

Liberté Égalité Fraternité

ATMOSPHERIC TRANSPORT MODELLING OF RADON-222 AT EUROPEAN SCALE: DESCRIPTION AND VALIDATION AGAINST ICOS OBSERVATIONS.

Arnaud Quérel¹, Tanina Hached¹, Denis Quélo¹, Michel Ramonet², Camille Yver Kwok², and Ute Karstens³ ¹ IRSN, Fontenay-aux-Roses cedex, France (arnaud.querel@irsn.fr) ² LSCE, Gif-sur-Yvette, France (michel.ramonet@lsce.ipsl.fr) ³ Lund University, Lund, Sweden (ute.karstens@nateko.lu.se)

Context

LdX is an atmospheric transport model (ATM) used for assessing the consequences of nuclear accidents

- Validated against the Fukushima accident (<u>https://doi.org/10.1016/j.jenvrad.2021.106712</u>)
- And on the radon progeny wet deposition (<u>https://doi.org/10.5194/adgeo-57-109-2022</u>)

Compared with the observed radon air concentrations, the radon modelling framework can be used to:

- Validate the modelled radon-222 air concentrations
- Help to screen the radon exhalation flux maps

Study partially funded by the RADONORM project, under EURATOM Horizon 2020

https://www.radonorm.eu/

In collaboration with the traceRadon project, co-financed by the Participating States and from the European Union's Horizon 2020

<u>http://traceradon-empir.eu/</u>

ICOS network ICOS

https://www.icos-cp.eu/

Heiskanen et al. (2021), https://doi.org/10.1175/BAMS-D-19-0364.1

9 stations available for 2021

ID	Station name, Country	Heigh agl (m)	Ground altitude asl (m)	Mean obs value in 2021 (Bq/m ³)
MHD	Mace Head, Ireland	24	5	0,3
SAC2	Saclay, France	2	160	1.5
SAC100	Saclay, France	100	160	2.4
OPE	OPE, France	120	390	3.1
TRN	Trainou, France	180	131	2.6
PUY	Puy-de-Dôme, France	10	1465	0.3
PDM	Pic-du-Midi, France	10	2877	2.4
INTE	Barcelona, Spain	5	65	2.3
FKL	Finokalia, Greece	10	250	0.5

Radon exhalation flux maps

Exhalation flux based on Karstens et al. (2015) 60^m https://doi.org/10.5194/acp-15-12845-2015

- Inputs :
- uranium content,
- soil texture,
- Porosity

IRSN

- soil moisture
- Updated until 2022 with new ERA5 and GLDAS Noah soil moistures
- Karstens, U. and Levin, I. (2022). traceRadon monthly radon flux map for Europe 2006-2022 (based on GLDAS-Noah v2.1 soil moisture)

Exhalation rate with GLDAS soil moisture 20 Dec 2020, 00:00

https://hdl.handle.net/11676/ge5vMeklvG_Qz43rzcS2wx0-

Radon exhalation

3 different exhalation maps are compared:

Karstens 2022 ERA5	Karstens 2022 GLDAS	Karstens 2015 GLDAS
Calculated in 2022 with the monthly mean soil moisture estimates ERA-Interim/Land model.	Calculated in 2022 with the monthly mean soil moisture estimates from the GLDAS.	Calculated in 2015 with the monthly mean soil moisture estimates from the GLDAS Noah. 2021 exhalation is extrapolated from the monthly mean during the period.
15 Mar 2021, 12:00	15 Mar 2021, 12:00	15 Mar 2021, 12:00

Visual results : time series

Visual results : time series

- Radon exhalation map : Karstens 2022 GLDAS
- 01 jan 2021-> 31 dec 2021
- Week frequency
- PUY and PDM badly modelled, for all exhalation map.
- ATM not designed to deal with the mountainous stations

IRSN

0,025 9 8 obs Observed Rn-222 (Bq/m³) 0,02 Exhalation rate (Bq/m²/s) **Statistics** 7 -emission 6 0,015 5 kz simu (% heure >1 Radon exhalation map : Karstens 0,01 3 2022 GLDAS wind module 2 0.005 1 wind angle 01 jan 2021-> 31 dec 2021 Ω 01/01/2021 00:00 11/04/2022 00:00 201071202200:00 081091202200:00 201021202200:00 31/05/2022 00:00 28/10/2021.00:00 17/12/2022-00:00 pressure temperature Oddly, no correlation between -0.75-0.25 0.02 0.25 -0.15 -0.07 0.12 0.81 emission obs and exhalation ! -1.00simu simu temperature simu obs sim pressure simu m2/s emission wind module wind angle -٨ kz simu (% heure

IRSN

IRSN

Conclusion

- Keys to evaluate the radon flux maps
 - The ERA5 soil humidity leads to worse results
 - Downside: there are few stations, and few comparable stations
- Wind is the key parameter to the radon air concentration

Outlook

- Extend the study to the AGES stationsRADONORM project (WP2.2)
- Odd results about exhalation/observed concentrations correlation.
- Feed back on exhalation
- More stations, please !

Thank you for your attention !

