
HAL Id: irsn-04788803
https://irsn.hal.science/irsn-04788803v1

Submitted on 18 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Using a surrogate model for the detection of defective
PWR fuel rods

Karine Chevalier-Jabet, Lokesh Verma, François Kremer

To cite this version:
Karine Chevalier-Jabet, Lokesh Verma, François Kremer. Using a surrogate model for the
detection of defective PWR fuel rods. Annals of Nuclear Energy, 2024, 209, pp.110779.
�10.1016/j.anucene.2024.110779�. �irsn-04788803�

https://irsn.hal.science/irsn-04788803v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Annals of Nuclear Energy 209 (2024) 110779

A
0

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

Using a surrogate model for the detection of defective PWR fuel rods
Karine Chevalier-Jabet ∗, Lokesh Verma, Francois Kremer
PSN-RES/SAM/LETR, Institut de Radioprotection et de Surete Nucleaire, Cadarache, 13115, St. Paul les Durance, France

A R T I C L E I N F O

Keywords:
Fission product
Defective fuel
Surrogate model
Artificial neural network
Autoencoder

A B S T R A C T

Timely and accurate detection of defective fuel rods is critical as the release of radioactive fission products
from defective fuels can lead to primary circuit contamination and radiation exposure. Due to the complexity
of the physical phenomena, models for fault diagnosis can be difficult to construct and recently data driven
surrogate models have being increasingly used to detect and characterize defective fuel rods: they make use
of a computational database to learn from and make predictions about new unknown data. In this paper, we
present a method for the elaboration of an anomaly detector based on neural networks, taking into account
the fact that physical computation can be CPU intensive and thus overcome this issue. A physical model for
fission products release and coolant activity calculation was built and used to generate a surrogate activity
model that enables the generation of a bigger database in small amount of CPU times. Then using this bigger
computational database, a recurrent autoencoder was trained for anomaly detection. The network classifies
the defect status with 100% accuracy and a good time precision. A sensitivity analysis with lower activity
increase at defect onset and addition of noise was conducted in order to better understand the limits of this
method. Such methods can be useful for operators of the existing as well as future reactors to make timely
predictions of defective fuel rods and avoid operational and economic setbacks for power plants. The work
described in this paper was carried out within the R2CA (Reduction of Radiological Consequences of design
basis and extension Accidents) project, funded in HORIZON 2020 and coordinated by IRSN (France).
1. Introduction

In a Pressurized Water Reactor (PWR), a defective cladding can
cause an increase in the coolant activity and can lead to increasing
primary circuit contamination and radiation exposure. Although the
probability of fuel failures has been reduced to low levels (∼ 0.004%
for PWRs (IAEA (2019))), it is still of utter importance to timely detect
any fuel failure that may occur during operations since operating a
reactor under defective conditions may lead to not only operational
and economic setbacks for power plants due to early discharge of
the involved fuel assemblies, but also radiological and environmental
hazards.

In recent years, with the progress in machine learning and deep
learning approaches, data-driven methods have gained momentum for
fuel defect detection. Neural networks can be very efficient tools to
make predictions about defective fuels. A general review of the state-of-
the-art can be found in Abiodun et al. (2018). Likhanskii et al. (2006)
used Artificial Neural Networks (ANN) for fuel failure detection in
VVER reactors. Wallace et al. (2020) recently demonstrated the applica-
tion of neural network models for defect defection in the CANDU fuels.
The approach was found to be faster than the existing processes. Dong
et al. (2020) used an ANN method for fuel failure detection with the
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input of the ANN being the specific activities of FP in the primary
coolant and the output being the degree of failure of the fuel cladding.

One of the drawbacks of simple ANN used as classifiers for defect
detection is their lack of generality : the database has to be reasonably
balanced, with well represented defective situations ; would the method
be applied on real life data, defective situation would be less numerous,
and missclassification could emerge. Moreover, it would be better if
time, an important information was used, so that defect detection rely
also on some ‘‘change’’ in the observations.

