
HAL Id: irsn-04715789
https://irsn.hal.science/irsn-04715789v1

Submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Batch Effect Correction in a Confounded Scenario:
a Case Study on Gene Expression of Chornobyl Tree

Frogs
Elen Goujon, Olivier Armant, Clément Car, Jean-Marc Bonzom, Arthur

Tenenhaus, Imène Garali

To cite this version:
Elen Goujon, Olivier Armant, Clément Car, Jean-Marc Bonzom, Arthur Tenenhaus, et al.. Batch
Effect Correction in a Confounded Scenario: a Case Study on Gene Expression of Chornobyl Tree
Frogs. CMSB2024 - 22nd International Conference of Computational Methods in Systems Biology,
University of Pisa (Italy); IMT School for Advanced Studies Lucca (Italy), Sep 2024, Pisa (Italy),
Italy. pp.89-107, �10.1007/978-3-031-71671-3_8�. �irsn-04715789�

https://irsn.hal.science/irsn-04715789v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Batch Effect Correction in a Confounded
Scenario: a Case Study on Gene Expression of

Chornobyl Tree Frogs

Elen Goujon1,3[0000−0002−4237−5754], Olivier Armant2[0000−0001−7101−9209],
Clément Car2[0000−0002−2729−2950], Jean-Marc Bonzom2[0000−0002−6526−5769],

Arthur Tenenhaus3[0000−0003−3459−1518], and Imène Garali1[0000−0001−5779−5199]

1 French Institute for Radiation Protection and Nuclear Safety (IRSN),
PSE-SANTE/SESANE/LRTOX, 92260 Fontenay-aux-Roses, France

2 IRSN, PSE-ENV/SERPEN/LECO, 13115 Saint-Paul-Lez-Durance, France
3 Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS,

CentraleSupélec, 91190 Gif-sur-Yvette, France
imene.garalizineddine@irsn.fr

Abstract. When large omics datasets present unwanted latent variabil-
ity, a critical analysis step is to control these so-called batch effects prop-
erly. However, most batch effects-correction algorithms (BECAs) face
limitations when the source of unwanted variation and the variable of
interest are confounded. In this paper, we use RNA-seq data to study
the effects of radiation contamination on tree frogs (Hyla orientalis) col-
lected in the Chornobyl Exclusion Zone. We identify the site of collection
of the frogs as a confounding factor in the transcriptomics analysis. We
present our strategy to correct this confounding effect using the follow-
ing BECAs: ComBat-seq, linear residualization, and Surrogate Variable
Analysis. We show that the severe confounding between the site and
radiocontamination level makes the correction step challenging. Instead,
we investigate the site-to-site variability and successfully deconvolute the
batch variable from the radiation level by adjusting for the population
genetic structure. Our strategy allowed us to reveal the effects of low-dose
radiation on the gene expression of Chornobyl tree frogs and appropri-
ately preprocess the RNA-seq dataset for future multimodal integrative
analyses.

Keywords: Confounding factors · Batch effect-correction algorithms ·
Transcriptomics · Chornobyl tree frogs · Low-dose radiation

1 Introduction

In the current age of research in biology, high-throughput data such as omics
measurements represent an immense wealth of information, assuming that they
are processed appropriately. The analysis of such datasets often aims at iden-
tifying differential responses between classes of study – for example, groups of
treatment, disease, or levels of exposure to a pollutant. However, unwanted vari-
ation can arise in datasets, stemming from technical or biological origins, and be
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detrimental to the analysis by leading to misguided interpretations [12, 13, 21].
The term "batch effects" describes this underlying variability, and their handling
has become a crucial step in data analysis.

