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Résumé

Pour la sûreté des réacteurs nucléaires en cas d’accident grave, l’un des
problèmes à fort enjeu est la rétention du combustible nucléaire fondu, appelé
corium, à l’intérieur de la cuve du réacteur (RPV). Une des façons de refroidir
le corium dans le RPV est de refroidir la cuve par l’extérieur. Cette stratégie
est appelée rétention du corium en cuve (IVR). En cas de stratégie IVR, on
s’attend à ce que le bain de corium soit entouré d’une croûte oxyde qui sera
en contact avec de l’acier fondu à la surface supérieure du bain et le long
de la cuve. Il a été observé dans les essais CORDEB (financés par IRSN,
CEA, EDF et AREVA), que cette croûte devient perméable, ce qui a un
impact sur l’épaisseur de la couche d’acier fondu située au-dessus. Pour la
stratégie IVR, une fine couche de métal au-dessus de la croûte peut conduire
à un flux de chaleur excessif vers la paroi de cuve, conduisant à une rupture
éventuelle de la cuve. Ce phénomène est communément appelé focusing effect.

Ce travail traite de l’étude de la dissolution d’une telle croûte afin d’estimer le
temps pour que l’acier s’écoule à travers elle. D’un point de vue thermochim-
ique, le corium est un mélange d’UO2; ZrO2 et Zr. Les interactions chimiques
dans le système quaternaire composé de U, Zr, Fe et O jouent un rôle
important dans la stabilité (ou non) de la croûte. Une étude thermochimique
faite dans le cadre de cette thèse montre ce système quaternaire peut être
réduit à deux systèmes ternaires dans chaque phase : (U;Zr)+O dans la phase
oxyde et (U;Zr) + Fe dans la phase métal, où les atomes Fe et O restent
respectivement dans les phases métal et oxyde, et les atomes (U;Zr) sont trans-
férés entre les phases, avec une proportion U=Zr approximativement constante.

De plus, il a été montré dans le présent travail que, dans ces systèmes
ternaires dans chaque phase, les interactions chimiques entre la croûte et
le liquide peuvent être modélisées comme la dissolution d’une zone poreuse
diphasique binaire par un liquide. Par conséquent, un modèle macroscopique
a été développé par prise de moyenne volumique des équations de transport
–masse, espèces, quantité de mouvement, énergie -, sur un volume élémentaire
représentatif (VER). Le système final d’équations différentielles a été fermé
en déterminant plusieurs relations empiriques pour la diffusivité effective des
espèces, les coefficients de transfert de masse, la perméabilité et la conductivité
effective. D’abord, le modèle a été résolu numériquement pour étudier la
progression de la dissolution dans un domaine 2D diphasique sans convection
dans la phase métal (vm = 0) avec plusieurs relations de fermeture pour les
coefficients de transfert de masse. Cette étude a été faite pour déterminer la
relation de fermeture la plus pertinente permettant de décrire la dissolution de
la croûte telle qu’observées dans les essais CORDEB. Cette étude de sensibilité
a révélé que, pour retrouver une microstructure similaire à celle observée sur
les essais CORDEB, le temps caractéristique de diffusion effective doit être
beaucoup plus petit que le temps de dissolution.
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Après avoir choisi le modèle de fermeture approprié pour le coefficient
de transfert de masse, le modèle macroscopique a été résolu pour les situations
qui existeraient dans le cas d’une stratégie IVR et donc d’une importance
significative. Dans un premier temps, le modèle mathématique est résolu pour
le cas avec et sans convection thermosolutale dans un domaine 2D ayant une
épaisseur égale de métal et de croûte, la croûte étant orientée verticalement.
Par la suite, les résultats numériques avec uniquement la convection ther-
mosolutale ont été obtenus pour un domaine 2D ayant une épaisseur de croûte
bien inférieure au cas précédent. Ce cas particulier a été étudié en orientant
la croûte à la fois dans le sens vertical et horizontal. Le cas d’une croûte
horizontale correspond au cas de la convection de Rayleigh-Bénard et présente
donc un intérêt particulier. À la fin du manuscrit, des conclusions générales
ont été tirées concernant la faisabilité de l’approche macroscopique en deux
phases adoptée dans la présente étude pour étudier la dissolution dans une
croûte de corium pendant la stratégie IVR et d’autres questions théoriques
liées à la modélisation de la dissolution ont discuté avec le résumé de quelques
études complémentaires.
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Abstract

With regards to the safety of the Nuclear Power Plants (NPP) in case of a
severe nuclear accident, one of the main challenges associated is the retention
of the molten nuclear fuel and reactor internals, called corium, within the
Reactor Pressure Vessel (RPV). One of the ways of cooling corium with in
the RPV is by cooling the vessel from outside. This strategy is termed as
In-Vessel Retention (IVR). In case of the In-Vessel Retention (IVR) strategy,
it is expected that the corium pool will be surrounded by an oxide crust,
which will be in contact with molten steel from top of the pool as well as from
sides of the vessel. It has been observed in CORDEB experiments (funded
by IRSN, CEA and EDF), that this crust becomes permeable, which has an
impact on the thickness of molten steel layer, lying on top of it. With respect
to the IVR strategy, a thin molten steel layer on top of the crust may lead to
an excessive heat flux to the Reactor Pressure Vessel (RPV), resulting in a
possible rupture or melt-through. Such phenomenon is commonly known as
focusing effect.

The present work deals with the study of dissolution of such crust in
order to estimate the time for molten steel to flow through the crust. Ther-
mochemically, corium is a mixture of UO2; ZrO2 and Zr. The quaternary
chemical interaction between U;Zr;O species and Fe plays an important
role in the stability (or not) of the crust. However, a thermochemical study
done within the framework of the present thesis, shows that the quaternary
system of U;Zr; Fe and O atoms, can be reduced to a ternary in each phase:
(U;Zr) + O in the oxide phase and (U;Zr) + Fe in the metal phase, where
Fe and O atoms remain in metal and oxide phases respectively, and (U;Zr)
atoms as a whole participate in the mass transfer across the interface, having
ratio of (U=Zr) atoms always constant.

Further, it has been shown in the present work that, in this ternary-in-
each-phase system, chemical interactions between the crust and liquid (Fe)
can be modeled as the dissolution of a binary two-phase porous region by
a liquid. Consequently, an up-scaled model for binary mixture has been
derived by volume averaging transport equations — Mass, Momentum,
Species and Energy transport — over a Representative Elementary Volume
(REV). The final system of Partial Differential Equations (PDEs) has been
closed by deriving several empirical relations for effective species diffusivity,
mass transfer coefficients, permeability and effective conductivity. At first
the model has been solved numerically to study the progress of dissolution
in a two-phase 2D domain without convection in the liquid-metal phase
(vm = 0) with several closure relations of mass transfer coefficient. This study
is done to identify the closure relation capable of accurately describing the
dissolution in the crust by molten steel same as observed in the CORDEB
experiments. This sensitivity analysis revealed that in order to reproduce the

iii



microstructure similar to the one observed in CORDEB experiment, the char-
acteristic time of effective diffusion has to be much less than that of dissolution.

After choosing the suitable closure model for mass transfer coefficient
the macroscopic model has been solved for the situations that would exist in
case of an IVR strategy and thus of significant importance. At first mathemat-
ical model is solved for the case with and without thermo-solutal convection
in a 2D domain having equal thickness of metal and crust, with crust being
oriented vertically. Afterwards the numerical results with only thermo-solutal
convection have been obtained for a 2D domain having a crust thickness
much less than the previous case. This particular case has been investigated
by orienting crust both in vertical and horizontal direction. The case of a
horizontal crust corresponds to the case of Rayleigh-Bénard convection and
hence is of specific interest. At the end of the manuscript general conclusions
have been drawn regarding the feasibility of the two-phase macroscopic
approach adopted in the present study for studying the dissolution in a corium
crust during the IVR strategy and further theoretical issues related to the
modeling of the dissolution has been discussed along with the summary of
some further studies.
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Chapter 1

Introduction

1.1 Severe Accident in Nuclear Reactors

This section summarizes the severe accident, also known as core degradation
accident in Light Water Reactors (LWR). Before stepping directly into the
accidental scenarios associated to the LWRs, it is better to understand the
basic design and functioning of the LWRs. Generally speaking, LWRs can be
categorized into three main categories, namely:

1. Pressurized Water Reactors (PWRs).

2. Boiling Water Reactors (BWRs).

3. Supercritical Water Reactors (SCWR).

Since the present thesis has been carried out in the context of the PWRs, the
further description will be constrained to the overview of the history, design
and functioning of the Pressurized Water Reactors (PWRs).

1.1.1 Brief History of PWRs

After the discoveries of fission, moderation and of the theoretical possibility
of a nuclear chain reaction, early experimental results, rapidly showed that
natural uranium could only undergo a sustained chain reaction using graphite
or heavy water as a moderator. While the world’s first reactors (CP-1,
X10 etc.) [5] were successfully reaching criticality, Uranium enrichment
began to develop from theoretical concept to practical applications, in or-
der to meet the goal of the Manhattan Project [70], to build a nuclear explosive.

In May 1944, the first grams of enriched Uranium ever produced, reached
criticality in the low power (LOPO) [18] reactor at Los Alamos in US, which
was used to estimate the critical mass of U235 to produce the atomic bomb.
However, LOPO cannot be considered as the first light-water reactor because
its fuel was not a solid Uranium compound cladded with corrosion-resistant
material, but was composed of Uranyl Sulfate salt dissolved in water. It is
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however the first aqueous homogeneous reactor and the first reactor using
enriched Uranium as fuel, and ordinary water as a moderator.

Later, following an idea of Alvin Weinberg, natural Uranium fuel ele-
ments were arranged in a lattice, in ordinary water at the top of the X10
[5] reactor to evaluate the neutron multiplication factor [56]. The purpose
of this experiment was to determine the feasibility of a nuclear reactor using
light water as a moderator and coolant, and cladded solid Uranium as fuel.
The results showed that, with a lightly enriched uranium, criticality could be
reached. This experiment was the first practical step toward the light-water
reactor.

After World War II and with the availability of enriched uranium, new
reactor concepts became feasible. In 1946, Eugene Wigner and Alvin Wein-
berg proposed and developed the concept of a reactor using enriched Uranium
as a fuel, and light water as a moderator and coolant. This concept was
proposed for a reactor whose purpose was to test the behavior of materials
under neutron flux. This reactor was called the Material Testing Reactor
(MTR)[72], and was built in Idaho at Idaho National Laboratory (INL),
and reached criticality on March 31, 1952. For the design of this reactor,
experiments were a necessity, so a mock-up of the MTR was built at Oak
Ridge National Laboratory (ORNL), to assess the hydraulic performances
of the primary circuit, and then to test its neutronic characteristics. This
MTR mock-up, later called the Low Intensity Test Reactor (LITR), reached
criticality on February 4, 1950 [40] and was the world’s first light-water reactor.

Immediately after the end of World War II, the United States Navy started
a program at ORNL, with the goal of using LWRs for nuclear propulsion for
submarines. Consequently the program lead to the development of the first
Pressurized Water Reactors (PWRs) [94] in the early 1950s, which in turn led
to the successful deployment of the first nuclear submarine, the USS Nautilus
(SSN-571). The Soviet Union also independently developed a version of the
PWR in the late 1950s, under the name of VVER [100]. While functionally
very similar to the American effort, it also has certain design distinctions from
Western PWRs.

1.1.2 Basic Design of PWRs

The basic design layout the typical PWR is shown in Fig. 1.1. In a typical
design concept of a commercial PWR, the following process occurs:

1. The core inside the reactor vessel creates heat.

2. Pressurized water in the primary coolant loop carries the heat to the
steam generator.

3. Inside the steam generator, heat from the primary coolant loop vaporizes
the water in a secondary loop, producing steam.

2 CHAPTER 1. INTRODUCTION
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Figure 1.1: Outline of a typical PWR [113]

4. The steam-line directs the steam to the main turbine, causing it to turn
the turbine generator, which produces electricity.

The unused steam is exhausted to the condenser, where it is condensed into
water. The resulting water is pumped out of the condenser with a series of
pumps, reheated, and pumped back to the steam generator. The reactor’s core
contains fuel assemblies that are cooled by water circulated using electrically
powered pumps. These pumps and other operating systems in the plant receive
their power from the electrical grid. If offsite power is lost, emergency cool-
ing water is supplied by other pumps, which can be powered by onsite diesel
generators.