On the other hand, novelty detection techniques are often used
when the quantity of available normal data is much higher than the
quantity of abnormal ones. These methods are used in various industrial
fields such as electronic IT security, medical diagnostics, industrial
monitoring and damage detection or video surveillance.

Pimentel et al. (2014) have grouped novelty detection techniques
in four categories : probabilistic, distance assessment based (Liu et al.
(2008)), domain based (see Cortes C. (1995) for example), information-
theoretic and reconstruction techniques. On all these techniques, recon-
struction has the advantage of versatility : a model of the normal data
is built, the novelty being based on the reconstruction error. This kind
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of tools is independent of the distribution but assumes that normality
has been fully sampled before learning, and they may perform poorly
when outside the learning range, leading to false positive. Example
tools of that class are gradient boosting techniques (Friedman (2001)),
or dedicated artificial neural networks . Some of them are detailed
hereafter, as they have been subject of numerous developments in the
two last decades.

One class neural networks (Chalapathy et al. (2018)) only learn
the properties of one class and treat any data point that deviates
significantly from this as an anomaly.

Deep belief neural networks, convolutional neural networks are es-
pecially effective for anomaly detection in images, where they can learn
to identify normal patterns from training data and then recognize ab-
normalities in new images. They are also effective at representing time
sequences of variables and for example have been used by Microsoft
(see Ren et al. (2019)) to monitor the metrics of their applications and
services and detect anomalies.

Restricted bolzman machines (Hinton (2012), Hinton et al. (2015),
Fiore et al. (2013)) consist of two layers of neurons — visible units
and hidden units. The visible units represent the input data, while
the hidden units capture the underlying patterns and features in the
data. Each visible unit is connected to every hidden unit, and vice
versa. RBMs are based on function that assigns an ‘energy’ value to
each possible configuration of the visible and hidden units. The goal is
to find the configuration with the lowest energy, which corresponds
to the most probable state of the RBM. The training is performed
using a process called Contrastive Divergence (a method related to
MCMC methods), in order to reconstruct the input data by adjusting
the connection weights between the visible and hidden units.

Generative adversarial networks (GAN) (Goodfellow et al. (2014))
can be used for anomaly detection by training them to generate normal
data. Any data that the GAN has difficulty generating could potentially
be viewed as an anomaly. This is specifically useful in scenarios like
detecting anomalies in images or in any data that requires generative
models to make a normality distinction. GAN use two networks, a
generator, and a discriminator. The generator generates new data
instances, while the discriminator evaluates them for authenticity. By
comparing the generated instances to the original ones, it can learn
to differentiate anomalies from normal instances; an example of fault
detection can be found in the field of building and indoor environment
surveillance by Yan et al. (2020).

Autoencoders are a type of neural network used for learning effi-
cient coding of input data. They work by encoding the input data into a
compressed representation, and then decoding this representation back
into the original format. Kieu et al. (2019) have used autoencoders
based on recurrent neural networks (RNN) in order to perform time
related fault detection and compared them to a set of traditional meth-
ods. The study they conducted show that the proposed autoencoder
ensembles are effective and outperform all baselines methods. The same
conclusion prevailed for Alfeo et al. (2020).

As RNN allow time representation and can easily be fed to au-
toencoders, it may be useful to check other common related types of
RNN : Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber
(1997)) neural networks, and Gated Recurrent Units (GRU) networks
(Cho et al. (2014)), which are popular because known to be effective.

In this paper, they will be fed to autoencoders and tested for defect
detection based on timely primary coolant measurements.

In order to produce activity sequences, a large database was needed
; a fast model was used so that the generation could be done in a
reasonable amount of time : an ANN model of activity computation
due to defect onset was built, based on a simple physical model that
was developed previously by Verma et al. (2023). The physical model
is briefly presented in a first section of this paper, but the reader can
refer to Verma et al. (2023) for detailed information. The ANN model
elaboration and validation is described in Sections 3.2 and 3.3. The
whole database generation methodology is presented in Section 3.
2

Fig. 1. Activity of various isotopes in the primary coolant after defect onset.