Batch effects can be tackled by one of two strategies. Either include the batch
in the model as a covariate in a one-step approach or correct for the batch in
a pre-processing step using batch-effect correction algorithms (BECAs) before
any downstream analysis [24, 29]. In RNA-Seq data analysis, various differential
expression methods allow the integration of batch effects and covariates in the
model design [9, 25, 30]. While one-step methods can be preferred because of
their simplicity, it is not always possible to integrate covariates, depending on the
model type. Two-step batch adjustment allows more flexibility, and the myriad
of bioinformatics tools dedicated to batch-effect correction should allow one to
choose a context-appropriate BECA [41].

Still, difficulties emerge in scenarios where the batch and the study class or
variable of interest have a simultaneous influence on the data. If batch and class
are confounded, then adjusting the dataset to differentiate the effects of one from
the other becomes more challenging [12, 29, 39, 41]. BECA comparison studies
have produced conflicted results in the case of batch-class design imbalance, with
tools such as ComBat [16], Surrogate Variable Analysis (SVA) [22], batch mean-
centering (BMC) [32], and ratio-based methods performing differently from one
example to another [39, 41].

In this study, we use a published dataset on the effects of chronic exposure
to low-dose radiation on wildlife in the aftermath of the nuclear accident in
Chornobyl [3, 8]. In particular, 87 tree frogs from species Hyla orientalis were
sampled in 8 sites inside and outside of the Chornobyl Exclusion Zone (CEZ) in
2018 [8]. Previous research efforts have shown the presence of recent evolutionary
processes at play in the CEZ [7]. Also, altered transcriptomic and metabolic
pathways were identified, as well as changes in physiological traits for the frogs
living in the most contaminated sites [8].

Different data modalities have been obtained, and we plan to conduct a multi-
omics data integration study using transcriptomics, proteomics, and genomics
data. In particular, for RNA-Seq expression data, we have found that this dataset
is impacted by the site of collection of the frogs in a batch effect-like manner.
Given the distribution of the geographical sites in the Chornobyl area, the batch
is highly correlated with the level of exposure (µGy/h), which is our variable of
interest. Before integrating data in a multi-omics study, we want to identify an
appropriate approach for handling this batch effect.

In this paper, we present three different strategies to correct for the effect
of the site. First, we adjusted the count matrix for the site effect using classical
techniques such as ComBat-seq [40] and linear residualization [11], with and
without integrating exposure levels in the correction step. In a second strategy,
we dissected the site variable to decouple the site effects from the radiation
dose rate. We provide a new approach by integrating another data source: the
genetic distance between individuals, which partly explains the site variability, is
treated as a batch effect and corrected. Lastly, we use an exploratory approach
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to estimate the directions of systematic expression variation not explained by
radiation exposure, thanks to SVA [22].

We structure the remaining parts as follows. In Section 2, we present the data
handled in this study. Section 3 introduces the methods used for batch-effect cor-
rection, batch-effect assessment, and performance evaluation. The results of the
different correction strategies are shown in Section 4, along with statistical and
biological comparisons. We further discuss our results in Section 5 and conclude
in Section 6.

2 Tree Frog Sampling and Dataset Description

The 87 individuals studied here are male Eastern tree frogs (Hyla orientalis) col-
lected in Ukraine in 2018 across a gradient of radioactive contamination. Popula-
tion sampling was done in 8 different wetlands in the Chornobyl Exclusion Zone
(sites A18, B18, C18, D18, E18, and F18) and a neighboring non-contaminated
area near Slavutych (sites G18, and H18) [7, 8]. The individual total dose rate
(ITDR, in µGy/h) absorbed by each tree frog was estimated by assessing inter-
nal and external exposure levels, as previously detailed [5, 7]. The ITDR reflects
the energy deposited into the frog’s body per unit of time. Given that radiation
sources are external (the soil, for example) and internal (by ingestion, respira-
tion, ...), the intensity of this deposit is a function of radiation energy, as well
as of the organisms’ shape, composition, and lifestyle [4, 5, 7]. Missing values for
ITDR of 3 individuals were imputed using the site median.