1.1.2.1 Coolant

Light water is used as the primary coolant in a PWR. Water enters through
the bottom of the reactor’s core at about 548 K (275 °C) and is heated as it
flows upwards through the reactor core to a temperature of about 588 K (315
°C). The water remains liquid despite the high temperature due to the high
pressure in the primary coolant loop, usually around 155 bar (15.5 MPa 153
atm, 2,250 psi). In water, the critical point occurs at around 647 K (374 °C;
705 °F) and 22.064 MPa (3200 psi or 218 atm).

CHAPTER 1. INTRODUCTION 3
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1.1.2.2 Pressurizer

Pressure in the primary circuit is maintained by a pressurizer, a separate vessel
that is connected to the primary circuit and partially filled with water which
is heated to the saturation temperature (boiling point) for the desired pressure
by submerged electrical heaters. To achieve a pressure of 155 bars (15.5 MPa),
the pressurizer temperature is maintained at 345 °C (653 °F), which gives a
sub-cooling margin (the difference between the pressurizer temperature and
the highest temperature in the reactor core) of 30 °C (54 °F). As 345 °C is the
boiling point of water at 155 bar, the liquid water is at the edge of a phase
change. Thermal transients in the reactor coolant system result in large swings
in pressurizer liquid/steam volume, and total pressurizer volume is designed
around absorbing these transients without uncovering the heaters or emptying
the pressurizer. Pressure transients in the primary coolant system manifest
as temperature transients in the pressurizer and are controlled through the
use of automatic heaters and water spray, which raise and lower pressurizer
temperature, respectively.

1.1.2.3 Pumps

The coolant is pumped around the primary circuit by powerful pumps. After
picking up heat as it passes through the reactor core, the primary coolant trans-
fers heat in a steam generator to water in a lower pressure secondary circuit,
evaporating the secondary coolant to saturated steam — in most designs 6.2
MPa (60 atm, 900 psia), 275 °C (530 °F) — for use in the steam turbine. The
cooled primary coolant is then returned to the reactor vessel to be re-heated.

1.1.2.4 Moderator

Pressurized water reactors, like all thermal reactor designs, require the fast fis-
sion neutrons to be slowed down (a process called moderation or thermalizing)
in order to interact with the nuclear fuel and sustain the chain reaction. In
PWRs the coolant water is used as a moderator [54] by letting the neutrons un-
dergo multiple collisions with light hydrogen atoms in the water, losing speed
in the process. This "moderating" of neutrons will happen more often when
the water is more dense (more collisions will occur). The use of water as a
moderator is an important safety feature of PWRs, as an increase in tempera-
ture may cause the water to expand, giving greater ’gaps’ between the water
molecules and reducing the probability of thermalisation—thereby reducing
the extent to which neutrons are slowed down and hence reducing the reactiv-
ity in the reactor. Therefore, if reactivity increases beyond normal, the reduced
moderation of neutrons will cause the chain reaction to slow down, producing
less heat. This property, known as the negative temperature coefficient of re-
activity [31], makes PWR reactors very stable. This process is referred to as
self-regulating, i.e. the hotter the coolant becomes, the less reactive the plant
becomes, shutting itself down slightly to compensate and vice versa.
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1.1.2.5 Fuel

After enrichment, the Uranium dioxide (UO2) powder is fired in a high-
temperature, sintering furnace to create hard, ceramic pellets of enriched Ura-
nium dioxide. The cylindrical pellets are then cladded inside a corrosion-
resistant Zirconium metal alloy Zircaloy [81] which are backfilled with helium
to aid heat conduction and detect leakages. Zircaloy is chosen because of its
mechanical properties and its low neutron absorption cross section. The fin-
ished fuel rods are grouped in fuel assemblies, called fuel bundles, that are
then used to build the core of the reactor. A typical PWR has fuel assemblies
of 200 to 300 rods each, and a large reactor would have about 150�250 such
assemblies with 80�100 tonnes of uranium in all. Generally, the fuel bundles
consist of fuel rods bundled 14 × 14 to 17 × 17 [81]. The power produced by a
PWR is around 900 to 1600 MWe (Mega Watt electrical). PWR fuel bundles
are about 4 meters in length. Refuelings for most commercial PWRs is on
an 18�24 month cycle. Approximately one third of the core is replaced each
refueling, though some more modern refueling schemes may reduce refuel time
to a few days and allow refueling to occur on a shorter intervals. A Mitsbushi
PWR fuel assembly [88] is shown in Fig. 1.2.

Figure 1.2: A Mitsbushi PWR fuel assembly design [88].
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1.1.3 Accident Initiating Events in Nuclear Reactors

Initiating events can be classified according to their frequency of occurrence
[51], or in other words their probability. They can either be considered as
transients, or accidents. Accidents can be further subdivided into three main
categories:

1. Design-Basis Accidents (DBAs): they are postulated accident that a nu-
clear facility must be designed and built to withstand without loss to the
systems, structures, and components necessary to ensure public health
and safety.

2. Beyond Design-Basis Accidents (BDBAs): they are accident sequences
that are possible but were not fully considered in the design process
because they were judged to be too unlikely to occur.

3. Severe Accidents (SAs): they are the type of accidents that may challenge
the nuclear facility safety systems at a level much higher than expected.

The adopted analysis methodology for various events mainly differs in the use
of diverging acceptance criteria and also in the level of conservatism in the
analysis assumptions. A typical categorization for groups of initiating events
was proposed by [50] and [51], are as follows:

1. Reactivity induced accidents.

2. Decrease of reactor coolant flow.

3. Increase of reactor coolant inventory.

4. Increase of heat removal by the secondary side.

5. Decrease of heat removal by the secondary side.

6. Loss of coolant accidents (LOCAs).

7. Anticipated transients without SCRAM.

Among all of the above causes of a nuclear accident, LOCA will be elaborated
in detail further due to its relevance within the framework of this PhD.

1.1.3.1 Loss of Coolant Accident (LOCA) and Formation of Debris
Bed

Due to the loss of coolant during a severe accident, the core gets uncovered
and continues to heat up by the decay heat of the fission products in the
fuel. As a result, this heating up will cause cooling water to evaporate in the
core and it will decrease the water level in reactor pressure vessel. The time
range for the core to dry-out varies depending on the accident development
and the reactor design, yet the standard period of time is from two to few
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hours. The decay of heat produces a continued heat up of the fuel rods and
the other core materials. The fuel rod cladding is made of Zirconium material.
In this situation, when the temperature is higher than 1200 °C, an exothermic
reaction occurs between Zirconium and the super-heated steam, generating
around 1.3 MJ per 1 kilogram of Zirconium. This reaction, which is a byproduct
of the core heating and water evaporation, accelerates the temperature rise
and the core degradation process. Besides that, large amounts of hydrogen
are produced and may arrive to the reactor containment through the safety
valves of the reactor cooling system or through a leak. Knowing that the
reactor containment system is regarded as the 4th passive safety barrier (after
the reactor vessel and primary circuit components as 3rd, fuel rods cladding
as 2nd, and fuel pellets as 1st safety barrier), the failure of the containment
must be avoided. Any failure of the containment would lead to catastrophic
consequences in terms of radioactive release to the environment. Moreover, the
presence of such high concentrations of hydrogen entering the containment can
cause an explosive combustion of the gas mixture, eventually causing serious
damage to the containment. Investigations of the oxidation of core metal and
hydrogen generation processes can be found in details in [55] and [24].

Figure 1.3: Coolant behavior during cold leg small-break LOCA with Steam-
Generator depressurization in a PWR [110]

The Loss of Coolant Accident (LOCA), Fig. 1.3, is described by a water
leakage in the primary circuit of a nuclear reactor core due to a small or large
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pipe break. Once the leak is detected, the safety control rods, are inserted
into the core to stop the fission chain reaction. The safety injection systems
are then initiated to compensate the loss of coolant through the breach and to
ensure the long-term removal of residual heat that continues to accumulate in
the core due to the radioactive decay of materials.

Since the LOCA is a design-basis accident, the safety injection systems
are designed such that the accident is mitigated without causing damage to
the reactor core. However, if the loss of coolant is not compensated by the
safety injection systems (as what happened recently in Fukushima Daichi
accident), this incident leads to the depressurization in the primary circuit. If
the pressure continues to decrease, and drops below the saturation pressure of
water, water will then start to vaporize.

If this situation persists, the coolant in the primary circuit continues to
vaporize and the reactor core gets uncovered. Due to accumulation of residual
heat, the core deteriorates upon temperature increase and its safety is now
under question.

Core heating and oxidation of the fuel cladding by the coolant vapor
provoke core degradation and a total or partial melting of the hot fuel rods
forming a pool of molten fuel and cladding material collectively called corium.
This corium can relocate to the lower head of the reactor vessel compromising
its local integrity which if failed would allow the corium to reach the concrete
level which is the last confinement barrier. This will further provoke the
danger of a radioactive release to the environment.

Such an accidental scenario was considered impossible in the early times
but the severe accidents that occurred in the recent decades: Three Mile
Island in USA 1979) and the Fukushima accident in Japan 2011, urged the
need to develop awareness and investigate to acquire a deep knowledge of the
phenomenology of severe accidents in order to develop and define the means
of intervention to mitigate the progression of such events.

Severe accidents resulting from a LOCA (loss of coolant accident) have
occurred at the Three Mile Island unit-2 (TMI-2) [80] in the USA (shown
in Fig. 1.4), in 1979, and recently in Fukushima, Japan, in 2011, where 3
reactors were destroyed. The Chernobyl accident in 1984 had a different origin
(increase of reactivity).
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Figure 1.4: The Three Mile Island (TMI) reactor 2 after the meltdown. 1) Core
inlet A. 2) Core inlet B. 3) Cavity. 4) Core debris. 5) Crust. 6) Previously
molten material. 7) Lower plenum debris. 8) Region depleted in Uranium.
9) Ablated in-core instrument guide. 10) Hole in baffle plate. 11) Coating of
previously molten material on bypass region interior surfaces. 12) Upper grid
damaged top plate. [27]

1.1.4 Controlled Management of Severe Accident

In a core meltdown accident like LOCA, the main objective is to minimise
releases to the environment, exposure of the public to radiation, and long-term
contamination. To this end, integrity and leak tightness of the reactor
containment must be maintained. An illustration summarizing the overview
of the phenomenology of severe accident and leakage paths to environment is
shown in Fig. 1.5.

The risk of vessel failure can be minimised with early and sufficiently
high-flow injection of water into the vessel to remove the decay heat released
by the fuel. The availability of early injection is, however, unlikely since
it depends on the operator’s capacity, shortly after the beginning of fuel
degradation, to find a means of water injection that was not previously
available and to maintain it over time.
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In addition to water injection into the vessel, which may occur at a
later phase, reactor pit flooding increases the possibilities of maintaining the
corium in the vessel. The in-vessel corium retention strategy is thus based on
sufficiently early water injection into the vessel so that an already degraded
core can be cooled at least in part, and on the performance of an external
cooling of the vessel.

The decay heat must be evacuated out of the reactor containment to
avoid a slow pressure increase. Increased pressure would lead to containment
failure, unless there is a venting-filtration system, whose opening time and
efficiency in trapping aerosols and gaseous species determine the intensity of
environmental releases.

If the corium cannot be maintained in the vessel, dedicated measures or
devices protect the basemate. For the EPR, this entails spreading the corium
on a large enough surface area to decrease heat flux and promote cooling.
Whatever the approach taken (corium in or outside the vessel), water injection
and ongoing decay heat evacuation out of the containment are necessary, and
the associated risks in terms of containment failure, through pressurisation or
dynamic loads, must be examined.

Figure 1.5: Severe accident phenomenology and identification of leakage paths
to the environment. [107]
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1.1.5 Feasibility of In-Vessel Retention (IVR) strategy for
Corium Coolability

Fig. 1.6 illustrates an outline of an IVR strategy. Two main parameters affect
the integrity of the Reactor Pressure Vessel (RPV) under core melt accident
conditions with molten corium flowing to the bottom of the vessel:

1. The mechanical strength of the Reactor Pressure Vessel (RPV) at all
points, particularly in areas subjected to the highest thermal load.