Section 4 presents the architectures that were used for default
detection, and the performance associated to each of them. A sensitivity
analysis was performed to simulate small defects and noisy measure-
ments. Finally the conclusions of the analyses done in this work, some
limitations and the prospects for future work are presented in Section 5.

2. Physical model and activity calculation

The fission products (FP) release estimation from a defective fuel
rod has be subdivided into three steps: (i) transport of FP in the
fuel pellet, (ii) transport in the fuel-cladding gap, (iii) transport in
the coolant. The transport mechanisms in the three regions and the
corresponding mass balance equations have been presented in detail
in an earlier paper by the authors (Verma et al. (2023)), as well as the
verification from literature. Although the model can take in 8 decay
chains comprising a total of 30 radioisotopes, for this analysis, we
considered the I-131 decay chain whose properties are presented in
Table 1 and extracted from JEFF 3.3 (2017).

131𝑚𝑇 𝑒 ⟶ 131𝑇 𝑒 ⟶ 131𝐼 ⟶ 131𝑚𝑋𝑒

The parameters used in the release model for activity calculation and
their values are presented in Table 2. We suppose that we are in
stationary nominal operation conditions, so operational parameters
are supposed to be constant during all the calculation. The typical
operating values of a PWR are used for the fuel and gap parameters.
The remaining parameters (especially concerning the coolant region)
were adopted from Iqbal et al. (2008).

The model produces the results which would be deemed necessary
for generating the computational database, and an example is shown at
Fig. 1; the total simulated time was set at approximately 28.9 days. The
time step for the time integration was taken as 40.0 s. The activities
in the primary coolant before defect onset are due to the residual
tramp uranium contribution. As soon as the defect occurs, the activity
values rise for most of the isotopes and reach a saturation state for
all the isotopes within the duration of the calculation as the source of
radioisotopes gets balanced by their decay or by removal through the
CVCS purification system in the primary coolant.
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Table 1
Properties of the radioisotopes considered in the analysis.
isotope location decay fission 𝑓𝑟𝑎𝑐12 𝑓𝑟𝑎𝑐13 𝑓𝑟𝑎𝑐23 𝑓𝑟𝑎𝑐24 𝑓𝑟𝑎𝑐34 𝑓𝑟𝑎𝑐35 𝑓𝑟𝑎𝑐45

in the constant yield
chain (s−1)

Te-131m 1 6.42e−06 0.00504 0.21 0.79 0.0 0.0 0.0 – –
Te-131 2 4.62e−04 0.0252 0.0 0.0 1.0 0.0 0.0 – –
I-131 3 1.0e−06 0.02921 0.0 0.0 0.0 0.0 0.019 – –
Xe-131m 4 6.71e−07 0.000317 0.0 0.0 0.0 0.0 0.0 – –
Table 2
The nominal values of model parameters used in the analysis.
Parameter symbol Name used value units

fuel stack length 𝑙 – 0.168 m
average linear power 𝑃𝑙𝑖𝑛 power 22.77e+03 Wm−1

width of fuel-to-sheath gap 𝑑𝑔𝑎𝑝 gap_width 24.32e−06 m
radius of pellet 𝑅𝑝𝑒𝑙 radius_pel 4.15e−03 m
gap internal pressure 𝑃𝑖𝑛𝑡 Pressure_int 15.5e+06 Pa
fission rate 𝐹 – 3.03e+10 fissions W−1s−1

location of cladding defect 𝑙𝑑 defect_loc 0.084 m
resin efficiency for Te 𝜂𝑇 𝑒 resin_eff_Te 0.9 –
resin efficiency for I 𝜂𝐼 resin_eff_I 0.99 –
resin efficiency for Xe 𝜂𝑋𝑒 resin_eff_Xe 0.9 –
Boltzmann constant 𝑘 – 1.38e−23 JK−1