2.1 Transcriptomic Data

The RNA-Seq expression data is published in [3]. For each frog, total RNA was
extracted from tibia muscle, and RNA-Seq analysis was performed as previously
explained [8]. De novo assembly of transcriptome was performed with Trinity
using 3 additional tree frogs captured in non-contaminated sites [8, 14]. Esti-
mations of transcript abundance were mapped against the transcriptome with
Bowtie2, and their quantification was done with RSEM [19, 23]. R packages
tximport and DESeq2 were used to import the quantification data and assem-
ble the RNA-Seq pseudo count matrix [25, 33]. Filtering was applied to remove
genes with an expression quantified to 0 for all samples. Given the characteristic
mean-variance dependence in RNA-Seq count data, a variance-stabilizing trans-
formation (VST) was applied to the count matrix, producing an approximately
homoskedastic matrix with normalized and log-transformed counts [1].

2.2 Genetic Distance

Interindividual genetic distances were obtained by computing the Euclidean dis-
tance between SNP genotypes with R package vcfR [17]. Genetic distances were
summarized into a 3-level categorical variable by performing hierarchical clus-
tering with complete linkage method.
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3 Methods

Here, we present the models we used for the correction of batch effects. In the
context of our tree frog study, we then describe the exploratory analyses that
led to identifying the sources of unwanted variation, the application of BECAs,
and the qualitative and quantitative assessment of their results. Computations
were performed using R.

3.1 Batch Effect-Correction Algorithms

In the presence of confounding factors, BECAs can be needed to remove the
unwanted sources of variation before performing further analyses. Here, we de-
scribe three popular batch effect-removal strategies. Linear regression on the
batch variable followed by extraction of residuals and ComBat-seq assume that
batch factors are known and correct their effect. SVA is used to estimate the
unwanted sources of expression heterogeneity.

Linear Residualization Probably the most straightforward strategy when
dealing with batch effects is to regress out (or residualize) the batch effects
in a pre-processing step. This is done by adjusting a simple (or multiple) linear
regression on each feature, using one or more batch variables as regressors, and
extracting the residuals [11]. This approach allows the inclusion of several con-
founders of varied types in the correction process, assuming that batch factors
have additive effects. Let z(1), . . . , z(b) denote b factors, either categorical batch
effects or other continuous covariates.

In the classic scenario where there is only one categorical batch factor, re-
moving the batch effects-associated variability using a linear model amounts to
performing batch mean-centering (BMC) [32]. BMC adjustment leads to the
average value of each variable being zero within each batch.

When batch effects and variable of interest have an unbalanced distribution,
removing batch effects can lead to the suppression of actual between-group vari-
ation [29]. To avoid over-correction and loss of meaningful biological signal, it
is possible to model the effects of the outcome y in the correction step to pre-
serve its influence on the data, as is done by other tools [16, 30, 36, 40]. Under
the assumption that outcome-associated effects are additive to batch effects, the
expression of gene g for sample i ∈ {1, . . . , n} is modelled as such:

Xig = β̂g0 + β̂g1z
(1)
i + · · ·+ β̂gbz

(b)
i + β̂g(b+1)yi + εig

= β̂⊤
g zi + εig

(1)

with zi = (1, z
(1)
i , . . . , z

(b)
i , yi)

⊤ containing the batch variables and the variable
of interest y, used as regressors, β̂g = (β̂g0, β̂g1, . . . , β̂gb, β̂g(b+1))

⊤ the vector of
coefficients estimated by Ordinary Least Squares, and εig the residual part. The
expression profile is then corrected for the batch effects:

X⋆
ig = Xig − (β̂g0 + β̂g1z

(1)
i + · · ·+ β̂gbz

(b)
i )

= εig + β̂g(b+1)yi
(2)
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This is also the spirit of the function removeBatchEffects from R package
limma which allows removing the effects of batches and other continuous covari-
ates, while preserving the effect of a condition variable on the log-transformed
counts [30].