2. The mechanical strength of the RPV to withstand a steam explosion
caused by an in-vessel corium water interaction.

Calculations have shown that after core degradation in a PWR, the corium
pool would take up a volume similar to the hemispherical reactor pressure
vessel bottom. The heat flux associated to this corium pool is extremely high
and can only be removed if there is efficient convection at the free surface of
the corium pool and the interfaces between the corium pool and the reactor
vessel. Even in this case, part of the vessel wall would melt and its residual
solid thickness would only be a few centimetres. It is very evident that if
this heat flux is not efficiently removed, the reactor vessel will be perforated
after only a few minutes. Ensuring vessel integrity therefore requires a way of
removing the heat flux from the corium pool at all points in the reactor vessel.
This condition is essential, but it is not the only criterion. The weakened
vessel also needs to continue to withstand the pressure. Given that the residual
thickness of the steel is reduced, the reactor vessel cannot resist high pressure
in the Reactor Coolant System (RCS), requiring the RCS to be depressurised.
The mechanical strength of the reactor vessel is therefore assessed at final
pressure, after depressurisation, taking into account the thermo-mechanical
loads caused by the corium pool. It also needs to be evaluated for a peak
pressure in the RCS. A pressure peak could, for example, result in an steam
production following the inflow of water from the RCS onto the corium pool
at the bottom of the reactor vessel [64].

To assess the mechanical strength of the reactor vessel when in contact
with a corium pool in core melt accident conditions, vessel behaviour is
studied under the worst-case conditions, which are no core reflooding, flow of
all corium mass to the vessel bottom and transient addition of the molten steel
to the corium pool. These are the conditions in which the highest heat flux is
received by the reactor vessel. In such conditions, the integrity of the pressure
vessel, will be determined by the peak heat flux distribution across the reactor
vessel, which will be in-turn governed by the stratification of corium pool.
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Figure 1.6: Outline of IVR [103]

1.1.5.1 Corium Stratification Governing Peak Heat Flux Distribution

The thermal behaviour of the stratified corium pool is the result of two types
of phenomenon. Firstly, the thermo-chemistry defines the segregation of
pool in different phases (oxide and metal), secondly, the thermal-hydraulics
determines by natural convection the heat flux at the pool interface [32].
In-vessel corium is a multi-phase and multi-component system in terms of
phases and species present respectively. Corium is a system of species like
UO2 (oxidised Uranium), ZrO2 (oxidised Zircaloy), Zr (un-oxidised Zircaloy)
and stainless steel elements (Fe, Ni, Cr).

At thermodynamic equilibrium, the miscibility gap in the U-O-Zr-Fe
quaternary system [104] leads two immiscible liquid phases that segregate
under gravity and results in a two layer stratified corium pool. The position of
metal layer in the short term is likely to be at the bottom because of the small
amount of molten steel and not fully oxidised corium pool. This situation is
shown in Fig. 1.7. In the long term the position of the metal layer is likely
to be on top and the corium pool almost fully oxidised. Figure 1.8 illustrates
this situation. The evolution of configuration in the corium pool was observed
within the framework of MASCA experiment. [8, 7]

Between these two equilibrium states of stratified corium, another inter-
mediate state can occur when there is a three layer stratified system in which
light metal is on top, oxidised corium is in center and heavy metal is at the
bottom. The formation of heavy metal during transient states of corium
layers evolution is the consequence of mass transfer between top steel layer
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Figure 1.7: Position of metal layer in the beginning [36]

and oxidised corium pool. Specifically when molten steel (mainly Fe) comes
in contact with molten corium then U and Zr diffuses in metal. In the oxide
phase this produces the phase separation and due to immiscibility of the two
phases there is the occurrence of a two phase interaction zone [36]. Such
configuration is shown in Fig. 1.9. U and Zr diffusing to metal phase makes
the density of the metal phase near the interaction zone heavier than that of
oxide. This heavy metal flows to the bottom as soon as its volumetric fraction
becomes large enough thus constituting a three layer stratified system. This
three layer phenomenon is illustrated in Fig. 1.10.

Figure 1.8: Position of metal layer in the long term [36]

Out of these most critical configurations for the reactor vessel is when
low-density molten metals (mainly containing steel) float on top of a pool
of high-density corium oxides (approximately 8000 kg/m3) (Fig. 1.8). This
configuration was also used to support the first external vessel cooling studies,
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Figure 1.9: Phase interaction zone [36]

Figure 1.10: Three layer stratified system [36]

in particular the AP600 concept. This configuration will be referred to as the
classical configuration hereafter.

For any given corium configuration, the heat flux distribution depends on the
conditions between the molten pool and the solid wall (either the crust or the
steel of the vessel) and the coefficients of heat transfer by natural convection.
The temperatures at the edge of a corium pool have been determined in various
studies, which are summarised in [106]. The main difficulty in determining the
temperatures is related to the fact that the melting materials are a mixture of
oxides and metals. These mixtures melt over a relatively wide range of temper-
atures that depends on the composition of the mixture. Such a mixture may
also contain a mushy zone, between the molten pool and the solid crust by the
vessel wall, which could affect heat transfer. Reference [106] has shown that in
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steady-state thermal-hydraulic conditions (i.e. when the heat fluxes have been
established), no such mushy zone can exist, because the pool composition
becomes homogeneous and will solidify in the same way as a pure body (with a
flat interface between the solid and liquid). In addition, when there is sufficient
external cooling, the solid crust has a constant thickness (i.e. the speed of
progress of the solidification front is zero). In this case, the temperature at the
liquid-solid interface tends towards the liquidus temperature corresponding
to the liquid mixture. There is a clear separation between the solid and
liquid. Experimental confirmation of this conclusion has been provided
by various tests (PHYTHER by the CEA (described in [106]), RASPLAV
(Kurchatov Institute, Russia) [2], and SIMECO (Royal Institute of Tech-
nology, Sweden). The solidification transient was studied by IRSN in 2005 [96].

The assumption of thermo-chemical equilibrium in determining the in-
terface temperatures also applies to the metallic layer of a stratified corium
pool. If the liquidus temperature corresponding to the composition of the
metallic layer (chiefly formed of Steel, Zirconium and Uranium) is lower
than the melting point of steel, the steel may be dissolved by the molten
metal. The interface temperature with the solid steel of the reactor vessel
establishes itself at this liquidus temperature. To put things simply, depending
on the composition of the liquid metal layer, the temperature of the inner
surface of the reactor vessel wall may be substantially lower than the melting
point of steel. Temperatures at the liquid-solid interface are calculated with
thermodynamic software (such as GEMINI) on the basis of the composition
of the liquid layer in question. The corollary of this choice is that the pool
is completely liquid and the heat transfer laws identified from tests with sim-
ulant materials (pure bodies like water) can be transposed to the real materials.

Heat transfer correlations have been deduced from tests with simulant
materials (BALI, COPO, ACOPO, RASPLAV-Salt, etc.) for various geometri-
cal configurations [105]. Efforts have also been made to validate CFD software
for natural convection. The results are encouraging, but further improvements
to the turbulence model are still required in order to improve the precision
of the results. The use of such software at the scale of a power reactor vessel
gives results with a wide uncertainty interval. Given the current state of
knowledge, it is preferable to use a simpler approach based on correlations
from the tests.

1.1.5.2 Focusing Effect

To give an order of magnitude, for the reference configuration shown in Fig.
1.11 the residual heat is distributed as follows, assuming that the entire mass
of oxides from the core is at the bottom of the reactor vessel:

1. Half the residual heat released from the pool of oxides is transferred to
the bottom of the vessel.
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Figure 1.11: Modes of heat transfer in corium. [103]

2. The other half is transferred from the pool of oxides to the upper layer
of liquid metals.

If there is no water inside the reactor vessel, the metal layer transfers most of
the heat received from the pool of oxides and the internal heat it releases to the
steel vessel wall, which is in contact with the liquid metal layer. Because the
outer surface of the metal layer is lower than the outer surface of the oxide pool,
this produces a higher heat flux along the metal than along the oxide: this is
called focusing effect. At the point of contact with the metal layer, the heat
flux is approximately inversely proportional to the thickness of the metal layer.
For a thickness of more than 50 cm (corresponding to approximately 50 tonnes
of steel), the heat flux is below 1.5 MW/m². Reactor vessel integrity is only
assured if the heat flux transferred to it can be removed by two-phase natural
convection from the cooling water outside the vessel. This naturally raises the
question of the critical flux on the external vessel wall (upper limit higher than
the heat flux that can be removed by external reactor vessel flooding).

1.1.5.3 Critical Heat Flux Condition for External Cooling Channel
in IVR

The critical heat flux associated with external cooling of the reactor vessel, in
particular in the area around the metallic layer, will therefore be the limiting
factor for heat removal from the vessel. Significant efforts have been made
around the world to determine this critical flux and to increase it. Various
tests have been performed (with 2D or 3D geometries and different wall
heating modes). The most interesting of these include ULPU tests (University
of California, Santa Barbara) [28], the SULTAN tests (CEA) [95] and tests by
KAIST (Korea Advanced Institute of Science and Technology, South Korea).
Also, more recently, similar tests were made by UJV for a semi-elliptical
geometry corresponding to VVER-1000 reactors (citation of Zdarek et al.).
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The first phenomenon that determines the critical flux value if the reactor pit
is reflooded is the water circulation by natural convection within the reactor
pit. Simply reflooding the reactor pit is not enough to cool the reactor vessel.

The water circulation needs to be organised such as to maximise liquid
flow-rate along the vessel walls. This implies the existence of a rising hot
leg (the reactor vessel) and a cold leg. The geometry of the vessel (radius
and spherical or elliptical shape of the vessel bottom) and the presence
of insulating materials around the vessel may affect water circulation and
pressure loss. For a geometry that maximises water circulation and in the
absence of elements to hinder flow, maximum critical heat flux is obtained
when the water flow-rate is high enough to limit boiling close to the wall in
the heating zone (no mass boiling in this area). However, above the heating
zone, boiling should be higher to create a strong enough chimney effect [119],
whereby the steam generated drives an increased liquid flow.

If water flow-rate is not high enough, there is film boiling around the
heating zone and the critical flux is reduced because the heat is removed
less effectively. Having said that, the water flow-rate cannot exceed the flow
created by the chimney effect related to mass boiling above the heating zone.
This maximum flow-rate corresponds to a maximum critical heat flux of the
order of 1.5 MW/m2, which can vary between 1. and 2.3 MW/m2, depending
on the optimization of the channel shape and the surface state of the vessel.
Analysis of the test results mentioned above show that the spread of estimated
critical flux values is often fairly high. Results from the ULPU tests give
values close to 2 MW/m2 (but with a wide spread of experimental results),
whereas results from the SULTAN and KAIST tests show critical flux values
on a vertical wall that range from 1.2 to 1.5 MW/m2. Various effects have
been studied in an attempt to identify provisions that could increase the
critical heat flux, in particular effects linked to the condition of the reactor
vessel’s outer surface. According to some authors, [22], a spray-on porous
metal coating on the outer surface of the reactor vessel could significantly
increase the critical flux (by a factor of up to 2). However, this conclusion is
not universally shared and experimental verification is still required.

1.1.6 Dissolution of the Crust Aggravating Focusing Effect

CORDEB experiments (described in the next chapter 2) have shown that the
thickness of the top metal layer can not be assumed to be constant because
of the transfer of molten steel through the channels in the crust, due to the
dissolution of the crust at high temperature (above 2100 K) by the molten steel.
This leads to a significant difficulty for the determination of the maximum heat
flux imposed to the vessel by the metal layer. A slow dissolution of the crust,
leading to slow mass flow of molten steel through the crust will result in a
increasing focusing effect to the vessel wall in time. On the contrary, a fast
dissolution will impose less severe focusing effect on the vessel wall. Question of
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stability of the crust under dissolution is another important aspect. Situation
of fully dissolved crust will be more benign than the stable crust configuration.
Nevertheless whatever may be the case, phenomenon of dissolution will play
a key role in the kinetics of mass transfer of molten steel through the crust and
thus in turn in the determination of the focusing effect. This makes the detail
study of dissolution of prime importance.

