resonant scattering sources,

where pg0!g
x is the probability for a neutron to scatter 

from group g0 to g after its collision on the resonant 
isotope x, and

is the group-averaged scattering reaction rate. The sub-
group equation, derived from the multigroup formalism 
of the fine-structure equation [Eq. (1)] and from the GR 
model [Eq. (5)], is solved by the Improved Direct 
Method[21] to retrieve the subgroup flux in every spatial 
region,

The “Superhomogenization” (SPH) correction[11] is then 
applied to the multigroup cross sections by preserving the 
reference reaction rates of the preceding subgroup solu-
tion. The subgroup parameters appearing in Eq. (7) are 
related to the mixture MPTs traditionally used in the 
APOLLO3 self-shielding methods. They are generated 
on the fly by the GALILEE nuclear data processing 
system[22] employing the CALENDF methodology,[23] 

and require the use of a fine energy discretization of 
383 groups to accurately account for the neutron energy 
spectrum. This 383-group energy mesh is a refinement of 
the legacy SHEM-281 energy mesh,[24] with the introduc-
tion of additional groups in the resolved resonance energy 
domain, as proposed in Ref. [25].

III. THEORY OF THE SG-IR-69G SUBGROUP METHOD

III.A. Overview of the Method

This coarse-group subgroup method employs a 69- 
group energy mesh adapted from the energy structure 
available in the WIMS-D library,[19] with the group 
boundaries adjusted to those of the MUSCLET energy 
mesh composed of 23 317 groups.[26] For such a coarse 
energy mesh, the GR model is no more suitable, instead, 
the IR model[17] is applied to approximate the resonant 
and moderator scattering sources of the elastic slowing- 
down equation. For an isotope x in an energy group g, the 
IR scattering operator is written as

where Nx, σp;x and σs;x are the number density, the micro-
scopic potential, and the scattering cross sections, respec-
tively. λg

x is the Goldstein-Cohen parameter, or the IR 
parameter, which is not contained in the multigroup 
libraries destined for APOLLO3 lattice calculations, and 
consequently, has to be evaluated for the SG-IR-69g 
method. Currently, the IR parameters are computed for 
every isotope of interest by the means of Monte Carlo 
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calculations using the TRIPOLI-4 code following the 
procedure described in Ref. [27].

The SG-IR-69g method requires the PPTs for the 
subgroup computation. We decided to deal with the reso-
nance interference of resonant isotopes by employing the 
mixture PPTs. In order to evaluate the mixture PPTs, the 
per-isotope MPTs on the MUSCLET energy mesh are 
read from the APOLLO3 library. Then, for each resonant 
mixture, the on-the-fly calculation of the 23 317-group 
mixture MPTs is carried out by the TREND-PT module 
provided by the GALILEE project.[22] After that, the 
IHM ultra-fine-group (UFG) slowing-down calculation 
is performed for each resonant mixture with a set of 
dilutions. The obtained mixture effective cross sections 
at different dilutions allow for the subsequent generation 
of the mixture PPTs.

The major calculation steps of the SG-IR-69g sub-
group method are listed in the following:

1. The on-the-fly calculation of the 23 317-group 
mixture MPTs.

2. The IHM UFG slowing-down calculation to 
compute the reference effective cross sections of the 
resonant mixture for a set of dilutions.

3. The mixture PPT generation by preserving the 
reference IHM cross sections.

4. The IR-based subgroup equation is solved using 
the mixture PPTs, and the SPH correction is applied in 
order to retrieve multigroup cross sections through reac-
tion rate preservation.

The interested reader can refer to Ref. [12] for the calcu-
lation of mixture MPTs from per-isotope MPTs, which 
will not be discussed here. The remaining steps are 
detailed in the subsequent subsections.

III.B. IHM UFG Slowing-Down Calculation

The APOLLO3 legacy UFG-IHM solver solves the 
fine-structure equation [Eq. (1)] applied to an IHM on the 
finest energy structure available in the APOLLO3 multi-
group libraries, namely, the MUSCLET energy mesh 
composed of 23 317 groups.[26] In an IHM consisting of 
a mixture of resonant isotopes and a pseudo hydrogen 
(H1) isotope that has only potential scattering, Eq. (1) 
divided by the density of resonant isotopes reads

where σb;h ¼ ahσp;h is the background dilution of the 
medium and ah is the proportion of a H1 isotope in the 

mixture. We remark that, in the right side of this equation, 
the contribution of the moderator to the sources is 
a constant equal to σb;h, while the resonant operator is 
approximated with the GR model [Eq. (5)].

Defining the external scattering source from other 
groups to a fine energy group g as

we derive the expression of the fine-structure equation of 
the legacy UFG IHM solver of APOLLO3 as

From Eqs. (5), (6), and (11), the expression of the aver-
aged scattering rate of isotope x is derived as

where we define the following quantities:

The integral appearing in Eq. (13) is computed using the 
mixture MPTs as quadrature formula.