release rate of H2 𝑞𝐻2 release_rate_H2 1e+21 m−3s−1

letdown flow rate 𝑄 letdown_flow_rate 3.0 kgs−1

total coolant mass 𝑀 tot_coolant_mass 1.07e+06 kg
BRS removal rate 𝐵 BRS_removal_rate 1e−05 s−1

coolant leak rate 𝐿 coolant_leak_rate 2.3e−03 kgs−1

Temperature of ext surface 𝑇 𝑒𝑥𝑡
𝑐𝑙 Temp_cl_ext 597.14 K

of cladding
Avg. temperature of pellet 𝑇𝑝𝑒𝑙 Temp_pel 1261.05 K
Time of defect onset t_defect 10 days
3. Computational database generation

Due to CPU time considerations, the database production comprises
3 steps: at first, a database of physical calculation is generated, which
leads to the production of a surrogate model for the activity in case of
defect or in case of absence of defect, so that we are able to generate
defect sequences in a small amount of time; next, the sampling method
to feed these surrogate models is built so that bigger samples are gener-
ated, but yet remain consistent with the physical sample that was used
to build the ANN; and at last, the database generation is performed,
calling the surrogate activity models to generate the sequences.

3.1. Physical database computation

In the physical model, we identify 16 input parameters (see Fig. 2)
which can be varied to generate the sample data. The number of
input parameters determines the dimension and the complexity of our
problem. If we wanted to fully sample each dimension of space (full
factorial design sample), the size of the resulting database would be
a function of the number of parameters raised to the power of the
number of sampling points. Thus, for a complete factorial design with
only three points (lower bound, center, upper bound, for example) and
16 parameters, we would need to perform 163 = 4096 calculations,
and adding one sampling point would result in 65 536 calculations.
Assuming one calculation takes approximately one minute, this would
correspond to computation times of approximately 4 days or 7 weeks,
respectively.

The use of the Latin Hypercube sampling (LHS) method was pre-
ferred instead, as it guaranties that, given the size n of the sample,
every n𝑡ℎ probability value within the probability distribution will be
sampled for sure, but without guaranteeing that the most interesting
combination of all values will be used as they are random.

Building a precise enough surrogate model based on such a database
enables us to multiply our computational capabilities by a factor of sev-
eral hundreds, and enables the generation of large bases of sequences
for the final goal of the project, i.e. defect detection. The surrogate
3

model is an Artificial Neural Network (ANN), and was built using the
physical database that was generated as follows :

• The data sampling for the possible input variables related to
the release are done by using the Transuranus code (Lassmann,
1992) in the statistics mode. By providing the absolute values of
parameters, such as the linear power and the outer pin pressure,
and varying them in an a priori range of 10% in a uniform
distribution, we can obtain the equivalent values for parameters
such as the pellet center-line temperature, the cladding external
temperature, the radius of the pellet and the gap width as outputs.
The input parameters obtained by the Transuranus code are the
six parameters in Fig. 2(a). We generate 2000 samples for these
six parameters using the Transuranus code.

• For the remaining 10 input parameters of the model (Fig. 2(b)),
we have used an in-house tool, comprising a collection of R (R
Core Team, 2022) scripts, to carry out the sampling of the data.
For these parameters, we varied the absolute values, a priori, in
the range of 10%, using uniform distributions. The size of the
sample is 2000, and the LHS algorithm was used for this part of
the sampling.

• The assembled 2000 samples, comprising different set of values
for the 16 input parameters, are provided to the physical model,
leading to 2000 calculations of coolant activities through time of
the four isotopes in the decay chain. Fig. 3 presents the data flow
charts for the production of the physical database.

3.2. A meta model for activity prediction in case of defect

In this section we present the ANN : 80% of the physical compu-
tational database was used for training, and the rest of the database
was set aside for testing. The development of this ANN, and of all the
neural networks of this paper, is done in Python, using the Keras API
with TensorFlow backend Abadi et al. (2015).