ComBat-seq ComBat-seq is designed for RNA-Seq count data and is a de-
scendant of ComBat, a widely popular tool for correcting batch effects from
known sources [16, 40]. ComBat-seq uses a gene-wise negative binomial regres-
sion model to estimate batch effects on the mean and dispersion parameters.
After regression parameters are estimated using the raw count matrix, a new
batch-corrected distribution is computed and used to adjust the count matrix
by mapping quantiles. The biological condition of interest can be included in the
modeling to protect between-group differences. We used ComBat-seq both with
and without providing ITDR in the covariate model matrix. ComBat-seq is part
of the R package sva [20].

Surrogate Variable Analysis Unknown sources of variability present in the
datasets can be uncovered using SVA [22]. Unobserved variation sources are
identified and estimated as follows: after the expression dataset is residualized
on the primary variable of interest, the remaining sources of expression het-
erogeneity are extracted by eigendecomposition and translated into surrogate
variables (SVs). These estimated batches can later be used as covariates in sub-
sequent analyses, such as differential expression modeling, or can be adjusted for
by residualization prior to visualization algorithms such as Principal Component
Analysis (PCA). SVA is implemented in the namesake R package [20]. Function
num.sv allows the estimation of the number of SVs to be calculated with sva.

3.2 Application to the Tree Frog RNA-Seq Study

In the context of the transcriptomic data analysis of Chornobyl tree frogs, we
considered the batch effects stemming from the site of collection and the different
genetic backgrounds. We also computed and studied surrogate batch variables.

Batch Effect Assessment We performed PCA on the gene expression dataset
to extract factors that reflect the largest sources of variability in the data. Data
exploration of the first components allowed visualizing the effect of the con-
founders. Indeed, we expect that principal components will correlate strongly
with factors that have the most impact on gene expression. PCA was computed
on the VST-transformed count matrix using R function prcomp.

Following published batch-effect assessment methodology [21], we tested the
association between the 5 first principal components and the qualitative covari-
ates by analysis of variance (ANOVA). We show the rank of the principal com-
ponent presenting the strongest correlation with the batch using the R-squared
value, denoted R2. R2 is interpreted as the percentage of variation in the prin-
cipal component explained by the batch effects.
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Similarly, the strength of confounding between categorical batch variables
and total dose rate was assessed by generalized R2 [21]. A correlation of 0 in-
dicates orthogonality between batch and radiocontamination effects, i.e., a low
confounding level, while a value close to 1 indicates severe to complete confound-
ing.

Batch Effect Correction

Targeted variables The collection site was primarily considered as the batch
variable to target. Further investigation led to the creation of groups based on
genetic distance, which were also used as a batch factor. Lastly, a Surrogate
Variable Analysis was carried out to estimate 3 SVs, as advised by num.sv.

Correction techniques For all candidate variables, we applied batch effect-adjustment
algorithms, which returned batch-adjusted matrices. Linear residualization was
performed on the VST-transformed count matrix. We combined this method
with our three approaches: correction aimed at the site, the genetic group, or
the SVs. ComBat-seq was used on the pseudo count matrix, using either the site
or the genetic group, and the adjusted matrices were then transformed via VST.
ComBat-seq could not be used to remove the effects associated with the SVs, as
it can only take one batch variable.

For each experiment, we tested the impact of including or not of the variable
of interest in the correction step. In the residualization method, this is done by
adding the dose rate as a regressor. In ComBat-seq, we included the dose rate
in the covariate model matrix. Table 1 recapitulates the batch effect-adjustment
approaches used.

Table 1: Batch effect-correction strategies

Strategy Targeted batch BECA

1 Site Linear residualization
2 Site ComBat-seq
3 Genetic group Linear residualization
4 Genetic group ComBat-seq
5 Surrogate variables SVA & Linear residualization

Performance Evaluation

Visualization and Summary Statistics We performed PCA on the batch effect-
adjusted matrices for performance evaluation purposes. We used visual com-
parisons by plotting individuals in the first factorial plane. The association of
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principal components with the radiation level was tested using the absolute value
of Pearson’s correlation to check the conservation of relevant biological informa-
tion.