Let us note that the multigroup solution is computed 
from higher to lower energy groups. The downscattering 
sources are therefore known; but the upscattering sources 
from the lower energy groups g0, g0 > g, are unknown 
when group g is being considered. In this case the 
Statistical (ST) model[21] has to be employed to evaluate 
the upscattering sources. It is a special case of the GR 
model where the transfer probabilities are zero if g0�g 
and equal to one otherwise. A similar analysis provides 
the expression of the ST-based scattering rate,

which is employed instead of Eq. (12) when g0 > g. Once 
all the scattering sources have been evaluated, they are 
injected into Eq. (11) to obtain the expression of the 
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neutron fine-structure factor ϕGRðuÞ, which is integrated 
over the range of a fine group to retrieve the multigroup 
solution and replaced in the expression of the multigroup 
reaction rates

for each partial reaction ρ. The mixture MPTs are once 
again employed to compute these multigroup quantities. 
The effective cross sections of the resonant mixture are 
then obtained by condensing the contribution of each fine 
group g to the coarse-group G it belongs to,

In our recent work,[28] it was noticed that the legacy fine- 
structure solver provided satisfying results in the case of 
a single isotope. However, in the case of a uranium 
mixture, the maximum error on the 235U absorption 
cross section can reach 15%. To remedy this accuracy 
issue, an improved UFG IHM solver[29] based on the 
slowing-down equation, without the application of the 
fine-structure approximation, was recently developed. 
This slowing-down solver considers the same IHM com-
posed of the resonant mixture diluted with a H1 isotope, 
denoted h with proportion ah, whose only non-null cross 
section is the potential scattering one, σp;h. This H1 iso-
tope contributes to the scattering sources, leading to the 
following slowing-down equation:

Both the resonant and the moderator scattering sources 
are approximated with the GR model so that the mod-
erator source for a lethargy u in a UFG g is not a constant 
anymore and is more accurately calculated with

The final form of the improved UFG IHM slowing-down 
equation in a fine group g becomes

where Sg
ext is the external scattering source, whose expres-

sion is given by

A comparison of Eqs. (11) and (21) provides the expres-
sion of the background dilution associated with this 
improved formalism, 

The enhanced UFG IHM equation [Eq. (21)] is solved in 
a similar way as the legacy fine-structure equation.

Our numerical results[29] show that with the slowing- 
down UFG IHM solver, in the case of a uranium mixture, 
the maximum error on the 235U absorption cross section 
is reduced from 15% to less than 1%. This proves that the 
assumption of a constant moderator scattering source, due 
to adopting the fine-structure assumption equaling to σb;h 
in Eq. (9), is erroneous in the vicinity of a large reso-
nance. The largest errors have been found located in 
groups containing the 238U largest resonances.

III.C. On-the-Fly Calculation of the Mixture PPTs

The calculation of the mixture PPTs of order K is 
a fitting procedure that requires the on-the-fly tabulation 
of the effective cross sections of the resonant mixture 
fσgðσb;mÞ; σg

resðσb;mÞ; σg
ρ;xðσb;mÞ;m ¼ 1; :::;Mg for at least 

M � 2K � 1 values of background dilutions σb, one of 
them being σb ¼ 1� 1010 barns, considered as infinite. 
Given a set of M background dilutions, the corresponding 
effective cross sections are obtained by using the 
improved UFG IHM slowing-down solver previously 
presented.

In a preliminary implementation of the PPTs inside 
of the APOLLO3 code, the fitting procedure aimed to 
preserve the total cross section of the resonant mixture 
using a rational fraction, whose coefficients have to be 
determined, as described in Ref. [30]. But this led to poor 
results when combined with the IR-based subgroup equa-
tions, which are detailed in the next subsection. A recent 
work by Liu and al.[18] showed that the fitting of the 
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resonant cross section is a better choice in the prospect of 
solving IR-based equations, with the resonant cross sec-
tion being defined as

where σp;x is the potential cross section of isotope x, and 
λg

x is its Goldstein-Cohen parameter. To justify this 
choice, one can consider that the IR solution of an IHM 
composed of a resonant mixture and of a H1 h will be 
derived in the form of

where the expression of the dilution incorporates the use 
of the IR model,

Therefore, the fitting with the resonant cross section can 
be considered as IR fitting since it is consistent with the 
IR IHM solution. If we were to set all IR parameters to 1, 
the IR model would be degraded to the Narrow 
Resonance (NR) model, resulting in

Consequently, from Eqs. (27), (28), and (29) for the NR 
IHM solution, the fitting with the total cross section is not 
consistent even with the NR model. This explains why 
the PPTs computed by the fitting of the total cross section 
do not lead to satisfying results.