Prior to the learning phase, the data are reprocessed as below:
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Fig. 2. (a) Input parameters sampled using Transuranus statistics code; (b) The sample file used to generate the sample data for the remaining parameters.
Fig. 3. Data flow chart for physical computations.

1. For each input feature, the bi-dimensional sequences of value
activities of shape (number of time steps of the sequence of
activities,number of samples) are flattened into one dimensional
data arrays of shape (1,number of time steps of the sequence of
activities × number of samples).

2. The times, that are output of the physical database, have then
been added as input features and converted into relative time
since the occurrence of the defect, with negative values of times
meaning that defect has not occurred yet, and positive meaning
the time elapsed since defect onset. For the modeling of the
activities due to defects, only positive values of times have been
kept. Since activity and time range of variation span multiple
decades, their values have been transformed to their logarithms.
In the end, the size of the sample is about 1.5e6, with 2000
different values of physical parameters, and 1395 positive time
steps.

3. The data have been separated in two sets : the learning set,
composed of 80% of the data, and the test set, composed of the
remaining portion. The test set is completely independent of the
learning set, as it is never used in any part of the learning.
4

4. Then, in order to facilitate the learning phase, the data have been
normalized between 0 and 1. The data flow chart of this process
in presented in a graphical manner at Fig. 4.

The optimal architecture of the neural network is not known a
priori, but Tensorflow allows, through its Keras tuning features, to
determine fastly the most interesting one among a set of propositions.
For this purpose, the following hyperparameters were used and tuned
using the Hyperband tuner: the number of layers (between 2 and 4),
the number of cells per layer (between 64 and 128, by steps of 32).
The loss function was mean absolute error, learning rate was 0.001. To
prevent over-fitting, L2 regularization was used with values 2e-4 for
the first layer, and 2e-7 for the following ones.

After the tuning, the best model has 4 hidden layers of
(128,96,96,64) cells. The predictions of the test set, equivalent to about
400 time sequences, were performed in 9 s on a standard laptop, which
would have taken about 6 h on a calculation cluster using the real
physical model.

Fig. 5 shows the entire predictions set versus the test dataset. To sum
up, the maximum relative error of the model is about 2.6%, the 99th
percentile of the absolute error being about 0.3%, which is satisfactory.

3.3. A meta model for activity prediction in absence of defect

In this section we present a meta model for the prediction of activ-
ities when there is no defect. The data were processed as in previous
section, except that only negative values of time were kept, and that
duplicates in the database had to be removed due to absence of activity
evolution : in such a case, the activities are due only to the presence
of tramp uranium, and activities are at equilibrium if no change is
done to primary operating conditions. The parameters that are relevant
are the various primary flow rates (inlet, outlet), and the purification
efficiencies for the various nuclides. As this situation is quite simple,
a simple lasso method, plus order 2 polynomial features of the input
features were used. The result is precise, as depicted in Fig. 6.
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Fig. 4. Data flow chart for physical computations.
Fig. 5. Outputs of I131 meta model (prediction) vs outputs of the physical model
(reality) in case of defect. The space between the lines above and below the bisector
correspond to the ±1% error range.

3.4. Sample generation for the ANN surrogate models

The sample to be fed to these surrogate models has to comply with
the original physical database in order to stay in the validation domain
of the models. For the original samples, LHS was used for all the data,
except the ones that are related to the release from fuel. These latter
variables are correlated (as presented in the heatmap in Fig. 7) so
we can not use LHS for sample generation related to this part of the
model. The heatmap is a graphical representation of the correlation
matrix of fuel related input features. The two values in the squares are
respectively the correlation coefficient and the associated 𝑝-value of the
correlation coefficient. We can see, for example, that pellet radius and
gap width are unsurprisingly strongly correlated. We can also see that
pellet temperature is strongly correlated to power and pellet radius.