Functional Enrichment Analysis We performed a biologically informed compar-
ison of batch-adjustment strategies by studying the functional classes of genes
that were differentially regulated among individuals [26]. Using sparse principal
component analysis (sPCA), we were able to select features (genes) that capture
a maximum amount of variance across the radiocontamination gradient for all
batch-adjusted datasets. Indeed, with the addition of an L1-penalty, sPCA al-
lows the parametrization of the number of non-zero weights associated with the
variables to form principal components [37]. Using function SPC from R package
PMA, we applied sPCA on the variance-stabilized counts and the batch-adjusted
matrices. For each dataset, the amount of sparsity in the weight vector was
adjusted to yield around 400 non-zero weighted genes in the first component.

A list of stable genes was identified by replicating sPCA on 1000 bootstrap
samples. The most stable genes correspond to those selected in more than 70%
of cases in either the first or second component or in both. Bootstrap-iterating
the computing of sPCA reveals the robustness of the feature selection in regard
to sampling. We chose to study the first two components to capture the most
important directions of variation in the expression. Stable gene names were then
mapped to UniProt IDs for a GO term enrichment analysis performed with
R packages clusterProfiler [38] and enrichplot [38] for visualization. This
enrichment analysis allowed us to study the biological processes over-represented
in the list of deregulated genes.

4 Results

We examine the confounding effect of the collection site and the impact of its
correction using ComBat-seq and residualization. We then present our second
approach based on the correction of genetic stratification of the populations.
We also study the results of SVA-based correction, which we use to identify
potentially undiscovered sources of unwanted variation. Finally, batch effect-
mitigation strategies targeting the genetic group and SVs are further compared
through functional enrichment analysis.

4.1 Confounding Effect of the Collection Site

The tree frogs were collected in 8 geographical sites to gather samples across a
continuum of radiation-pollution levels. Their distribution, both inside the CEZ
and outside, is shown in Figure 1a. Tree frogs living in different sites exhibit
distinct expression patterns, as is revealed by PCA in Figure 1c. Because of
the distribution of radiation pollution in the Chornobyl area, individuals cap-
tured in one site have likely been exposed with a similar intensity, see Figure 1b.
The high confounding between the site and the variable of interest reflects this.
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However, site-associated variation in expression poorly reflects the radiocon-
tamination variation, raising the need to distinguish between site and radiation
exposure’s effects.

We applied batch-correction techniques targeting the site, and we obtained
batch-corrected matrices. In Figure 1d, we correlate principal components ob-
tained on the unadjusted and site-adjusted matrices. We handled the site effect
using linear residualization on the site and ComBat-seq, both with or without
including radiation levels in the correction step. Adjusting the dataset without
modeling the radiation-associated effect appears to have failed to preserve the
biological information of interest since no principal components are correlated
with ITDR after correction. On the other hand, batch-mitigation models that
included radiation level seem to have brought forward the radiation-correlated
variance. However, several studies have raised the issue of the unreliability of
BECAs when adjusting for a highly confounded batch while preserving class dif-
ferences [29]. The concern is that artificial variation in the direction of dose rate
variation could be introduced in the "corrected" dataset, resulting in exagger-
ated significance in downstream analyses. Without ground-truth measurements
to test for this issue, we searched for a way to deconvolute the batch effects from
the variable of interest.

4.2 Genetic Diversity Treated as Batch Effects

In a second approach, we wondered which parameters, other than radionuclide
pollution, could drive the expression heterogeneity among populations. Firstly,
all the frogs were captured in wetlands and presumably had the same living con-
ditions regarding food availability, temperature, or habitat type. Secondly, tree
frog populations were sampled site by site, visiting one or two sites per day over
a 9-day period. Therefore, even with a thought-out protocol, we cannot exclude
that the effect of the site may have a technical cause. Lastly, the geographical
distance between sites (80km between the two most distant) and the limited
dispersal radius of this species could translate into genetic background dissimi-
larities. Genetic distance between individuals was used to integrate this aspect
into the analysis and was translated into a categorical batch variable by hierar-
chical clustering (Figure 2a). The obtained batch factor is less confounded with
ITDR than the site while still being strongly correlated with the third principal
component (Table 2, Figure 2b). We note that the principal component that car-
ries the most variance in the direction of radiation contamination is of a lesser
rank.