As proposed in Sec. 4.2.4 of Ref. [30], the fitting of 
the resonant cross section is operated through the compu-
tation of the unknown coefficients of the following 
rational fraction:

where cg
K� 1 ¼ σg

resð1Þ and dg
K� 1 ¼ 1 in order to preserve 

the resonant cross section for an infinite dilution. Writing 
Eq. (30) for all of the M values of dilutions, a linear 
system of equations is obtained and solved using the QR 
factorization of the LAPACK Fortran library.[31] 

A similar procedure is applied to approximate the partial 
cross sections (including the total, absorption, scattering, 
and fission reactions) as rational fractions, using the same 
denominator as in Eq. (30),

where eg
K� 1 ¼ σg

ρ;xð1Þ in order to preserve the partial 
cross section for an infinite dilution. The parameters of 
the PPT, namely, the subgroup weights and cross sec-
tions, are deduced from the coefficients of the rational 
fractions. First, the subgroup resonant cross sections σg

res;k 
are the roots of the following polynomial:

The Aberth method[32] is employed to find simulta-
neously all the roots, before checking that they are real 
and positive. If this is the case, the subgroup weights are 
obtained with the relation

and the subgroup partial cross sections, including the total 
cross section, are computed with
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If one or more of the roots of Eq. (32) is found to be 
either negative or complex, then the fitting procedure of 
the effective cross sections is restarted with a decreased 
PPT order K0 ¼ K � 1.

At the end of this procedure, homogeneous PPTs are 
obtained. The computation of heterogeneous PPTs, based 
on the preservation of the solutions of the UFG pinwise 
slowing-down equation,[33] has been ruled out because it 
has been estimated to be too time expensive to fit the 
purpose of on-the-fly calculations.

III.D. IR-Based Subgroup Equations

The use of the IR model [Eq. (8)] in the elastic 
slowing-down equation leads to the following equation 
for a subgroup k in an energy group g:

where i and j are region indexes, V is a volume, and Pij is 
the collision probability. Σ1 represents the macroscopic 
total cross section of the moderator; that is to say all the 
isotopes in the mixture except the resonant ones. Nx is the 
number density of isotope x in the resonant mixture, and 
σx;k is its microscopic total cross section associated with 
subgroup k. RIR

j Φg
k; j is the IR scattering source for 

a region j, which is the sum of the contributions coming 
from the moderator source, and in the case of a resonant 
region, also the resonant sources,

Equation (35) forms a linear system of equations that is 
solved for the subgroup flux in every region for a given 
energy group. The latter is used to compute the self- 
shielded cross sections for resonant isotopes for a given 
reaction ρ using the previously computed subgroup para-
meters of the PPT of order K,

where μg
i is the SPH factor computed through an iterative 

equivalence procedure enforcing that the solution of the 
multigroup problem

yields the same reaction rates as the ones from the sub-
group equation [Eq. (35)], which are considered to be the 
reference rates to be preserved. In this work, the μg

i SPH 
factor is calculated in every region i and resonant group g 
according to the procedure described in Ref. [18], which 
was inspired from the work of Ref. [34].

IV. NUMERICAL RESULTS

Two benchmarks defined with motifs of 3 × 3 cells have 
been selected for the numerical comparison of the SG-GR 
-383g and of the SG-IR-69g methods. All the outer cells of 
the motifs are typical UO2 pin cells with an enrichment of 
about 3.7%, while the central cell is either a water hole or 
a Gd-UO2 pin cell. The Gd-UO2 fuel corresponds to an 
enrichment of 4.0 wt% in 235U and 10.0 wt% in Gd2O3. 
The dimensions and compositions of the different materials 
are taken from the Yamamoto et al. benchmark.[35]

The self-shielding procedure is followed by 
a transport calculation, based on the Two and three 
Dimensional Transport solver (TDT) unstructured geo-
metry method of characteristics (MOC) flux solver of 
APOLLO3.[36] The tracking parameters were set to 32 
azimuthal angles, four polar angles, and a transversal 
integration step of 0.01 cm. The anisotropic scattering 
order was fixed to P3. Because of the symmetry of the 
geometry of the 3 × 3 cluster of cells, the calculation was 
carried out on a reduced geometry, shown in Figs. 1 and 
2, with reflective boundary conditions. For the self- 
shielding calculation, the fuel pins were divided into 10 
rings corresponding to percentages of 20, 20, 10, 10, 10, 
10, 5, 5, 5, and 5, respectively, of the total fuel volume. 
For the flux calculation, each ring was divided into eight 
additional sectors.

The results obtained with the 383-group GR-based 
subgroup method (SG-GR-383g) and with the 69-group 
IR-based subgroup method (SG-IR-69g) were compared 
with the reference TRIPOLI-4 value. For a meaningful 
comparison, both the SG-GR-383g and the SG-IR-69g 
calculations, as well as the reference continuous-energy 
calculations of TRIPOLI-4, employed the library based 
on the JEFF-3.1.1[37] nuclear data evaluation. The self- 
shielding range of the SG-GR-383g method was from 
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0.55549 eV to 111.535 keV, while the one for the SG-IR 
-69g method was from 2.0711 eV to 9.1188 keV. This 
latter range was limited by the IR parameters λg that for 
now have not been computed for lower or higher energy.

Table I displays the differences in the multiplica-
tion factor keff obtained with the SG-GR-383g and 
SG-IR-69g calculations and the reference TRIPOLI-4 
value. This error is on the order of tens of pcm for the 
SG-GR-383g method and of a hundred pcm for the 
SG-IR-69g method in the case of the central water 
hole. It can be observed that the addition of the Gd-UO2 
fuel pin in the central cell, in the second configuration of 

the benchmark, leads to a slight increase in the error on 
the keff for the SG-GR-383g method, while it improves 
the precision of the SG-IR-69g method.