1.2 Scope of the Thesis

The present work can be broadly categorised into two main aspects, namely:

1. Mathematical modeling of the dissolution.

2. Thermochemical study of the quaternary system (U;Zr; Fe;O).

In particular, the thesis looks into the issue of modeling of mass transfer of
molten steel through the oxide crust. In the present work this problem has
been modeled as a phenomenon of dissolution of a ternary oxide crust by
molten steel. Such an analysis is considered to be a two-phase transport phe-
nomenon with a complex evolution of the interface between solid and liquid
phases. Thus, the thesis is built upon a suitable mathematical method to deal
with this two phase transport problem. The thesis employs a rigorous thermo-
chemical study for the investigation of quaternary chemical equilibria in the
quaternary system (U;Zr; Fe;O), which backs up the mathematical modeling
by providing important simplifications. Thesis also addresses the problem of
fast calculations of equilibrium compositions of the species in CFD codes used
for the analysis of the severe accidents in the Nuclear Power Reactors (NPP),
by deriving a simplified thermochemical model. Further, the thesis presents the
numerical results for the various cases. At first the case of diffusion governed
dissolution in a 2D crust is presented along with its qualitative comparison
with crust morphology observed in CORDEB experiments. Finally, the case of
advection-diffusion is studied in 2D, broadly covering the effect of the convec-
tion on the dissolution of the crust and also on the associated heat transfer.
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Chapter 2

Experimental Observations of
Dissolution

The first clear evidence of molten steel interacting with the solid oxide crust
was observed in CORDEB experiments. Those experiments are described in
the following sub-section. Complementary experiments VITI-CORMET were
performed to provide more data about the kinetics of dissolution and the phys-
ical mechanisms governing it. They are also described in a sub-section. Finally,
the consequences of that chemical interaction for the safety analysis in case of
IVR are briefly discussed.

2.1 CORDEB and CORDEB-2 Experiments

CORDEB (CORium DEBris) experiments [4] were performed in NITI Russia
and funded by IRSN, CEA, EDF and Framatome. The experiments were
performed with prototypical nuclear materials UO2 + ZrO2 + Zr to analyse
the three-liquid oxidic-metallic corium pool. The first tests series of CORDEB
program was devoted to study a possible reactor configuration where the
oxide/metal pool, resulting from the melting of oxidic corium and steel
internal structures, would be cooled from the top by radiative heat transfer
towards the core plate and the top of the vessel leading to the formation of
an oxidic crust and where molten steel would arrive above this crust due to
further melting of the vessel wall and upper structures. A first objective was
to determine if such a configuration would be stable or if the crust would
let molten steel go through it (by dissolution or through cracks). A second
objective was to determine the kinetics of mass transfer through the crust.

Therefore, two tests, CD1-01 and CD1-02, were performed in three steps.
First, a prototype UO2 � ZrO2 � Zr corium (oxidation index Cox = 0:3,
U=Zr = 1:2) was formed. Second, a first portion of stainless steel was added
and, when the thermo-chemical equilibrium was reached, the oxidic crust was
formed by decreasing the temperature of the top. Third, the second portion
of stainless steel was added and the established three-layer pool was exposed
for unchanged furnace parameters for approximately one hour in CD1-01 and
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three hours in CD1-02. The relative steel mass was around 0:15 after the first
steel addition and 0:29 after the second one. These tests were performed in
an inert atmosphere. The complete description and the results and material
analyses of both tests are detailed in [4]. The RASPLAV-3 test facility of the
RASPLAV platform was used. Corium was heated up and melted using the
technology of induction melting in the cold crucible in the argon atmosphere.
Fig. 2.1 shows the schematic of the induction furnace and oxidic-metallic
pool at the moment of formation of the initial two layer structure. The post
test ingot structure of CD1-02 experiment, shown in Fig. 2.2, shows the
formation of crust between top metal layer and bottom oxide corium. In
CD1-02 experiment, the presence of two Heavy Metal (HM) layers, namely
HM1 and HM2, was observed.

Figure 2.1: CORDEB experiment setup. 1 – inductor; 2 – pipes of crucible
sections; 3 – multi-section water-cooled bottom calorimeter; 4 – quartz tube;
5 – water-cooled electro- magnetic shield; 6 – water-cooled furnace cover; 7 –
port for steel addition, sampling and steel layer temperature mea- surement
by the W-Re thermocouples; 8 – quartz window in the pyrometer shaft; 9 –
pyrometer; 10 – video camera; 11 – cooling water in and out; 12 – gas in and
out; 13 – oxidic part of corium pool; 14 – metallic part of corium pool; 15 –
oxidic crust; 16 – surface steel layer [4]

Mass and composition of upper metal ingots of both tests indicate that
thermo-chemical interactions between upper steel and oxidic crust has oc-
curred because U and Zr are present in the upper steel. Both upper metallic
ingots have similar composition but the percentage of upper steel which
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went through the crust is much higher in CD1-02 (57:2w-%) than in CD1-01
(7:4w-%). After the first steel addition, some Uranium and Zirconium relocate
in the metallic phase and the oxidation index of the oxidic layer increases up
to Cox = 0:78. However, during the first steel addition, some steel relocates
in the oxidic layer and, the thermo-chemical equilibrium calculated with
NUCLEA� 18_1 database at 1600�C with the whole inventory of the oxidic
layer gives a three-phase equilibrium containing the same UO2 �ZrO2 phases
and a liquid phase. This liquid phase contains all steel atoms but its major
part is made of Zr (around 38mol-%) and U (around 28mol-%). And thus,
this liquid phase represents around 4w-% of the oxide crust.

Looking at the micro-structure of the crust in Fig. 2.3 in CD1-02 ex-
periment, channels of molten metal can be seen in black color and oxide
crust is represented by grey color. This shows that in CORDEB experiments,
molten steel was able to dissolve the crust at high temperature of around 2100
K and above, creating the micro channels of molten metal. Tests performed at
lower temperature of the crust (1800 K) show that dissolution is not visible.
Therefore, dissolution appeared only at high temperature (above 2000 K),
which corresponds to the typical situation in case of IVR.

Figure 2.2: Post test ingot structure of CD-02 experiment. [4]

Regarding the kinetics, CD1-01 and CD1-02 give two pictures of the same
configuration at two different times. Formation of channels seems to last a
little less than one hour as only 7:4w-% of the second steel addition was
transferred through the crust in CD1-01 whereas 57:2w-% was transferred in
CD1-02. This transferred metal formed droplets which joined the heavy metal
which became lighter and went up in the oxidic pool.

Based on the post test analysis of CD1-01 and CD1-02 ingot fragments, the
following mechanism of the transient processes is assumed in [4]: During and
after the molten steel addition to the crust, the molten steel starts to dissolve
the crust, which consists of the crystallized sub-oxidized corium melt. This
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Figure 2.3: Micro-structure of the crust after dissolution, showing oxide crust
in Grey and molten steel channels in Black. [4]

interaction first brings the formation of liquid metallic phase in the crust, fol-
lowing these interactions open channels are formed as shown in Fig. 2.3. These
channels connect the metallic melt above the crust with the oxidic melt under
it. The mass transfer of molten steel and oxidic melt component goes through
these transport channels. This results in the formation of mixed metallic-oxidic
zone with prevailing liquid metallic phase in the bottom (hot) crust layer. Af-
ter the U accumulation in the metallic part of that zone, which is caused by the
redistribution of U and oxide components, the metallic melt becomes heavier, it
separates from the crust and, as droplets, relocates to the oxidic-metallic melt
and joins the HM layer. Also, Light Metal (LM) can be transported through
cracks formed in the crust because of mechanical stresses. These processes lead
to increase the volume of liquid under the crust, which separates the oxidic-
metallic pool and LM layer. On the other hand, as a result of components
redistribution the oxide phase crystallizes on the crust upper boundary (which
is colder), while the crust dissolves on the lower (hotter) boundary. As a result
the crust gradually shifts in upper direction without own average thickness
changing. After a longer exposure at a certain moment of time, due to the
increase of the SS component fraction (mass) and decrease of the U fraction in
the HM layer, its density becomes lower than that of oxide, and the inversion
of oxide and HM layers position takes place. Fig. 2.5 shows the aforementioned
process.

2.2 VITI-CORMET Experiments

The VITI-CORMET experiments were performed by CEA in Cadarache
research center. Following the first observations made on CORDEB tests,
CEA investigated in more details the interaction of molten steel with a
solid phase made of UO2 + ZrO2 + Zr. The objectives were to identify the
characteristic structures appearing during the interaction (like preferential
channels), to measure local compositions of the phases and to estimate the
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(a) CD1-01 ingot axial section (a) and schematics (b)

(b) CD1-02 ingot axial section (a) and schematics (b)

Figure 2.4: Extracted from [4]

kinetics of dissolution and the kinetics of progression of the dissolution front.
Those experiments are still on-going and publications are limited. The only
reference used here is [87]. The facility is represented in Fig. 2.6. It is made of
a Tungsten crucible where an oxide crust is formed at the bottom. It is heated
by induction, providing quasi isothermal conditions, in the range between
1600�C and 1800�C. The U=Zr ratio is CUZ = 1:2. The oxidation index of the
solid phase (crust) is Cox = 0:7. The interaction is initiated by depositing a
Steel droplet (2 gram) over the solid crust. Local examinations of the inter-
action zone show two different modes of progression of the liquid steel within
the oxide crust: penetration through small preexisting cracks and dissolution
of the crust. The patterns observed in the dissolution zones are very similar
to the one already observed in CORDEB tests. They are shown in Fig. 2.7.
The authors of VITI-CORMET tests have identified three different zones. In
the area close to the metal layer, there are discontinuous small islands of oxide
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Figure 2.5: Illustration of the molten steel interaction with oxidic crust and
oxidic pool. [4]

crust surrounded by liquid metal. Further into the crust, an intermediate
zone shows an interconnected channel structure filled by metal between large
discontinuous islands of oxide crust. Then, at the end of the interaction zone,
interconnected metallic inclusions are observed within a continuous oxide
phase. Following [87], this behaviour indicates a heterogeneous penetration
of molten metal through the crust and thus existence of preferential paths or
channels. This supposes the existence of fast diffusion pathways (grain bound-
aries, porosities). The formation of (U;Zr) metallic pockets by reduction of
(UZr)O(2�x), may also be assumed, as already observed by [58] in the disso-
lution of UO2 by molten Zr. The preferential extraction of Zr is also observed.

From the kinetics point of view, it was observed a progressive decrease
of the dissolution rate up to an apparent stop after 6 hours of exposure. This
indicates that one of the phases has reached its equilibrium composition or
that diffusion of an element has become very slow (due to a very low gradient
of composition for example).
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Figure 2.6: VITI-CORMET experimental setup. [87]

2.3 Influence of Temperature and Oxidation De-
gree of the Crust

In the other tests of the CORDEB-2 series, the temperature was varied from
very low values (1470 °C) to quite high values (2150 °C). It was found that, at
low temperature, there is no transfer of Fe through the crust which remains
almost intact. No metallic channels are visible in that case. But there is
a transfer of U and Zr towards the top metal layer. On the contrary, at
high temperature, all the steel elements are quickly transferred through the
crust (in less than 45 mn for the highest temperature). This indicates that
dissolution strongly depends on temperature.

The oxidation degree of the crust also has an influence on the kinetics.
The higher the oxidation degree, the slower the mass transfer through the
crust. This is probably related to the volume fraction of metal in the crust.
At thermochemical equilibrium with the oxide phase, the metallic phase has a
lower volume fraction when the Oxygen content increases. It is even zero when
the oxide is stoichiometric (atomic fraction near 0.667). This is illustrated in
Fig. 2.8.
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Figure 2.7: VITI-CORMET visualization of the interaction zone and dissolu-
tion patterns. Solid oxide in Light Grey and Liquid metal channels in Black.[87]

Figure 2.8: Volume fraction of metal within the oxide phase as a function of
Oxygen mole fraction. Dark Grey represents oxide and light grey metal. [4]
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2.4 Summary and Consequences for Modelling
and Safety Studies

It was observed in both CORDEB and VITI-CORMET experiments that
dissolution of the crust is associated to the formation and growth of metal
channels inside the crust. This means that the diffusion of Fe in the liquid
metal may play a limiting role in the dissolution process. The observed impact
of the oxidation degree of the crust indicates the diffusion of Oxygen in the
solid phase may also play a limiting role. The strong reduction (or even the
absence) of dissolution observed when decreasing the crust temperature seems
to be a confirmation that the process is driven by molecular diffusion of Fe
and O in the liquid and solid phases respectively (since diffusion coefficients
decrease when temperature decreases).