We performed genetic group adjustment with the techniques mentioned pre-
viously, and we present the results of PCA applied to the adjusted matrices in
Figure 2. Figure 2c illustrates that the first two PCs now do a fine job gather-
ing the expression heterogeneity along the contamination gradient. Individuals
still appear to cluster by site, but this is explicable by the dose rate disparity
between sites. Regarding the correlation of the PCs with the variable of interest
(Figure 2d), it appears that correcting the effect of genetic structure protects
the radiation-associated variation even without integrating the variable in the
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Fig. 1: Confounding effect of the collection site: visualization and correction a.
Geographical location of tree frog-collection sites inside the CEZ (purple line)
and in the Slavutych region (ChNPP = Chornobyl nuclear power plant) b. Dose
rate distribution among sites c. PCA of raw RNA-seq count matrix with indi-
viduals colored by collection site or dose rate d. Absolute value of the correla-
tion between radiation level and PCs of site-corrected count matrices (CBS =
ComBat-seq, Res = Residualization, ITDR = ITDR was included in the batch-
correction step to preserve its effects)

correction step. Here, we identified a previously unconsidered batch variable by
interrogating another data modality. In the next step, we studied the possibility
of other unknown sources of unwanted variability.

4.3 Search of Other Possible Confounders with Surrogate Variable
Analysis

We applied SVA to diagnose the sources of variation in the VST-transformed ex-
pression dataset. After capturing and extracting the linear relationship between
expression and radiation exposure, 3 surrogate variables (SVs) were identified as
significant sources of systemic variation. In Figure 3a, we compare the SVs with
the covariates we know of and which have been measured, by computing the
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Table 2: Confounding effects of site and genetic distance

Batch variables Variable of interest

Site of collection Genetic distance
group

Radiocontamination
level (ITDR)

Confounding with
ITDR 0.80 0.08 ×

Rank of PC with
highest correlation

(R2)
3 (0.72) 3 (0.35) 4 (0.42)
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Fig. 2: Construction of genetic population grouping and impact of its correction
a. Hierarchical clustering on genetic distance b. Dose rate distribution among
genetic groups c. PCA after correction of genetic group with ComBat-seq d.
Absolute value of the correlation between radiation level and PCs of genetic
group-corrected count matrices (CBS = ComBat-seq, Res = Residualization,
ITDR = ITDR was included in the batch-correction step to preserve its effects)
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adjusted R2 of the linear regression of SVs on covariates. The constructed SVs
correlate with known potential covariates, such as the mass and length (SV1)
and the site and genetic group for SVs 2 and 3. None of the estimated SVs
capture age-related expression patterns.

As we expected from the primary exploration of the dataset, the collection
site appears to have the strongest influence among known covariates. SVs capture
expression trends that correlate with the site factor, even after radiation effects
were residualized by SVA, which confirms that radionuclide pollution is not
the only driver of differences between sites. We applied linear residualization to
adjust for the estimated SVs, both with and without modeling ITDR effects, and
present results from the PCA on the SVA-corrected matrix in Figures 3b- 3c.
The first principal component significantly correlates with radiocontamination
levels and allows us to distinguish well between the highest and lowest dose rate
groups.
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Fig. 3: Surrogate variables: connection to known covariates and correction a.
Correlation between estimated SVs and covariates b. Absolute value of the cor-
relation between radiation level and PCs of SVs-corrected count matrices (Res
= Residualization, ITDR = ITDR was included in the batch-correction step to
preserve its effects) c. PCA after correction of SVs-corrected by residualization
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4.4 Biological Interpretation

Correction methods targeting either the genetic structure or the surrogate vari-
able both appear to have removed confounding effects. We now want to compare
the two approaches through functional enrichment analysis. Using the raw and
batch-adjusted datasets, we performed sPCA coupled to bootstrap to identify
stably selected genes that carry the most variance in each dataset. Enrichment
analysis then searches for the biological pathways in which the selected genes
participate, thus indicating the deregulation of expression in the associated bio-
logical functions.