Figures 3 and 4 show the error (in percent) on the 
absorption and production rates, respectively, of the UO2 
resonant mixture in every pin cell of the 3 × 3 motif with 
the central guide tube. This error was calculated on the 
reaction rates integrated over the whole energy domain. 
The SG-GR-383g method displays a very satisfying accu-
racy, with less than 0.05% of difference compared to the 
reference Monte Carlo values in all the pin cells for both 
the total absorption rate and the total production rate. The 

Fig. 1. Motif of 3 × 3 cells with a central water hole. 

Fig. 2. Motif of 3 × 3 cells with a central Gd-UO2 cell. 

TABLE I 

Difference of keff in the 3 × 3 Pin Cell Benchmarks 

With Central Water Hole With Central Gd-UO2 Cell

Method keff Δkeff (pcm) keff Δkeff (pcm)

TRIPOLI-4® 1.46014 � 3 pcm – 1.13558 � 3 pcm –
SG-GR-383g 1.46057 43 1.13630 72
SG-IR-69g 1.45891 −123 1.13598 40
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precision of the SG-IR-69g method is of the same order 
of magnitude, except for the absorption rate of the pin 
cell in the bottom-right corner, which displays a larger 
error of 0.2%.

This overestimation of the absorption explains the 
negative discrepancy on the multiplication factor evi-
denced in Table I, as more neutrons are absorbed. The 
238U isotope is the main contributor to the absorption of 
the UO2 mixture. The error (in percent) in its absorption 
rate in each pin cell is shown in Fig. 5. When employing 
the SG-IR-69g method, the error in the bottom-right corner 
cell reaches almost 1%, which is three times more than the 

other cells, and what is obtained with the SG-GR-383g 
method. Figure 6 shows the discrepancy of the production 
rate of the 235U isotope, which mainly contributes to the 
total production rate. A similar accuracy was reached with 
both the SG-GR-383g and the SG-IR-69g methods, but 
with opposite signs.

Figure 7 details the errors, displayed here in pcm in 
order to show the error contribution of each group to the 
global multiplication factor error, of both the total absorp-
tion rate and the total production rate in the bottom-right 
cell, where the larger errors have been observed. To simplify 
the comparison between the SG-GR-383g and the SG-IR 
-69g methods, the multigroup rates on the 383-group energy 
structure have been condensed into the 69-group energy 
mesh. One can notice that the SG-IR-69g displays the 
largest errors in the lower part of the resonant energy 
domain, which are partially compensated because of the 
opposite signs in different energy groups. Such fluctuations 
show that there are still some calibrations to be done on the 
SG-IR-69g method; for example, in the calculation of the IR 
parameters per isotope λg

x . The SG-GR-383g method also 
presents errors on the order of a few tens of pcm in some 
resonant energy groups, although the condensation proce-
dure to obtain the results for the 69-group energy structure 
tends to flatten this type of fluctuation by the same com-
pensation phenomenon.

Figures 8 and 9 show the error for the total absorp-
tion rate and for the total production rate in every cell of 
the motif of 3 × 3 pin cells, with the central cell being 
a Gd-UO2 pin cell. As for the benchmark with the central 
guide tube, the rates presented in these figures have been 
integrated over the whole energy domain to display the 
spatial discrepancy. It can be seen that the errors for the 
SG-GR-383g method remain of the same order of mag-
nitude as in the case of the central water hole benchmark, 
if not slightly accentuated. In the SG-IR-69g method, the 
errors in the outer cells are of the same order of magni-
tude as previously; however, the errors for the absorption 

Fig. 3. Error (in percent) for the absorption rate of the 
resonant mixture in the central water hole benchmark. 

Fig. 4. Error (in percent) for the production rate of the 
resonant mixture in the central water hole benchmark. 

Fig. 5. Error (in percent) for the absorption rate of the 
238U isotope in the central water hole benchmark. 

Fig. 6. Error (in percent) for the production rate of the 
235U isotope in the central water hole benchmark. 
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and production rates of the central Gd-UO2 mixture are 
much higher, with a more than 0.6% difference compared 
to the reference TRIPOLI-4 value. The good accuracy on 
the multiplication factor observed in Table I is due to the 

difference in the sign of the errors in the outer and inner 
cells, leading to compensation effects.

Figures 10 and 11 detail the errors in each cell for the 
238U absorption rate and for the 235U production rates, 
respectively. One can notice that the absorption rate of 
238U in the central cell is actually overestimated; the 
underestimation of the total absorption rate in this speci-
fic pin cell is therefore due to the other isotopes of the 
resonant mixture, namely, the gadolinium isotopes. These 
isotopes display resonances in their absorption cross sec-
tions below the energy range that is currently being self- 
shielded with the SG-IR-69g method because we are 
missing the IR parameters to run such calculations 
below 2 eV for now. Once the IR parameters are com-
puted, we estimate that performing the self-shielding 
calculations below 2 eV will improve the accuracy in 
this domain. The production rate of 235U in the central 

Fig. 7. Error (in pcm) for the reaction rates of the resonant mixture in the bottom-right cell of the central water hole benchmark. 