Boundary conditions also play an important role, in particular the con-
ditions on the side of the crust which is not in contact with steel. If there is no
way for Oxygen to go out of the crust, this will limit the dissolution. Similarly,
if there is not enough convection in the liquid metal to avoid saturation of the
metal near the crust, dissolution may be limited.

From a modelling point of view, this means that a relevant model should
include the diffusion of several species (at least Fe and O) and consider
relevant boundary conditions on both sides of the crust. This implies that
taking into account the convective motion in the metal is also necessary, as
it determines the boundary condition on one side of the crust. With respect
to the metal channels formed in the crust, their scale seems to be related to
the grain size but it may not be exactly proportional. As illustrated in Fig.
2.8, the channels seems to have a more or less periodic structure. This is a
difficult point to model.

At the reactor scale, the extrapolation of these results implies that molten
steel would be able to flow through the crust if it is not fully oxidised. This
has a consequence on the relocation of molten steel in the pool, in particular
for steel that is melted at the inner surface of the vessel wall which is always
in contact with an oxide crust. An important consequence is that a three-layer
pool configuration in a reactor is possible, at least during the time that is
necessary for Fe to be transferred through the crust. During this time the
focusing effect may be increased and the heat flux to the vessel wall may be
high.
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Mathematical Modeling

3.1 Phenomenon of Dissolution

Before moving on to the mathematical aspects involved in the modeling of
dissolution, it is worth to get a primer of the phenomenon of dissolution and
the basic thermodynamics associated with it. The phenomenon of dissolution
is an important naturally occurring phenomenon in nature. It is a fundamental
phenomenon that governs some of the simplest things we do in our day to
day life, like mixing of sugar in tea, salt in water, chocolate in milk, so on
and so forth. The physics associated with the phenomenon of dissolution is
the change of state. The process of such change of state encompasses myriad
branches of sciences and engineering namely thermodynamics, chemistry,
physics of transport of chemical species etc. The dissolution results in the
modifications of thermodynamic variables like temperature, concentration
etc., which leads to the evolution of the equilibrium state of matter from a
solid state to a liquid state below the melting point of the solid.

The understanding of the dissolution phenomenon is crucial for plenty
of applications, particularly for the geophysical mechanics of the planets,
for the evolution of the fractures in the soil, for the extraction of petroleum
products from the cavities within the earth and also for the study of the
contamination of the aquifers by the partially miscible fluids or Non-Aqueous
Liquid Phase (NAPL) such as hydrocarbons.

Another example is the dissolution of NaCl by water. On addition to
water, the Na+ part of NaCl is attracted to the oxygen side of the bi-polar
water molecules, while the Cl� part is attracted to the hydrogen’s side of the
water molecule. This causes the sodium chloride to split in water, and the
NaCl dissolves into separate Na+ and Cl� atoms. A hydration shell is formed
around them which prevents Na+ and Cl� to form ionic bonds.

Metallurgy is another field where phenomenon of dissolution can be
very easily encountered. Most of the processes associated are related to the
dissolution of binary or ternary alloys, ceramic materials etc. by liquid metals

28



CHAPTER 3. MATHEMATICAL MODELING

at a temperature much lower than the melting point of the constituent solutes.
Several studies related to the dissolution of the alloys by the molten metals
has been documented in [47, 61, 82], [83, 84], [74, 86], [85, 102] and [101, 120].

3.1.1 Thermodynamics of Dissolution

In this section thermodynamical aspect of the dissolution at constant tempera-
ture is discussed with respect to the binary alloys. To keep the analysis simple
binary alloy having isomorphous phase diagrams has been considered. One
such system exhibiting the isomorphous characteristics is shown in Fig. 3.1.
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Figure 3.1: A typical binary isomorphous phase diagram (T-C) shown with an
equivalent free energy Vs. composition (G-C) diagram at To

The dashed purple line in the Fig. 3.1 represents the composition in T-C and
G-C diagrams at which the Gibbs energy of liquid and alpha phase is identical.
Further, If an alloy initially solid, having a composition CB – which falls on the
left side of the G� = GL line – is chosen, and kept at the temperature To, the
G-C phase diagram then tells that such an alloy with CB composition can not
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stay completely solid at To. This is evident from the G-C diagram showing
that on the left of the G� = GL line, GL < G�. Thus, making liquid more stable.

However, at the temperature To, the complete solid alloy will not trans-
form into liquid even though GL < G�. This is because at the temperature To

and composition CB, the minimum Gibbs free energy of the mixture will be
given by the green dot on the common tangent represented in red in G-C
diagram. This shows that a solid alloy of CB composition has to split into a
solid phase, having composition (CB1)� (represented by right red dot) , and
into a liquid phase, having composition (CB2)L (represented by left red dot).
Consequently, liquid phase of composition (CB2)L has to nucleate out of the
solid initially having a composition CB.

Apparently, it is interesting to see that because a liquid phase with
(CB2)L composition, nucleating out of the solid with CB composition can only
be in equilibrium with solid of (CB1)� composition, thus, a local equilibrium
at the interface between liquid and solid has to be maintained. In other words,
the solid in the very close vicinity of the liquid will have the composition
(CB1)� and rest of the solid still be having composition CB. To even out the
composition of the solid from CB to (CB1)�, long range diffusion has to take
place. This will result in the growth of liquid phase till the equilibrium is
reached.

C

Radius (r)ro r1 r2 r3 r4 r5

to

t1

t2

t3
t4
t5

CB

(CB2)L

(CB1)α

Figure 3.2: Growth of liquid phase out of the solid phase
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Fig. 3.2 shows an initial (time = to) nucleus of liquid of radius ro, with (CB2)L
composition, is in local equilibrium with solid of composition (CB1)� at the
interface. The rest of the solid still being at initial composition CB. Further it
can be seen from Fig. 3.2 that to maintain equilibrium composition of (CB1)�
in whole solid, mass transfer takes place into the liquid phase, making it
grow, and thus concentration in the solid phase eventually comes down to the
equilibrium value of (CB1)� from initial CB. This process of redistribution of
mass betweeen two phases resulting in the increase of the liquid phase at the
constant temperature of To, is termed as Dissolution.

3.2 Past Numerical Studies For Dissolution of
Multi-component Mixtures

Several mathematical models for the kinetics of dissolution of alloys have been
developed over time. Most of the work for the modeling of dissolution kinetics
has been carried out by considering the dissolution as Stefan problem [108].
Works of Whelan [53] incorporate the long range diffusion for describing the
dissolution kinetics. His model was based on the analytical solutions for the
interfacial positions as a function of time. Crank [26] in his work has also
worked out the analytical solutions for the time dependent interfacial position.
Similarly the effect of the long range diffusion had also been been incorporated
in the works of Baty et al. [63] for studying the dissolution of CuAl2 in an
Al-4Cu alloy and in the works of Tundal and Ryum [112] for studying the
dissolution of particles in binary alloys. These authors have applied Finite
Difference Model with bounded volume for studying dissolution. Nolfi [78]
model incorporated the non-equilibrium conditions at the interface but lacked
the interface migration. The non-equilibrium condition in [78] was modelled
as Robin boundary condition at the interface and the solution was in form
of Fourier series. Aron and Kotler [1] had combined the Whelan’s solution
with the incorporation of the Gibbs-Thomson effect to deal with the influence
of curvature on the movement of interface. In the works of [1] the Robin
boundary condition of [78] was transformed to the Dirichlet condition.

The kinetics of dissolution transformations with mechanical and chemi-
cal forces exerted on the interface had been studied by Svoboda et al. [109].
Their approach is based on the thermodynamics concepts that can be found
in [48]. The dissolution of multi-component particles in multi-component
alloys has been studied by Hubert [49] and Vitek et al. [118]. Reiso et al. [93]
investigated the dissolution of Mg2Si alloys in the aluminum alloys. Works
of Vermolen et al. [117] has given mathematical insight in to the qualitative
behavior of solutions of Stefan problem associated with the particle dissolution
in multi-component alloys. Further they have used Finite Element method
based on the moving grid method to analyse the Stefan problem. Other
studies conducted by Vermolen on dissolution kinetics can be found in [115,
116]. Phase field modeling [73] for the dissolution kinetics has been adapted
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in the works of [60] and [44]. Dissolution study of ZrO2 by molten Zircaloy
using Moving Particle Semi-Implicit (MPS) method can be found in [21].

Dissolution of multi-component mixtures being a two-phase transport
phenomenon, has some inherent mathematical modeling issues, which are
related to the accurate representation of the geometry of the evolving interface
between liquid (dissolving phase) and solid phases (dissolved phase). Effect
of evolving shape of the interface on dissolution has been studied in [68, 77,
6]. It has been seen that the effect of interface topology during dissolution
process has been often taken care of, in studies concerned with the modeling
of dissolution of porous crystals. With regard to the dissolution of porous
crystals, macroscopic models are given in [33, 35, 59, 69, 30]. The analysis in
these papers however does not take into account the pore geometry of evolving
micro-structures. This missing link of representation of interface topology at
pore scale for porous media dissolution can be found in macroscopic models
developed by [79, 46].

In recent years, dissolution studies of multi-component mixtures has also been
quite effectively done with the use of up-scaled macroscopic models primarily
developed for studying micro-structure evolution in binary mixtures during
the process of solidification of dendritic [43, 16, 17], columnar and equiaxed
mushy zones [98, 99, 97]. Belloni et al. [13, 14] in their studies of dissolution
of ZrO2 by molten Zr has used an up-scaled mathematical model, which was
inspired from the solidification model developed by Bousquet-Mélou et al. [43,
16, 17] for quantitative treatment of solidifying dendritic mushy-zone in case
of binary mixtures. The efficacy of these solidification models for describing
dissolution lies in the type of up-scaling procedure chosen for their derivation.
All the aforementioned solidification models [43, 16, 17, 98, 99, 97, 13, 14]
have been derived using an up-scaling procedure called volume averaging
[124].

3.3 Corium Crust Modeled As Two-Phase Mushy
Zone

It is observed in the CORDEB experiment [4] that dissolution of the crust
creates channels of molten steel in the solid oxide crust. Owing to such a
solid-liquid morphology of the crust, it has been modeled as porous medium
in the present study. In general from the physics point of view the dissolution
in the present work is modeled as two-phase transport phenomenon of mass,
momentum, species and energy in the reacting porous medium. Due to this the
modeling issue lies in the accurate micro-macroscopic description of transport
phenomenon in the crust. Among all the mathematical methods summarised
in the section 3.2, the method of volume averaging has been chosen in the
present work to derive an up-scaled mathematical model for study of dissolu-
tion in the crust. It is however shown in the studies of [15, 75, 19] that mixture
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theory can be used to postulate a macroscopic system of equations without any
reference to the microscopic system of equations. Although it may be possible
to deduce the necessary terms in the macroscopic model without any sort of
averaging of microscopic equations, there are various advantages to the aver-
aging procedure of microscopic model, as discussed by [29]. In a nutshell it
can be summarised that due to its ability to incorporate complex microscopic
information in the averaged system of equations and effective transport prop-
erties (like permeability, thermal and species diffusivity and mass diffusion
coefficients), the method of volume averaging is often chosen for the derivation
of macroscopic models.

3.4 Volume Averaged Mathematical Model For
Describing Dissolution In Quaternary System
(U, Zr, Fe, O)

The following analysis is concerned with the volume averaged [124] model
development for the study of dissolution of ternary (U, Zr, O) solid crust by
molten steel (mainly Fe). Since the mathematical analysis is based on the
theoretical work done by Bousquet-Mélou et. al. [43, 16, 17] for the solidifica-
tion of binary columnar dendritic mushy zone, the complete derivation of the
model is not given in this work and the rigorous mathematics can be referred
from works of Bousquet-Mélou et. al. [43, 16, 17] and Roux et. al. [98, 99, 97].
However, for the sake of understanding of physics behind the mathematical
modeling, the important assumptions, geometrical restrictions, important
mathematical theorems are properly invoked throughout this analysis either
in the main document or in the Appendices.

The mathematical modeling is formally introduced next, starting with
the writing of microscopic Partial Differential Equations (PDEs) for mass,
momentum, species and energy, and later moving on to the macroscopic
volume averaged model from this microscopic system of PDEs.