A good workaround solution is trying to get back to a situation
where all features are independent so that we can use LHS or any
other method where no dependency is required. In that regard, a
Principal Component Analysis (PCA) is conducted on the fuel related
5

Fig. 6. Outputs of I131 meta model (prediction) vs outputs of the physical model
(reality) in absence of defect. The space between the lines above and below the bisector
correspond to the ±1% error range.

input features. All the fuel related features were fed to the scikit-
learn (Pedregosa et al. (2011)) PCA analysis tool: the result is that we
can represent this 8 dimensional system assuming only 6 independent
components, keeping more than 99.8% of the variance. This allows to
sample these components using LHS, and then back-transform them
to their original variable values using the PCA inverse model. The
PCA inverse model was validated on the physical test database, giving
correct results, that are depicted in Fig. 8 for linear power, as an
example.

The generation of activity sequences results then in a several steps
process:

1. Choose the size of the sample; we have chosen to generate
50 000 sequences for training

2. LHS sampling for primary coolant related variables, the six inde-
pendent components related to fuel release, and the beginning
times of the sequences relative to the onset of a defect. The
values of the upper and lower bounds are the same as the ones
observed for the input features (or the PCA transform) of the
sequences generated with the physical model. The time steps of
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Fig. 7. Heat map of the fuel related input features.

Fig. 8. Outputs of PCA inverse metamodel (prediction) vs real values (test values).

the outputs of the physical model is 1000 s. We assume here
that the measurement frequency is lower; it has been decided
that time steps ranging from one to 24 h should be explored,
leading to 5 different database with time steps of 1, 2, 6, 12
or 24 h. In real life, it would be better to be able to detect
an anomaly the sooner after its onset. Moreover, it would be
preferable to avoid exposure to eventual missing measurement
in the past. For this reason, the anomaly detector should rely
on the shortest possible sequences. A database of sequences of
3 time steps was generated, and also another one of 4 time
steps. Considering the beginning time of the sequence, it has
been sampled in various ranges: such that only negative times
compose the set of sequences, or such that either positive or neg-
ative values compose the set of sequences, to simulate sequences
6

Fig. 9. Flow chart depicting the steps for generation of activity sequences.

starting with no defect, and eventually a defect opening leading
to activity evolution(see Section 4).

3. Use PCA inverse model to produce the fuel related features
4. If time is lower or equal to zero: feed the input features to the

no defect activity model
5. If time is greater that zero: feed the input features to the defect

activity model
6. Assemble the resulting data to create the activity sequences;

some sequences can therefore be composed of defective activities
only, or non defective activities, or both if the defect onset occurs
during the sequence

7. Label the sequences according to the defect status: if no defect
occurs (no sampled time was greater than zero), the sequence is
labeled with value 0, and with 1 otherwise.
This finally results in 5 × 2, i.e. 10 sets of 50 000 training
sequences.

The above mentioned algorithm steps are depicted as a flow chart
in Fig. 9.

4. Defect diagnostics

4.1. The principle of defect detection

In this section, we show the results of various neural network tools
used to answer the question: ’Considering the last k values of primary
coolant activity, could we say that there exists a defect (1) or not (0)?’

As the activities are time related, we use neural network tools
designed for that kind of data: Recurrent Neural Networks (RNN) and
their descendants, Long Short Term Memory (LSTM) neural networks
(Hochreiter and Schmidhuber (1997)), or Gated Recurrent Units (GRU)
networks (Cho et al. (2014)). In the present scenario, the sequences
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Fig. 10. History learning examples for (a) RNN and (b) LSTM, with 1 h time step and 3 time steps per sequence.
being short, the latter ones may prove less useful. The input features
of the neural network are the activities of the sequence, as in real life,
they are the observable variables.