Fig. 8. Error (in percent) for the absorption rate of the 
resonant mixture in the central Gd-UO2 cell benchmark. 

Fig. 9. Error (in percent) for the production rate of the 
resonant mixture in the central Gd-UO2 cell benchmark. 

Fig. 10. Error (in percent) for the absorption rate of the 
238U isotope in the central Gd-UO2 cell benchmark. 
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pin cell is also significantly overestimated for both self- 
shielding methods, with a more than 0.3% error for the 
SG-GR-383g method and a 0.4% error for the SG-IR-69g 
method.

Figure 12 details the errors, in pcm, of the multigroup 
total absorption rates and multigroup total production 
rates in the central Gd-UO2 pin cell on the 69-group 
energy structure. The same large peaks are observed in 
the resonant domain for both methods as in the previous 
benchmark, where the resonant mixture was just com-
posed of UO2 fuel. As the 238U and 235U isotopes respon-
sible for these errors are also present in the Gd-UO2 
mixture, it makes sense that their contribution to the 
total error is still noticeable. Significant errors can be 
noticed above 10 eV, and are due to the gadolinium 
isotopes.

Finally, the calculation time for both benchmarks and 
both methods is displayed in Table II. The table details 
the time spent on the self-shielding calculation, including 
the on-the-fly generation of the mixture probability table 
and the solution of the subgroup equations, and in the 
flux calculation (parallelized with OpenMP technology 
on 32 threads).

For the SG-GR-383g method, the time spent on the 
calculation of the probability tables was strictly related to 
the calculation of the mixture MPTs, whereas in the SG- 
IR-69g method it included the on-the-fly calculation of 
the mixture MPTs, the UFG IHM slowing-down calcula-
tions, and finally, the generation of the mixture PPTs. 
Therefore, it makes sense that the time spent on the 
probability table calculation using the SG-IR-69g was 
almost four times as much as the one for the SG-GR 
-383g in the benchmark with the central water hole.

However, the time spent on the subgroup calculation 
by the SG-IR-69g method was reduced by a factor of 18 
compared with that by the SG-GR-383g method. 
Consequently, when considering the total time in self- 
shielding calculation, that is, the probability table and 
the subgroup calculations, the difference in time between 
the SG-IR-69g and the SG-GR-383g is narrowed down to 
less than 2. And finally, when considering the global 
transport calculation, including both the self-shielding 
and the flux calculations, the use of the SG-IR-69g 
leads to a reduction in computational time of a factor 
almost 3.

Fig. 11. Error (in percent) for the production rate of the 
235U in the central Gd-UO2 cell benchmark. 

Fig. 12. Error (in pcm) for the reaction rates of the resonant mixture in the central cell of the central Gd-UO2 cell benchmark. 
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Let us remark that the geometry of the benchmarks 
presented in this paper is rather small, meaning that most 
of the self-shielding procedure was spent in the mixture 
probability table calculation. On larger geometries, such 
as a 17 × 17 assembly, if the number of resonant mixtures 
remains the same and the computational cost of solving 
the subgroup equations becomes dominant, the SG-IR 
-69g method decreases the self-shielding time by 
a factor of 25, as noticed in our previous work.[28]

When the number of resonant mixture for which 
mixture probability tables have to be calculated increases, 
as is the case in the central Gd-UO2 cell benchmark, the 
difference in computational time between the MPT and 
the PPT calculations decreases. This can be explained by 
the fact that the number of resonant isotopes in the Gd- 
UO2 medium is eight instead of two in the UO2 medium, 
so the time spent in the mixture MPT calculation will be 
much longer, therefore becoming much more dominant in 
the PPT calculations.

In this motif of 3 × 3 cells benchmark, most of the 
global calculation time is spent in the flux calculation and 
not in the self-shielding calculation. In this aspect, the 
SG-IR-69g method performs much better than the SG- 
GR-383g simply because of the decrease in the number of 
energy groups from 383 down to 69.

V. CONCLUSIONS

In this paper, a coarse-group subgroup method, the 
SG-IR-69g method, recently implemented in the 
APOLLO3 lattice code was presented. First, the mixture 
MPTs of the resonant mixture were computed on the fly 
and used in an UFG IHM slowing-down equation solver 
to tabulate the reference 69-group cross sections of the 
mixture for a set of background dilutions. The mixture 
PPTs are then computed by preserving these effective 
cross sections. After that, the solution of the subgroup 

equations was obtained using the formalism of the IR 
model to approximate the scattering sources. Finally, the 
SPH correction was applied to the multigroup cross sec-
tions to ensure the conservation of the reaction rates in 
a multigroup calculation.