3.4.1 Microscopic System of PDEs, Satisfying Conserva-
tion at Local Level

A two phase crust of length scale ls is considered as shown in Fig. 3.3. Within
this crust, a Representative Elementary Volume (REV) of characteristic length
scale (�) is taken as averaging volume, and following assumptions has been
made:

1. Thermochemical equilibrium exists at the interface between oxide and
metal phase i.e.

�iox = �im (i = U;Zr; Fe;O) at Amox (3.1)

Tox = Tm at Amox (3.2)
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where: Amox is the interfacial area between oxide and metal phase. �ik is
the chemical potential of an ith species in the kth phase.

2. The advection of solid oxide phase (ox) is not considered.

vox = 0 (3.3)

3. Flow of metal phase (m) within the porous matrix has been considered
to be laminar and incompressible.

r · vm = 0 (3.4)

System (ls)

Oxide

Metal

REV (λ) Oxide
Oxide

Metal

êmox

λ << ls

Amox

Amox

Ame

Figure 3.3: A two phase liquid metal and solid oxide crust with zoomed in
Representative Elementary Volume (REV).

With this, the system of conservation equations for mass, momentum and
energy at microscopic scale for four species (U;Zr; Fe;O) is written as:

3.4.1.1 Solid Oxide Phase (ox):

Mass Conservation
@

@t
(�ox) = 0 (3.5)

Energy Conservation

@

@t
(�oxHox) = �r ·qox + �ox _Qox (3.6)

Species Conservation
@

@t
(�oxC

U
ox) = �r ·JUox (3.7)
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@

@t
(�oxC

Zr
ox ) = �r ·JZrox (3.8)

@

@t
(�oxC

Fe
ox ) = �r ·JFeox (3.9)

@

@t
(�oxC

O
ox) = �r ·JOox (3.10)

3.4.1.2 Liquid Metal Phase (m):

Mass Conservation
@

@t
(�m) +r · (�mvm) = 0 (3.11)

Momentum Conservation

@

@t
(�mvm) +r · (�mvmvm) = �rPm + �mr2vm + �mg (3.12)

Energy Conservation

@

@t
(�mHm) +r · (�mHmvm) = �r ·qm + �m _Qm (3.13)

Species Conservation

@

@t
(�mC

U
m) +r · (�mCU

mvm) = �r ·JUm (3.14)

@

@t
(�mC

Zr
m ) +r · (�mCZr

m vm) = �r ·JZrm (3.15)

@

@t
(�mC

Fe
m ) +r · (�mCFe

m vm) = �r ·JFem (3.16)

@

@t
(�mC

O
m) +r · (�mCO

mvm) = �r ·JOm (3.17)

where: Jik = ��kDi
krCi

k and qk = ��krTk (i = U;Zr; Fe;O; k = ox;m) are
diffusive and conductive fluxes given by Fick’s and Fourier laws [52] respec-
tively.
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3.4.1.3 Continuity of Fluxes at the Interface Between Oxide and
Metal:

êmox ·
h
� �oxwmox

i
= êmox ·

h
�m(vm �wmox)

i
at Amox (3.18)

êmox ·
h
(��oxCU

oxwmox) + JUox
i
= êmox ·

h
�mC

U
m(vm �wmox) + JUm

i
at Amox

(3.19)

êmox ·
h
(��oxCZr

ox wmox) + JZrox
i
= êmox ·

h
�mC

Zr
m (vm �wmox) + JZrm

i
at Amox

(3.20)

êmox ·
h
(��oxCFe

ox wmox) + JFeox
i
= êmox ·

h
�mC

Fe
m (vm �wmox) + JFem

i
at Amox

(3.21)

êmox ·
h
(��oxCO

oxwmox) + JOox
i
= êmox ·

h
�mC

O
m(vm �wmox) + JOm

i
at Amox

(3.22)

êmox ·
h
(��oxHoxwmox) + qox

i
= êmox ·

h
�mHm(vm �wmox) + qm

i
at Amox

(3.23)

where: wmox is the velocity of the dissolving/solidifying interface between the
solid-oxide phase and liquid-metal phase, Amox is the interfacial area vector
and êmox is the unit normal vector at the solid liquid interface, pointing from
solid oxide phase to liquid metal phase, as shown in Fig. 3.3.

3.4.1.4 Relationship Among the Diffusive Fluxes of Quaternary
Species (U;Zr; Fe;O)

One immediate problem which is encountered while moving from the volume
averaging of binary microscopic system of PDEs [43, 16, 17, 98, 99, 97, 76] to
ternary or even quaternary system of PDEs, is the knowing of the relationship
among diffusive fluxes of species. The simplicity of binary system is, that the
transport equations in each phase and flux condition at the interface has to
be volume averaged and then solved, only for one species. The evolution of
the other species towards its equilibrium can be calculated by the following
constraint:

Cn
k = 1� Cn�1

k (3.24)

where: k = m; ox phases; n = 2 in a binary system, and it is assumed that
diffusivities of both the species in both the phases are known.
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However such a constraint can not be written for a ternary or quaternary
system. In other words, in a ternary or quaternary system the equilibrium
values of each species in a phase can be known by the thermodynamical
calculations but there is no elementary constraint like Eq. (3.24), through
which the evolution of (n � 1) species can be deduced from the nth species.
One of the ways to overcome this problem in the present work, is done by
performing a thermochemical study of the quaternary system (U;Zr; Fe;O), in
order to derive some relationship between the diffusive fluxes (Jik). Following
section gives the details of the thermochemical calculations for the quaternary
(U;Zr; Fe;O) system.

3.4.2 Thermochemical study for the Quaternary System
(U;Zr; Fe;O)

The current equilibrium thermochemical calculations of (U;Zr; Fe;O) species
are performed with IRNS’s NUCLEA Toolbox. At first a brief introduction
of the NUCLEA Toolbox in section (3.4.2.1) has been given, followed by the
details of the thermochemical calculations in section (3.4.2.2).

3.4.2.1 The NUCLEA Toolbox for Simulation of the Thermochemical
Equilibria

NUCLEA is an IRSN owned project, providing the following two functionali-
ties:

1. A set of non-ideal solution based thermodynamic database, called NU-
CLEA database.

2. A Toolbox of computational thermodynamics, referred to as NUCLEA
Toolbox.

Simply put, NUCLEA is a self-sufficient database-cum-computational Tool de-
signed for the calculation of thermochemical equilibria. It is specially developed
for in- and ex-vessel nuclear applications, related to severe accident scenario.
NUCLEA database contains 18 + 2 elements: O � U � Zr � Ag � In � B �
C � Fe�Cr�Ni�Ba� La� Sr�Ru�Al�Ca�Mg � Si+Ar�H and
includes the following 15 oxide systems: UO2�ZrO2� In2O3�B2O3�FeO�
Fe2O3�Cr2O3�NiO�BaO�La2O3�SrO�Al2O3�CaO�MgO�SiO2.
This database covers the entire range, from metal to oxide domains. The qua-
ternary system (U;Zr; Fe;O) was developed from binary data, later completed
by the ternary (U;Zr;O) [23, 11]. The whole database was recently improved,
as explained in [10]. It is useful to mention the importance of data from the
MASCA experiments for the validation of the quaternary system. After the
MASCA program, several alternative thermochemical models of the quater-
nary were proposed in [9, 38, 37]. To supplement the database, NUCLEA
also comes with a Gibbs function minimization solver. Such a solver with all
its functionalities are integrated within NUCLEA Toolbox in the form of a
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Python Application Program Interface (API). Because of this API, a user can
write codes in Python, and access Gibbs solver to compute the thermochem-
ical equilibrium for known initial moles and mass fractions of the system of
species. An example of calculating the thermodynamic equilibrium for given
initial moles of species at a particular temperature and pressure is illustrated
in Fig. 3.4.

Figure 3.4: NUCLEA Toolbox API for calculating the thermodynamic equilib-
rium

3.4.2.2 Details of Thermochemical Calculations

Table 3.1 shows the variables for which thermochemical calculations has been
performed. The study has been carried out to see the variation in parameters
listed in Table 3.1, with the increasing moles of Iron (Fe). Moles of Iron (Fe)
represented by (NFe) have been chosen as independent variable in order to
simulate the accident scenario, where there is a continuous addition of molten
Steel — coming mainly from the melting of reactor internals — to the relocated
corium pool in the lower head of the reactor vessel.

nOm mole fraction of O in metal phase
nFeox mole fraction of Fe in oxide phase
nOox mole fraction of O in oxide phase
nFem mole fraction of Fe in metal phase

(U=Zr)ox U/Zr molar ratio in oxide phase
(U=Zr)m U/Zr molar ratio in metal phase

Table 3.1: Thermochemical study parameters

With respect to the composition, the corium initially contains oxidised
Uranium (UO2), oxidised Zircaloy (ZrO2), and unoxidised Zircaloy (Zr).
Global corium composition can be described by following three parameters,
listed in Table 3.2. To keep the analysis relevant to the broad range of
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Cuz

It is the global ratio of U to Zr atoms in the corium. This value,
depends mainly on the reactor design and accident scenario. Ty-
pically, for a Pressurised Water Reactor (PWR) it may go up to
1:45, and for a typical Boiling Water Reactor (BWR) it may go
down to 0:8.

Cox

It is the global degree of oxidation of Zr. The parameter depends
on accidental scenario. For instance in a slow scenario like Small
Break Loss Of Coolant Accident (SBLOCA), the degree of oxidat-
ion would be larger than in a fast scenario like Large Break Loss
Of Coolant Accident (LBLOCA).

Csz

It is the global ratio of Fe to Zr atoms. Depending on local confi-
gurations and timing in the accident scenario, the value of Csz

may vary between 0 and rather large values, although the global
is typically around 1 for many reactors designs and accident scen-
ario.

Table 3.2: Global corium composition parameters

reactors — PWR, BWR etc. — the thermochemical analysis has considered
several values of Cuz and Cox, which corresponds to different core inventory
compositions, and degrees of oxidation of Zirconium (Zr).

Since, in the present study, the thermochemical study has been per-
formed by prescribing different values of Cuz and Cox, it is important to relate
these two parameters with moles of U , Zr and O. This conversion of Cuz,
Cox, Csz to NU , NZr, NO and NFe, is important because NUCLEA takes
moles/mole fractions/mass fractions as a input, to calculate an equilibrium.
This conversion is done by identifying the global inventory as given below by
Eqs. (3.25, 3.26, 3.27, 3.28). All the global mole numbers of the three other
species are normalised by the number of moles of Zr:

NZr = 1 (3.25)

NU = NZrCuz = Cuz (3.26)

NO = 2(Cuz + Cox) (3.27)

NFe = NZrCsz = Csz (3.28)

N tot = NZr +NU +NO +NFe (3.29)

where Ntot is the total number of moles and Csz is the global Fe=Zr ratio.

For all thermochemical analysis, the version of thermochemical database
used is NUCLEA-17_1. The present study deals with the miscibility gap
where two liquid phases (oxide + metal) coexist. NUCLEA-17_1 calculations
show that two liquid phases are obtained only in the temperature range

CHAPTER 3. MATHEMATICAL MODELING 39



CHAPTER 3. MATHEMATICAL MODELING

between 2900K and 3100K. Thus, this study is valid in this range of
temperature. Result depicted in Fig. 3.5 shows that the equilibrium mole
fractions do not depend visibly on temperature in that range. Therefore, all
the calculations presented thereafter were performed at 2900K.