Table 3 presents the number of stably selected genes for each dataset and
the number of Gene Ontology (GO) terms significantly enriched. We note that
highly similar numbers of processes were recovered in the raw and ComBat-seq
corrected datasets. This good performance of the uncorrected matrix could be
explained by the robustness of sparse PCA compared to standard PCA, allowing
the true biological signal to be distinguished from noise even without batch cor-
rection (see Appendix A). ComBat-seq-adjusted matrices yield approximately
as many stable genes as the raw matrix, while residualized matrices return con-
siderably less. Residualization coupled with SVA leads to the selection of very
few genes, which suggests over-correction and removal of relevant information.
Also, for the SVA method, we note that including the radiation levels in the
correction step doubles the number of GO terms identified, whereas it does not
impact the count for the other methods. This could signify residual confounding
between the SVs and the variable of interest.

Table 3: Feature selection and Gene Ontology terms enrichment before and after
batch correction

Correction method Number of stably
selected genes

Number of enriched
GO terms

Raw 642 77
Residualization on genetic group 363 56
Residualization on genetic group
with preservation of ITDR effects 441 58

ComBat-seq on genetic group 660 80
ComBat-seq on genetic group with

preservation of ITDR effects 653 77

Residualization on SVs 33 24
Residualization on SVs with
preservation of ITDR effects 95 48

In Figure 4, we present the most significant deregulated pathways identified
after the different correction methods. The nodes, which represent biological
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processes, are linked according to the sharing of genes involved in the processes.
Pathways recovered by the various techniques do not perfectly overlap. Notably,
GO terms connected to cellular respiration or mitochondrial activity are enriched
in datasets corrected for genetic structure and the raw dataset but disappear af-
ter SVA correction. Conversely, deregulated pathways identified consecutively to
SVA correction are heavily biased toward muscle processes. We find that correc-
tion methods applied to the genetic groups preserved more relevant biological
information than the residualization of SVs.

Overall, the study of deregulated biological processes highlights effects on
energy metabolism (GO terms such as "ATP metabolic process" or "energy
derivation by oxidation of organic compounds") and muscle processes (GO terms
"muscle system process" or "muscle tissue development"). Perturbation in these
pathways is consistent with impacts of exposure to low-dose radiation reported
in studies of other organisms [18, 27, 28].
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Fig. 4: Enriched Gene Ontology-terms network for each correction strategy con-
sidered (CBS = ComBat-seq, Res = Residualization, ITDR = ITDR was in-
cluded in the batch-correction step to preserve its effects)
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5 Discussion

Classical BECAs used to correct for the confounded effect of the site either
resulted in the suppression of valuable biological variation or in the lack of relia-
bility of the adjusted dataset when including the radiation level in the modeling.
Instead, we successfully deconvoluted the batch from the variable of interest by
including the genetic distance between individuals as a new variable to correct.
The computed genetic batch reflects population structure and observed admix-
ture between populations [8]. In the context of the CEZ, genetic distance between
individuals could be a testimony of inherited mutations due to historic radia-
tion pollution. Here, we hypothesize that removing population structure effects,
which we associate with historical exposure, allowed us to better investigate the
impact of current exposure to low-dose radiation.