An often used neural network tool for the prediction of an anomaly
is autoencoder. An autoencoder is a neural network where the output
equals the input, and they are often said to be unsupervised methods
since there is no additional data to the input features to be used as
the output labels. The autoencoder gives good results if the error,
abs(output - input), is close to zero; one might see them as an identity
operator. If fed with data corresponding only to ‘normal’ situations
during the learning step, the error, when testing normal situation
sequences, will be low. On the other hand, if fed with abnormal
sequences, the error will be bigger, as the situation they encounter
is not like the one it was trained for, and therefore does not belong
to the same distribution. The problem is then to separate the two
distributions, i.e., setting a threshold, which has been chosen in our
case as the maximum absolute error value during training. The ideal
case is when the two distributions do not overlap, otherwise possible
confusions occur.

To sum up, we test either RNN∕LSTM∕GRU shaped autoencoders to
build the anomaly detector. The interest of this kind of tool is that we
only have to know what a normal situation looks like and do not bother
about being precise about abnormal situation values: the training data
set is composed only of normal activity sequences, and this is the reason
why the sampling of the times is composed only of negative times as
mentioned in Section 3.4. On the contrary, the test set is composed of
about 50% of defects, and 50% of normal situations. The loss function
was mean absolute error. There was no regularization parameter.

4.2. Prediction results

For all the training and test datasets, the results are 100% precise,
whether the sequences are composed of 3 or 4 time steps (k = 3 or
4), whether the time step is one hour or 24 h, whether the type of
autoencoder is made of RNN, GRU, or LSTM.

The difference between RNN and GRU or the LSTM is the learning
speed, which is higher for the latter than for RNN, as depicted in
Fig. 10. As an illustration, Fig. 11 shows the confusion matrix for the
cases when time step is one hour and the sequences are 3 time steps
long.

4.3. Sensitivity analysis of performances

The performance of the defect detector is good whatever the chosen
type of anomaly detector, RNN, GRU or LSTM, due to the scale varia-
tion of activity when a defect occurs, and also to the absence of noise :
the activity increase is linked to the defect size, and we want to know
the behavior of the anomaly detector when the activity increase tends
to small values. Additionally, the activity values that were generated
7

Table 3
Input features of sensitivity analysis.

Parameter name Values

sequence length 3 , 4 , 5, 6 , 10
time step (in hours) 1 , 2 , 3
scale factor 1 , 0.5 , 0.1 , 0.05 , 0.03
noise standard deviation 0, 0.001 , 0.01 , 0.02 , 0.05 , 0.1 , 0.2 , 0.3 , 0.5
auto encoder detector type RNN , GRU , LSTM

were ‘perfect’. So gaussian noise was added to the values of activity
sequences, to simulate aleatory measurement errors. A scale factor was
applied to calculation results after defect onset, whose value is 1 when
no scale modification is applied. This factor is defined in Eq. (1).

𝑠𝑐𝑎𝑙𝑒 =
𝐴′
1 − 𝐴0

𝐴1 − 𝐴0
(1)

where
𝐴0 is the computed activity before defect onset,
𝐴1 is the activity computed after defect onset,
𝐴′
1 is the activity after scale modification.

The noise factor is a Gaussian noise applied to the activity levels
during the sequence, defined in Eq. (2) as

𝐴′′ = 𝐴′ ⋅𝑁(1, 𝜎) (2)

where 𝐴′′ is the activity of a given isotope at a given time after noise
introduction,

𝐴′ is the activity of a given isotope at a given time before noise
introduction (but after scaling),

𝜎 is the standard deviation of noise.
In the end, a factorial design (FD) of scale, noise, sequence lengths,

time steps, anomaly detector types(RNN,GRU,LSTM). The Table 3 de-
scribes the input features of the FD.

The chosen predictive performance metrics is 𝐹1, whose definition is
given in . The highest possible value of 𝐹1 is 1, indicating perfect perfor-
mance, and the lowest possible value is 0, indicating poor performance.