This paper assessed the SG-IR-69g method on two 
benchmarks made of 3 × 3 UO2 pin cells, with a central 
cell being either a water hole or a Gd-UO2 pin cell. The 
results were compared with reference TRIPOLI-4 values 
and also with the results of the legacy SG-GR-383g fine- 
group subgroup method of APOLLO3. The evidence 
showed that the SG-IR-69g method reached an accuracy 
similar to the one of the SG-GR-383g method on the 
multiplication factor, but more importantly, error com-
pensations in space and energy were observed with the 
SG-IR-69g method. Although the on-the-fly calculation 
of the mixture PPTs was more expensive than that of the 
mixture MPTs, the SG-IR-69g was overall more efficient 
than the SG-GR-383g, even for small motifs of 3 × 3 pin 
cells, thanks to the decrease in the number of energy 
groups by more than a factor 5.

Future work is focused on increasing the precision of 
the SG-IR-69g self-shielding methods. Different improve-
ments are being considered. The calculation method of the 
IR parameters is currently in preliminary development; it 
should not only be improved to enforce a better preserva-
tion of the reaction rates, but also be extended to a larger 
energy domain. Another prospect is the refinement of the 
UFG energy mesh employed in the UFG IHM solver to 
calculate the effective cross sections of the mixture. The 
generation of higher-order PPTs should be explored to 
decrease the errors in the subgroup calculations. Finally, 
the self-shielding of the transfer cross sections is being 
considered, as the use of infinitely diluted ones is not 
appropriate for coarse-group calculations.

Improvements to the implementation of the SG-IR-69g 
method, such as the parallelization of the UFG IHM 
calculations, of the PPT calculations, and of the 

TABLE II 

CPU Time in Seconds 

With Central Water Hole With Central Gd-UO2 Cell

Self-Shielding

Flux

Self-Shielding

Flux
Probability 

Table Subgroup
Probability 

Table Subgroup

SG-GR-383g 1.5 1.8 57.8 4.8 6.2 51.2
SG-IR-69g 5.7 0.1 15.8 13 0.2 14.8
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subgroup calculations, are also being considered in 
order to reduce the computational time of the SG-IR 
-69g method.

Acknowledgments

APOLLO3® and TRIPOLI-4® are registered trademarks 
of CEA Commissariat à l’Energie Atomique et aux Energies 
Alternatives. We gratefully acknowledge EDF (Electricité de 
France) and Framatome for their long-term partnership and 
their support.

We would like to thank Stéphane Mengelle, Mireille 
Coste-Delclaux, and Cédric Jouanne for their help in gen-
erating the multigroup nuclear data libraries required for 
our calculations, as well as Odile Petit for her guidance in 
the use of the TRIPOLI-4 code to provide reference 
calculations.

Disclosure Statement

No potential conflict of interest was reported by the 
authors.

ORCID

Li Mao http://orcid.org/0000-0002-6540-2620

References

1. P. RIBON and J. M. MAILLARD, “Les Tables de 
Probabilités. Application au Traitement des Sections 
Efficaces pour la Neutronique,” Technical Report CEA- 
N-2485, Commissariat à l’Energie Atomique (1986).

2. R. SANCHEZ et al., “APOLLO2 Years 2010,” Nucl. Eng. 
Technol., 42, 5, 474 (2010); https://doi.org/10.5516/NET. 
2010.42.5.474.

3. P. MOSCA et al., “APOLLO3®: Overview of the New 
Code Capabilities for Reactor Physics Analysis,” presented 
at the Int. Conf. on Mathematics and Computational 
Methods Applied to Nuclear Science and Engineering 
(M&C 2023) (2023).

4. M. HALSALL, “The WIMS Subgroup Method for 
Resonance Absorption,” Trans. Am. Nucl. Soc., 72, 354 
(1995).

5. J. CASAL, “HELIOS: Geometric Capabilities of a New 
Fuel-Assembly Program,” Proc. Int. Topl. Mtg. on 
Advances in Mathematics, Computations and Reactor 
Physics, 2, 10 (1991).

6. H. G. JOO et al., “Methods and Performance of a Three- 
Dimensional Whole-Core Transport Code DeCART,” Proc. 

PHYSOR 2004—The Physics of Fuel Cycles and Advanced 
Nuclear Systems: Global Developments, p. 6 (2004).

7. Y. S. JUNG et al., “Practical Numerical Reactor Employing 
Direct Whole Core Neutron Transport and Subchannel 
Thermal/Hydraulic Solvers,” Ann. Nucl. Energy, 62, 357 
(2013); https://doi.org/10.1016/j.anucene.2013.06.031.

8. Y. LIU et al., “Resonance Self-Shielding Methodology in 
MPACT,” presented at the Int. Conf. on Mathematics and 
Computational Methods Applied to Nuclear Science and 
Engineering (M&C 2013), American Nuclear Society (2013).

9. J. CHEN et al., “A New High-Fidelity Neutronics Code 
NECP-X,” Ann. Nucl. Energy, 116, 417 (2018); https://doi. 
org/10.1016/j.anucene.2018.02.049.

10. A. HÉBERT, “A Review of Legacy and Advanced 
Self-Shielding Models for Lattice Calculations,” Nucl. 
Sci. Eng., 155, 2, 310 (2007); https://doi.org/10.13182/ 
NSE06-50.