When its origin is unknown, the confounder is represented by a proxy vari-
able that encompasses the true source of variation. For example, in the case of
technical batch effects, the day and group of processing can be the only acces-
sible information [21]. Regarding the site effects, we assume that their origin is
not technical, but we lack the information to assert it with certainty. Nonethe-
less, the consistency between the genetic structure of CEZ populations and their
geographical distribution makes the genetic batch a fit candidate. Also, it is not
uncommon to correct for population structure, for instance, in genome-wide as-
sociation studies [34]. We concede that this approach is modality-dependent and
could be less relevant when studying proteomics or metabolomics.

Our experiments illustrated the limitations of ComBat-seq and residualiza-
tion in a batch-class unbalance design, as was acknowledged by several studies
that suggest using BECAs with caution in confounded scenarios [12, 24, 29, 41].
The genetic distance-adjusted datasets appear to be less affected by the integra-
tion or not of the variable of interest in the correction step. Feature selection
on adjusted datasets followed by functional enrichment showed that relevant
biological information was preserved better with ComBat-seq than with resid-
ualization. SVA recovered sources of unwanted variation, which is an appealing
strategy to detangle the confounding variable from the level of radiation expo-
sure. Residualization of estimated SVs provided satisfying results in the PCA
visualization, but the enrichment analysis revealed a substantial loss of informa-
tion relative to radiation exposure. Indeed, SVA authors warn against correcting
SVs in a pre-processing step and instead advise that SVs be used as covariates
in following analyses such as differential expression [15].

When batch effects cannot be avoided, and happen to covary with a variable
of biological interest, the recommended mitigation strategy is to take into ac-
count the batch factor as a covariate directly in the main analysis [29]. For gene
expression analysis, this is possible using popular differential expression tools [9,
25, 30]. For all types of data, if the confounder is a categorical variable, multi-
group approaches allow integrating batches in a joint factorial analysis [10, 31,
35, 36]. However, in the multi-omics framework, researchers are advised to assess
and handle confounding effects in the different modalities before performing the
joint analysis [39]. With the development of multi-omics studies, we hope that



Batch Effect Correction in a Confounded Scenario 15

more tools will be published that allow accounting for batch effects or other
group structures, with already a few examples in the single cell context [2, 6].

6 Conclusion

In the presence of a confounded batch effect, we were able to deconvolute the
batch variable from the variable of interest through the integration of additional
information. Our correction strategy based on genetic distance allowed us to
handle the confounding effect of the frogs’ collection site. We were able to identify
distinctive changes in gene expression associated with chronic radiation exposure
in Chornobyl tree frogs, by implementing this approach (see [8]). Future work will
include the development of a new method for the incorporation of confounding
factors into multimodal analyses based on the RGCCA framework.
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A Appendix: Close-up on the Impact of Sparsity in Gene
Selection

To assess how forcing sparsity in the PCA influenced the selected gene list,
we also ran a similar approach using standard PCA. We performed PCA on
1000 bootstrap samples of the non-corrected (raw) variance-stabilized matrix.
In each model, genes were ranked by the absolute value of their weight, and the
top 400 genes were selected from components 1 and 2. Genes stably selected
across bootstrap iterations in components 1, 2, or both were submitted to gene
functional annotation, as mentioned previously.

Table 4 shows that the genes selected using sparse PCA were more stable
across bootstrap samples than with standard PCA. This led to identifying a
larger number of deregulated pathways in the uncorrected dataset with sparse
PCA than with PCA. In Figure 5, we notice that the alteration of biological
processes related to energy metabolism (GO terms "oxidative phosphorylation"
or "energy derivation by oxidation of organic compounds") was recovered with
sPCA and not with PCA. The identification of pathways typically linked with
low-dose radiation, despite the presence of batch effects, suggests that the im-
position of weight sparsity in the PCA mitigated the influence of noise.
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Table 4: Feature selection approaches and Gene Ontology terms enrichment

Feature selection method Number of stably
selected genes

Number of enriched
GO terms

Standard PCA (Raw) 384 52
Sparse PCA (Raw) 642 77
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Fig. 5: Enriched Gene Ontology-terms network after feature selection on the
uncorrected count matrices
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