𝐹1 =
2 ⋅ 𝑇𝑃

2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(3)

where
TP : True Positive of confusion matrix,
FP : False Positive of confusion matrix,
FN : False Negative of confusion matrix.
Figs. 12 show a scatter plot of F1 as function of scale and noise.

As expected, the higher the noise, the lower F1. For scale, results are
less graphically visible, and scale is not the best indicator. A more
relevant metrics is the ratio between noise and scale, as shown at
Fig. 13. Figure (a) shows a transition from low to good performance
when the ratio roughly passes the value 1. Figure (b) is a focus on low
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Fig. 11. Confusion matrix examples for (a) RNN and (b) LSTM, with 1 h time step and 3 time steps per sequence.
Fig. 12. Scale and noise effect on F1.
values of the ratio. LSTM, RNN, and GRU types are highlighted. The
horizontal black line on the top of the graph correspond to the 0.96
F1 value. In our study, RNN are the type of network that best supports
lower scale to noise ratio. Fig. 14 gives the partial ranked correlation
coefficients (PRCC) of F1 vs the sequence length, the scale to noise
ratio, and the time step for both LSTM and RNN. PRCC were obtained
using the sensitivity R package, largely based on Saltelli et al. (1999),
activating bootstrap option for uncertainty range assessment of the
PRCC. As expected, the scale to noise ratio is an important parameter.
Then, PRCC for time steps are positive, but not very important, and
consequently they might not be the first parameters to tune while
building our anomaly detector. At last, the effect of sequence length
is positive for LSTM, and negative for RNN, which is normal, because
RNN are well known to be prone for gradient vanishing (and which is
why LSTM were invented).

5. Conclusions

During normal reactor operation the activity of isotopes in the
primary coolant is a good indicator for defect detection. A physical
model for fission products release and primary activity calculation
was developed. It was used to generate a 2000 computations database
that trained an Artificial Neural Network for the purpose of building
a surrogate model dedicated to activity predictions given fuel defect
characteristics and primary coolant operating conditions, which then
allows precise and fast calculations on demand on a simple laptop.
A simple polynomial surrogate model of primary activity computation
was also built for normal (no defect) situations.
8

These models were then used to build activity sequences, that were
used to train recurrent neural networks autoencoders, the primary
activity values being the features. These recurrent autoencoders gave
100% precise results with the genuine results of the surrogate models
sequences, and a sensitivity study do noise and activity increases had to
be conducted. The important metrics was the ratio between the activity
increase and the noise. An influential parameter was the nature of
the autoencoder : RNN gave good results when the sequence length
was short, but were outperformed by LSTM when the sequence length
increased, and the best anomaly detector might then be a combination
of RNN autoencoder for short length sequences plus LSTM when longer
sequences of data are available.

Some comments for improvements or limitations in the current
work are:

1. The aim of this work was the development of a chain calculation
in order to test the capabilities of machine learning for defect
detection, and therefore the fact that the physical model was not
tested against experiments was not a problem and was not our
goal; but for real life use, this would be mandatory and probably
result in further improvements to the physical model;

2. the fact that background primary activity level due to tramp ura-
nium is lower than the activity level in case of defect made the
defect detection easier, because the possible confusion situations
were rare. In real life though, it is well known that sometimes
small defects are not detected due to their activity level being
lower than background primary activity;

3. other additional decay chains would probably add valuable in-
formation and improve the diagnostics;
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Fig. 13. Effect of scale to noise ratio on F1.
Fig. 14. Ranked partial coefficient correlation of F1 vs timestep, sequence length, and scale to noise ratio.
4. the providing of additional information can help to improve the
diagnostic in low scale to noise ratio area. The plant operating
parameters like let down flow rate or BRS removal rate are
generally well known and could be added as input features;

5. regarding defect characterization, the use of simple artificial
networks gave poor results (undescribed in this article), due to
slow convergence problems, but also to the too small amount
of available isotopes; it was not possible to test other architec-
tures during the course of this study, but convolutional neural
networks or LSTM could be tested to that end.
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