11. L. MAO, I. ZMIJAREVIC, and K. ROUTSONIS, 
“Application of the SPH Method to Account for the 
Angular Dependence of Multigroup Resonant Cross 
Sections in Thermal Reactor Calculations,” Ann. Nucl. 
Energy, 124, 98 (2019); https://doi.org/10.1016/j.anucene. 
2018.09.031.

12. M. COSTE-DELCLAUX, “Modélisation du Phénomène 
d’Autoprotection dans le Code de Transport Multigroupe 
APOLLO2,” PhD Thesis (2006); http://www.theses.fr/ 
2006CNAM0516.

13. M. COSTE-DELCLAUX and S. MENGELLE, “New 
Resonant Mixture Self-Shielding Treatment in the Code 
APOLLO2,” presented at PHYSOR 2004—The Physics 
of Fuel Cycles and Advanced Nuclear Systems: Global 
Developments, Chicago, Illinois (2004).

14. E. BRUN et al., “TRIPOLI-4®, CEA, EDF and AREVA 
Reference Monte Carlo Code,” Ann. Nucl. Energy, 82, 151 
(2015); https://doi.org/10.1016/j.anucene.2014.07.053.

15. L. MAO, I. ZMIJAREVIC, and R. SANCHEZ, 
“A Subgroup Method Based on the Equivalent Dancoff- 
Factor Cell Technique in APOLLO3® for Thermal Reactor 
Calculations,” Ann. Nucl. Energy, 139, 107212 (2020);  
https://doi.org/10.1016/j.anucene.2019.107212.

16. E. ROSIER, L. MAO, and L. LEAL, “Dynamic 
Construction of Physical Probability Tables for Resonant 
Mixtures,” Proc. ANS M&C 2021—The Int. Conf. on 
Mathematics and Computational Methods Applied to 
Nuclear Science and Engineering, p. 1992 (2021).

17. R. GOLDSTEIN and E. COHEN, “Theory of Resonance 
Absorption of Neutrons,” Nucl. Sci. Eng., 13, 2, 132 
(1962); https://doi.org/10.13182/NSE62-1.

18. Z. LIU et al., “The Pseudo-Resonant-Nuclide Subgroup 
Method Based Global-Local Self-Shielding Calculation 
Scheme,” J. Nucl. Sci. Technol., 55, 2, 217 (2018); https:// 
doi.org/10.1080/00223131.2017.1394232.

AN ANALYSIS OF A COARSE-GROUP SUBGROUP METHOD · ROSIER et al. 13

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 00 · XXXX 2024                                                                         

https://doi.org/https://doi.org/10.5516/NET.2010.42.5.474
https://doi.org/https://doi.org/10.5516/NET.2010.42.5.474
https://doi.org/https://doi.org/10.1016/j.anucene.2013.06.031
https://doi.org/https://doi.org/10.1016/j.anucene.2018.02.049
https://doi.org/https://doi.org/10.1016/j.anucene.2018.02.049
https://doi.org/https://doi.org/10.13182/NSE06-50
https://doi.org/https://doi.org/10.13182/NSE06-50
https://doi.org/https://doi.org/10.1016/j.anucene.2018.09.031
https://doi.org/https://doi.org/10.1016/j.anucene.2018.09.031
http://www.theses.fr/2006CNAM0516
http://www.theses.fr/2006CNAM0516
https://doi.org/https://doi.org/10.1016/j.anucene.2014.07.053
https://doi.org/https://doi.org/10.1016/j.anucene.2019.107212
https://doi.org/https://doi.org/10.1016/j.anucene.2019.107212
https://doi.org/https://doi.org/10.13182/NSE62-1
https://doi.org/https://doi.org/10.1080/00223131.2017.1394232
https://doi.org/https://doi.org/10.1080/00223131.2017.1394232


19. D. L. ALDAMA, F. LESZCZYNSKI, and A. TRKOV, 
“WIMS-D Library Update, Final Report of a Coordinated 
Research Project,” International Atomic Energy Agency 
(2003).

20. M. LIVOLANT and F. JEANPIERRE, “Autoprotection des 
Résonances dans les Réacteurs Nucléaires. Application aux 
Isotopes Lourds,” CEA-R-4533, Commissariat à l’Energie 
Atomique (1974).

21. L. MAO, R. SANCHEZ, and I. ZMIJAREVIC, 
“Considering the IP-Scattering in Resonance Interference 
Treatment in APOLLO3®,” presented at the ANS 
M&C2015–Joint Int. Conf. on Mathematics and 
Computation, Supercomputing in Nuclear Applications, 
and the Monte Carlo Method (2015).

22. M. COSTE-DELCLAUX, “GALILEE: A Nuclear Data 
Processing System for Transport, Depletion and Shielding 
Codes,” Proc. Second Workshop on Nuclear Data 
Evaluation for Reactor Applications (2008).

23. J. SUBLET, P. RIBON, and M. COSTE-DELCLAUX, 
“CALENDF-2010: User Manual,” Technical Report, 
Commissariat a l’Energie Atomique (2011).

24. N. HFAIEDH, “Nouvelle Méthodologie de Calcul de 
l’Absorption Résonnante,” PhD Thesis, Université Louis 
Pasteur (Sep. 21, 2006).