The main findings of the thermochemical calculations performed with
NUCLEA are summarised in the following sections (3.4.2.3, 3.4.2.4, 3.4.2.5).
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Figure 3.5: NUCLEA-17_1 data in the temperature range of existence of two
immiscible liquid phases (2900 K - 3100 K) for Cuz = 1:0 and Cox = 0:3

3.4.2.3 Absence of Fe in the Oxide Phase

For all the thermochemical calculations, no trace of Fe is predicted in the oxide
phase. This is due to the immiscibility of Fe in UO2. Therefore, nFeox = 0 in
all cases of interest. Thus, it is assumed that moles of Fe in oxide phase (NFe

ox )
are zero:

NFe
ox = 0 (3.30)

3.4.2.4 Solubility of Oxygen in the Metal Phase

From Fig. 3.6, it can be seen that only a small amount of O is found in the
metal phase. This shows the limited solubility of O in metal phase. So, it can
be neglected with respect to the mole fraction of the other elements, and the
assumption that moles of O in metal phase (NO

m) are zero can be made:

NO
m = 0 (3.31)

3.4.2.5 Invariance of U/Zr Ratio

Looking in detail at the variation of U=Zr ratio in the metal, it can be seen
in Fig. 3.8, that it is slightly lower than the global value of Cuz in each case
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Figure 3.6: Mole fraction of O in metal phase Vs. Moles of Iron (nOm Vs. NFe)
for various inventory compositions (Cuz), and degree of oxidation of Zr (Cox)

shown, and this deviation is more important when Cuz is greater than 1. This
indicates a preferential extraction of Zr in the metal. However, this deviation
remains small, especially in the asymptotic limit where the number of moles
of iron is large. Figs. 3.7 and 3.8 show the evolution of U=Zr with the number
of moles of Iron in oxide and metal phase respectively. It can be seen that
U=Zr ratio almost remains constant in both phases. This shows that as a
first approximation, it may be estimated that in both oxide and metal phases
there is a Cuz atom of U , for one atom of Zr. It also means that there is the
same partitioning coefficient K for both U and Zr atoms. This partitioning
coefficient K, thus can be written as:

K =
NU
m

NU
=
NZr
m

NZr
=
NZr
m +NU

m

(1 + Cuz)
(3.32)

Role of this partitioning coefficient K will be discussed in chapter 4.

3.4.2.6 Main Outcomes of the Thermochemical Study

Based on the observations made in section (3.4.2.3), it can be seen that no
trace of Fe is found in oxide phase. Further, from section (3.4.2.4) small trace
of O in metal phase can be neglected, and from section (3.4.2.5) the U=Zr ratio
in both metal and oxide phase can be taken to be almost constant. Thus, these
findings implies that during the dissolution of the oxide crust by molten steel,
Fe atoms does not leave metal phase, O atoms does not leave oxide phase, and
it is only (U � Zr) atoms as a whole (because U=Zr ratio remains constant)
gets transferred across the interface between the metal and oxide phases. Thus,
the quaternary system (U;Zr; Fe;O) dispersed across metal and oxide phases,
can be decomposed into ternary in each phase as:
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Figure 3.7: U/Zr molar ratio in oxide phase Vs. Moles of Iron ( (U=Zr)ox
Cuz

Vs.
NFe) for various inventory compositions (Cuz) and degree of oxidation of Zr
(Cox)
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Figure 3.8: U/Zr molar ratio in metal phase Vs. Moles of Iron ( (U=Zr)m
Cuz

Vs.
NFe) for various inventory compositions (Cuz) and degree of oxidation of Zr
(Cox)

1. (U � Zr) + Fe in metal phase.

2. (U � Zr) +O in oxide phase.

The implications for such a ternary in each phase system for the full quater-
nary system (U;Zr; Fe;O) are discussed in the following sections.
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3.4.3 Validity of Liquid-Oxide and Liquid-Metal Thermo-
chemical Study for Solid-Oxide and Liquid-Metal
(Crust-Molten Metal)

It is important to note again that the aforementioned thermochemical study
is done for two immiscible liquid-oxide and liquid-metal system. This already
has been explained in the previous section (3.4.2.2), where this liquid-liquid
system was found to be valid over the temperature ranging from 2900K to
3100K (see Fig. 3.5).

However, the actual system of interest in the present thesis is the corium crust
and liquid metal, which is a liquid-solid system, where crust being solid-oxide.
Thus, it is important to validate the analysis of liquid-liquid system for
liquid-solid system. Ideally, there should not be large difference between
the equilibrium mole fractions of the species in liquid-liquid and liquid-solid
system. Fig. 3.9, shows for an inventory of Cuz = 1:0 and Cox = 0:3, the
equilibrium mole fractions for Fe in metal phase and O in oxide phase for
both the liquid-liquid and liquid-solid (crust) system. The liquid-solid (crust)
system is found to exist in the temperature range of 2500 K to 2700 K.
Accordingly the present calculations of NUCLEA for liquid-solid system are
done at 2700 K. It can be observed from Fig. 3.9, that the equilibrium mole
fractions for Fe in metal phase and O in oxide phase for both the liquid-liquid
and liquid-solid (crust) system, has negligible difference. Thus, the present
thermochemical study done for liquid-metal and liquid-oxide case, can be
safely extrapolated to liquid-metal and solid-oxide crust case.
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Figure 3.9: Validity of NUCLEA_17-1 liquid-metal and liquid-oxide thermo-
chemical study for liquid-metal and solid-oxide (crust). Inventory is: Cuz = 1:0
and Cox = 0:3
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3.4.4 Reduction of Quaternary System (U;Zr; Fe;O) to a
Ternary in each Phase

Based upon the main findings of the thermochemical study performed,
following expressions are straight forward to write:

1. The outcome of the invariability of the (U=Zr) ratio, leads to the
following relationship between nUox and nZrox in oxide phase:

nUox = (
U

Zr
)oxnZrox (3.33)

and in form of mass fractions it is:

CU
ox

MU
= (

U

Zr
)ox

CZr
ox

MZr
(3.34)

since, ( U
Zr
)ox remains equal to global Cuz:

CU
ox

MU
= Cuz

CZr
ox

MZr
(3.35)

2. The outcome of the invariability of the (U=Zr) ratio, leads to the
following relationship between nUm and nZrm in metal phase:

nUm = (
U

Zr
)mnZrm (3.36)

and in form of mass fractions it is:

CU
m

MU
= (

U

Zr
)m
CZr
m

MZr
(3.37)

also since, ( U
Zr
)m remains equal to global Cuz:

CU
m

MU
= Cuz

CZr
m

MZr
(3.38)

3. The outcome of:

nFeox = 0 (3.39)

in oxide phase leads to:

CFe
ox = 0 (3.40)
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4. The outcome of:

nOm = 0 (3.41)

in metal phase leads to:

CO
m = 0 (3.42)

3.4.4.1 Reduction to Ternary Form in Oxide Phase

From section (3.4.1.1), substituting:

Jiox = ��oxDi
oxrCi

ox (3.43)

where: i = (U;Zr; Fe;O)

in the Eqs. (3.7, 3.8, 3.9, 3.10), and rewrite the microscopic system of
PDEs for oxide phase like:

@

@t
(�oxC

U
ox) = r · (�oxDU

oxrCU
ox) (3.44)

@

@t
(�oxC

Zr
ox ) = r · (�oxDZr

oxrCZr
ox ) (3.45)

@

@t
(�oxC

Fe
ox ) = r · (�oxDFe

oxrCFe
ox ) (3.46)

@

@t
(�oxC

O
ox) = r · (�oxDO

oxrCO
ox) (3.47)

Further, substituting the Eq. (3.40) in Eq. (3.46), makes it redundant. Also,
substitution of (3.35) in Eqs. (3.44, 3.45), gives the following set of equations:

@

@t
(�oxC

Zr
ox ) = r · (�oxDU

oxrCZr
ox ) (3.48)

@

@t
(�oxC

Zr
ox ) = r · (�oxDZr

oxrCZr
ox ) (3.49)

This makes the Eqs. (3.48, 3.49) identical in the sense that with known diffu-
sivities, DU

ox and DZr
ox , either of the equation, Eq. (3.48) or Eq. (3.49), can be

used to track concentration of Zr. Subsequently, with the known concentra-
tion of Zr, it is straightforward to calculate concentration of U from relation
(3.35). Therefore, it can be seen that the oxide phase is identified by ternary
system (U;Zr;O) with following PDEs:

@

@t
(�oxC

U
ox) = r · (�oxDU

oxrCU
ox) (3.50)
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and

@

@t
(�oxC

Zr
ox ) = r · (�oxDZr

oxrCZr
ox ) (3.51)

and

@

@t
(�oxC

O
ox) = r · (�oxDO

oxrCO
ox) (3.52)

where Eq. (3.50) and Eq. (3.51) are related by the constraint Eq. (3.35), as
explained above.

However, the analysis in oxide phase is not that simpler, because in the
oxide phase, the atoms are not independent, owing to the fact that oxide
phase is a mixture of oxide species (UO2 and ZrO2) and metal species (U and
Zr). Since, it has already been seen from Eq. (3.42) that O has a negligible
solubility in metal phase, and hence, remains in the oxide phase, therefore, it
is required to track the transfer of only free (U � Zr) atoms (U , Zr without
any association with O atoms) from the oxide phase to metal phase, and
vice-versa. In order to quantify the free U and Zr, the mass fractions in oxide
phase can be written as following:

CZr
ox + CU

ox + CO
ox = 1 (3.53)

Because there will be 2 atoms of O for every atom of U and Zr in oxide phase,
the above expression can be written as:

CZr
ox + CU

ox �
1

2
CO
ox +

3

2
CO
ox = 1 (3.54)

Consequently, to track this transfer of free (U�Zr), a new species Y is defined,
and its concentration in oxide phase (CY

ox) will be given as:

CY
ox = CZr

ox + CU
ox �

1

2
CO
ox (3.55)

which is the total concentration of free U and free Zr. It can be rewritten as:

CY
ox = 1� 3

2
CO
ox (3.56)

Also, the fixed atoms (UO2, ZrO2) mass fractions in oxide phase is defined by
a new species X, whose concentration in oxide phase is given by:

CX
ox =

3

2
CO
ox (3.57)
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Substituting, Eqs. (3.56, 3.57) in Eq. (3.54):

CY
ox + CX

ox = 1 (3.58)

Now, it can be understood from above analysis that to correctly describe the
mass transfer of (U;Zr) across the phases, it is necessary to solve for CY

ox,
which is free (U;Zr), instead of Eqs. (3.50, 3.51). One of the ways to get
the PDE for CY

ox is to use the PDE for O i.e. Eq. (3.52) and carry out the
substitution of Eq. (3.56). This will give result into a change of variable from
O to free (U;Zr) in the Eq. (3.52) to give a governing PDE for free (U;Zr)
i.e. for CY

ox. This new PDE reads as:

@

@t
(�oxC

Y
ox) = r · (�oxDO

oxrCY
ox) (3.59)

Therefore, it can be concluded that diffusive transport in the oxide phase is
described by the single species Y with concentration CY

ox.

Thus, summarising the analysis of going from quaternary system to a
ternary system in this section, based upon the thermochemical study per-
formed, it can be concluded that that the transport in the oxide phase will be
governed by a single microscopic PDEs, which are given as :

Governing microscopic PDEs in oxide phase:

@

@t
(�oxC

Y
ox) = r · (�oxDO

oxrCY
ox) (3.60)

Governing microscopic PDE in oxide phase for free (U � Zr) atoms (CY
ox),

where Y , takes part in transport across the oxide-metal interface.
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3.4.4.2 Reduction to Ternary Form in Metal Phase

From section (3.4.1.2), substituting:

Jim = ��mDi
mrCi

m (3.61)

where: i = (U;Zr; Fe;O)

in the Eqs. (3.14, 3.15, 3.16, 3.17), and rewrite the microscopic system
of PDEs for metal phase like:

@

@t
(�mC

U
m) +r · (�mCU

mvm) = r · (�mDU
mrCU

m) (3.62)

@

@t
(�mC

Zr
m ) +r · (�mCZr

m vm) = r · (�mDZr
m rCZr

m ) (3.63)

@

@t
(�mC

Fe
m ) +r · (�mCFe

m vm) = r · (�mDFe
m rCFe

m ) (3.64)

@

@t
(�mC

O
m) +r · (�mCO

mvm) = r · (�mDO
mrCO

m) (3.65)

Further, substituting the Eq. (3.42) in Eq. (3.65), makes it redundant. Also,
substitution of (3.38) in Eqs. (3.62, 3.63), gives the following set of equations:

@

@t
(�mC

Zr
m ) +r · (�mCZr

m vm) = r · (�mDU
mrCZr

m ) (3.66)

@

@t
(�mC

Zr
m ) +r · (�mCZr

m vm) = r · (�mDZr
m rCZr

m ) (3.67)

This makes the Eqs. (3.66, 3.67) identical for the same reasons already ex-
plained for oxide phase. Therefore, it can be seen that the system becomes
equivalent to a ternary mixture in the metal phase as well, like:

@

@t
(�mC

U
m) +r · (�mCU

mvm) = r · (�mDU
mrCU

m) (3.68)

and

@

@t
(�mC

Zr
m ) +r · (�mCZr

m vm) = r · (�mDZr
m rCZr

m ) (3.69)

and
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@

@t
(�mC

Fe
m ) +r · (�mCFe

m vm) = r · (�mDFe
m rCFe

m ) (3.70)

Unlike the oxide phase, the analysis for identifying the concentration of free
(U � Zr) in metal phase (CY

m) is simpler, because the atoms are independent
in this phase. Similar to oxide phase analysis, a new species Y representing
the free (U;Zr) in metal phase is being chosen. Consequently, concentration
for Y will be given represented by CY

m, which in this case is simply:

CY
m = 1� CFe

m (3.71)

To obtain the PDE for CY
m, the PDE for Fe i.e. Eq. (3.70) is used with the

substitution of Eq. (3.71). This will give result into a change of variable from
Fe to free (U;Zr) in the Eq. (3.70) to give a governing PDE for free (U;Zr)
i.e. for CY

m in metal phase. This new PDE reads as:

@

@t
(�mC

Y
m) +r · (�mCY

mvm) = r · (�mDFe
m rCY

m) (3.72)

Therefore, it can be concluded that diffusive transport in the metal phase is
described by the single species Y , with concentration CY

m.