25. A. HÉBERT and A. SANTAMARINA, “Refinement of the 
Santamarina-Hfaiedh Energy Mesh Between 22.5 eV and 
11.4 keV,” presented at the Int. Conf. on the Physics of 
Reactors, Interlaken, Switzerland, September 14–19, 2008.

26. S. MENGELLE, “Maillage un¡versel à pas constants en 
léthargie : MUSCLET,” Technical Report, Commissariat à 
l’Energie Atomique (2016).

27. A. C. ALDOUS, “Numerical Studies of the Hydrogen 
Equivalent of Some Structural Materials in Their Effect 
on U-238 Resonance Capture,” Technical Report AEEW- 
M 860, Atomic Energy Establishment (1969).

28. E. ROSIER, “Study, Development and Evaluation of the 
Subgroup Methods Based on the Physical Probability 
Tables in APOLLO3® for Thermal Reactor Calculations,” 

PhD Thesis, Université Paris-Saclay (2022); https://theses. 
hal.science/tel-04005789.

29. T. Levy, L. Mao, R. Sanchez, E. Rosier, I. Zmijarevic, S. 
Mengelle, C. Jouanne, O. Petit, “Comparison of Two 
Infinite Homogeneous Medium Ultra Fine Group 
Neutron Slowing-Down Solvers in APOLLO3®,” pre-
sented at the ANS PHYSOR 2024 - International 
Conference on Physics of Reactors, San Francisco, CA, 
USA, April 21 - 24, 2024.

30. A. HÉBERT, Applied Reactor Physics, 3rd ed. Presses 
Polytechnique de Montréal (2020); http://www.presses- 
polytechnique.ca/fr/applied-reactor-physics-third- 
edition.

31. E. ANDERSON et al., LAPACK Users’ Guide, Society for 
Industrial and Applied Mathematics (1999).

32. O. ABERTH, “Iteration Methods for Finding All Zeros of 
a Polynomial Simultaneously,” Math. Comput., 27, 122, 
339 (1973); https://doi.org/10.1090/S0025-5718-1973- 
0329236-7.

33. H. PARK and H. G. JOO, “Practical Resolution of Angle 
Dependency of Multigroup Resonance Cross Sections 
Using Parametrized Spectral Superhomogenization 
Factors,” Nucl. Eng. Technol., 49, 6, 1287 (2017); https:// 
doi.org/10.1016/j.net.2017.07.015.

34. A. HÉBERT, “The Ribon Extended Self-Shielding Model,” 
Nucl. Sci. Eng., 151, 1, 1 (2005); https://doi.org/10.13182/ 
NSE151-1-24.

35. A. YAMAMOTO et al., “Benchmark Problem Suite for 
Reactor Physics Study of LWR Next Generation Fuels,” 
J. Nucl. Sci. Technol., 39, 8, 900 (2002); https://doi.org/10. 
1080/18811248.2002.9715275.

36. S. SANTANDREA and P. MOSCA, “Linear Surface 
Characteristic Scheme for the Neutron Transport 
Equation in Unstructured Geometries,” presented at the 
PHYSOR-2006, ANS Topl. Mtg. on Reactor Physics 
(2006).

37. A. SANTAMARINA et al., “The JEFF-3.1. 1 Nuclear Data 
Library,” JEFF Report, 22, 10.2, 2 (2009).

14 ROSIER et al. · AN ANALYSIS OF A COARSE-GROUP SUBGROUP METHOD

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 00 · XXXX 2024

https://theses.hal.science/tel-04005789
https://theses.hal.science/tel-04005789
http://www.presses-polytechnique.ca/fr/applied-reactor-physics-third-edition
http://www.presses-polytechnique.ca/fr/applied-reactor-physics-third-edition
http://www.presses-polytechnique.ca/fr/applied-reactor-physics-third-edition
https://doi.org/https://doi.org/10.1090/S0025-5718-1973-0329236-7
https://doi.org/https://doi.org/10.1090/S0025-5718-1973-0329236-7
https://doi.org/https://doi.org/10.1016/j.net.2017.07.015
https://doi.org/https://doi.org/10.1016/j.net.2017.07.015
https://doi.org/https://doi.org/10.13182/NSE151-1-24
https://doi.org/https://doi.org/10.13182/NSE151-1-24
https://doi.org/https://doi.org/10.1080/18811248.2002.9715275
https://doi.org/https://doi.org/10.1080/18811248.2002.9715275

	Abstract
	I.  INTRODUCTION
	II.  ABRIEF REMINDER OF THE SG-GR-383g SUBGROUP METHOD
	III.  THEORY OF THE SG-IR-69g SUBGROUP METHOD
	III.A.  Overview of the Method
	III.B.  IHM UFG Slowing-Down Calculation
	III.C.  On-the-Fly Calculation of the Mixture PPTs
	III.D.  IR-Based Subgroup Equations

	IV.  NUMERICAL RESULTS
	V.  CONCLUSIONS
	Acknowledgments
	Disclosure Statement
	References