Thus, summarising the analysis of going from quaternary system to a
ternary system in this section, based upon the thermochemical study per-
formed, it can be concluded that the transport in the metal phase will be
governed by a single microscopic PDEs, which are given as :

Governing microscopic PDEs in metal phase:

@

@t
(�mC

Y
m) +r · (�mCY

mvm) = r · (�mDFe
m rCY

m) (3.73)

Governing microscopic PDE in metal phase for free (U � Zr) atoms (CY
m),

where Y , takes part in transport across the oxide-metal interface
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3.4.4.3 Reformulation of Interfacial Species’ Flux Equations for
Ternary in each Phase System

From section (3.4.1.1):

Jiox = ��oxDi
oxrCi

ox (3.74)

and from section (3.4.1.2):

Jim = ��mDi
mrCi

m (3.75)

where: i = (U;Zr; Fe;O)

substituting Eqs. (3.74, 3.75) in Eqs. (3.19, 3.20, 3.22), the system of
species flux balance at the interface can be rewritten as the following:

êmox ·
h
(��oxCU

oxwmox) + (��oxDU
oxrCU

ox)
i
=

êmox ·
h
�mC

U
m(vm �wmox) + (��mDU

mrCU
m)
i

at Amox (3.76)

êmox ·
h
(��oxCZr

ox wmox) + (��oxDZr
oxrCZr

ox )
i
=

êmox ·
h
�mC

Zr
m (vm �wmox) + (��mDZr

m rCZr
m )

i
at Amox (3.77)

êmox ·
h
(��oxCFe

ox wmox) + (��oxDFe
oxrCFe

ox )
i
=

êmox ·
h
�mC

Fe
m (vm �wmox) + (��mDFe

m rCFe
m )

i
at Amox (3.78)

êmox ·
h
(��oxCO

oxwmox) + (��oxDO
oxrCO

ox)
i
=

êmox ·
h
�mC

O
m(vm �wmox) + (��mDO

mrCO
m)
i

at Amox (3.79)

Substitution of Eqs. (3.40, 3.42) in Eqs. (3.78, 3.79), gives:

êmox ·
h
�mC

Fe
m (vm � wmox) + (��mDFe

m rCFe
m )

i
= 0 at Amox (3.80)

êmox ·
h
(��oxCO

oxwmox) + (��oxDO
oxrCO

ox)
i

= 0 at Amox (3.81)
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which means that the gradients in each phase are related with O staying in
oxide phase and Fe in metal phase. Further, substituting Eqs. (3.35, 3.38) in
Eqs. (3.76) gives:

êmox ·
h
(��oxCZr

ox wmox) + (��oxDU
oxrCZr

ox )
i
=

êmox ·
h
�mC

Zr
m (vm �wmox) + (��mDU

mrCZr
m )

i
at Amox (3.82)

which is identical to Eq. (3.77). Thus, transport across the interface can be
either described by Eq. (3.76) or by Eq. (3.77), because the ratio of U=Zr i.e.
Cuz remains constant. However, these two equations do not completely describe
the diffusive and advective fluxes of free (U � Zr) across the interface. Thus,
similar to sections (3.4.4.1, 3.4.4.2), in this section as well the condition at the
interface for free (U �Zr) can be derived. In order to work out the derivation,
substitution of Eqs. (3.71, 3.56) in Eqs. (3.80, 3.81) respectively leads to the
following set of equations:

êmox ·
h
��mCY

m(vm�wmox)+(�mD
Fe
m rCY

m)+�m(vm�wmox)
i
= 0 (3.83)

êmox ·
h
(�oxC

Y
oxwmox) + (�oxD

O
oxrCY

ox) � (�oxwmox)
i

= 0 (3.84)

Since, free atoms of (U � Zr) are the one participating in the transport in
and across the interface, Eq. (3.83, 3.84) should match at the interface, thus,
equating the Eq. (3.83) and Eq. (3.84), and using the mass flux balance at the
interface, Eq. (3.18), yields:

êmox ·
h
� �mCY

m(vm �wmox) + (�mD
Fe
m rCY

m)
i
=

êmox ·
h
(�oxC

Y
oxwmox) + (�oxD

O
oxrCY

ox)
i

at Amox (3.85)

Continuity of advective and diffusive fluxes of free (U � Zr) or Y , at
the interface is given by following relation:

êmox ·
h
� �mCY

m(vm �wmox) + (�mD
Fe
m rCY

m)
i
=

êmox ·
h
(�oxC

Y
oxwmox) + (�oxD

O
oxrCY

ox)
i

at Amox

(3.86)
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3.4.5 Summarized Microscopic PDEs for Ternary in each
Phase System

Oxide Phase:
Mass Conservation

@

@t
(�ox) = 0 (3.87)

Energy Conservation

@

@t
(�oxHox) = �r ·qox + �ox _Qox (3.88)

Species Conservation

@

@t
(�oxC

Y
ox) = r · (�oxDO

oxrCY
ox) (3.89)

Metal Phase:
Mass Conservation

@

@t
(�m) +r · (�mvm) = 0 (3.90)

Momentum Conservation

@

@t
(�mvm) +r · (�mvmvm) = �rPm + �mr2vm + �mg (3.91)

Energy Conservation

@

@t
(�mHm) +r · (�mHmvm) = �r ·qm + �m _Qm (3.92)

Species Conservation

@

@t
(�mC

Y
m) +r · (�mCY

mvm) = r · (�mDFe
m rCY

m) (3.93)

Flux Balance at the Oxide-Metal Interface:

êmox ·
h
� �oxwmox

i
= êmox ·

h
�m(vm �wmox)

i
at Amox (3.94)

êmox ·
h
� �mCY

m(vm �wmox) + (�mD
Fe
m rCY

m)
i
=

êmox ·
h
(�oxC

Y
oxwmox) + (�oxD

O
oxrCY

ox)
i

at Amox

(3.95)

êmox ·
h
(��oxHoxwmox) + qox

i
= êmox ·

h
�mHm(vm �wmox) + qm

i
at Amox

(3.96)

Figure 3.10: Summarized microscopic PDEs for ternary in each phase model
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3.4.6 Volume Averaging

Next it is required to derive a macroscopic volume averaged model to describe
dissolution as a two-phase transport phenomenon. The mathematical analysis
presented in this section will be an excerpt from the works of Bousquet-Mélou
et al. [43, 16, 17]. Before starting the formal averaging, it is now important to
identify the boundary conditions at area of entrances and exit of metal (Ame)
and oxide phase (Aoxe) shown in Fig. 3.3. The boundary conditions are:

vm = Fv(r; t) at Ame (3.97)

At this point, the functions Fv is unknown. Also, along with the already identi-
fied assumptions in section (3.4.1), an other important assumption concerning
the independence of concentration from temperature at the oxide metal inter-
face is brought up in the analysis of dissolution. Thus:

CY
k 6= f(Tk); k = (ox; m) at Amox (3.98)

This essentially means that CY
k is not a function or decoupled from Tk at the

metal oxide interface Amox.

Prior to the formal averaging it is now important to introduce the Gray’s
decomposition [45] for all microscopic fields. This decomposition reads:

	k = h	kik + e	k; k = (ox; m) (3.99)

where any microscopic field represented as 	k is decomposed into its intrinsic
phase averaged field given as h	kik, and the corresponding deviation field
represented as e	k.

With these assumptions and using the definition of Gray’s decomposi-
tion, the Eqs. (3.87 - 3.96) are volume averaged using the Spatial averaging
theorem [121], general Leibniz integral rule [111], explained in Appendix (C),
to obtain the unclosed form of macroscopic equations. The rigorous mathe-
matical analysis can be referred from the theoretical works of Bousquet-Mélou
et. al [43, 16, 17]. The summary of unclosed volume averaged form of the Eqs.
(3.87 - 3.96) and closure work is jotted down in the following sections.
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3.4.6.1 Mass Conservation Equation

First, volume averaging the jump condition Eq. (3.94) gives:

� 1

V

Z
Amox(t)

êmox · �oxwmox dA � 1

V

Z
Amox(t)

êmox · �m(vm �wmox) dA = 0

(3.100)

further defining:

_mox = � 1

V

Z
Amox(t)

êmox · �oxwmox dA (3.101)

and

_mm = � 1

V

Z
Amox(t)

êmox · �m(vm �wmox) dA (3.102)

it can be written as:

_mm + _mox = 0 (3.103)

or

mX
k=ox

_mk = 0; k = (ox; m) (3.104)

Here, _mox being negative is termed as rate of dissolution. Secondly, volume
averaging the mass conservation equations for both oxide and metal phase, Eqs.
(3.87, 3.90), and using the Eq. (3.101), gives the volume averaged equation for
the metal-oxide mixture as a whole:

@

@t
("m�m) +r · ("m�mhvmim) = � _mox (3.105)

_mox =
@

@t
("ox�ox) (3.106)
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3.4.6.2 Momentum Conservation Equation

Volume averaging Navier-Stokes equation, Eq. (3.91), after simplifications ex-
plained in [124], gives unclosed macroscopic NS equation:

@

@t
("m�mhvmim) +r · ("m�mhvmimhvmim) +r · ("m�mhevmevmim)

+
1

V

Z
Amox(t)

êmox · (vm �wmox)�mvm dA

= �"mrhPmim + "m�mr2hvmim + "m�mg

+
1

V

Z
Amox(t)

êmox · (� ePmI + �mrevm) dA
+�mr ·

8<: 1

V

Z
Amox(t)

êmox · evm dA

9=;

(3.107)

3.4.6.3 Species Conservation Equation

In this analysis of dissolution, the solute transport is considered separately in
oxide and metal phase, and no specific assumption has been made regarding
the diffusion in solid oxide phase. This gives rise to two individual species
transport equations, one in oxide phase and the other one is metal phase. The
unclosed volume averaged form of microscopic species conservation equations,
Eqs. (3.89, 3.93), are presented below:

Oxide Phase:

@

@t
("ox�oxhCY

oxiox) +
1

V

Z
Amox(t)

�oxC
Y
oxêmox · (�wmox) dA

= �ox"oxr · (DO
oxrhCY

oxiox)

+
�oxD

O
ox

V

Z
Amox(t)

êmox ·r eCY
ox

+r ·

8<:�oxDO
ox

V

Z
Amox(t)

êmox
eCY
ox dA

9=;

(3.108)
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Metal Phase:

@

@t
("m�mhCY

mim) +r · ("m�mhCY
mimhvmim) +r · ("m�mhevm eCY

mim)

+
1

V

Z
Amox(t)

�mC
Y
mêmox · (vm �wmox) dA

= �m"mr · (DFe
m rhCY

mim)

+
�oxD

Fe
m

V

Z
Amox(t)

êmox ·r eCY
m

+r ·

8<:�mDFe
m

V

Z
Amox(t)

êmox
eCY
m dA

9=;

(3.109)

3.4.6.4 Rate of Dissolution

Volume averaging the Eq. (3.95) gives the unclosed form of dissolution rate
( _mox):

� 1

V

Z
Amox(t)

�mC
Y
mêmox · (vm �wmox) dA+

1

V

Z
Amox(t)

�mD
Fe
m êmox ·rCY

m dA

=
1

V

Z
Amox(t)

�oxC
Y
oxêmox · wmox dA

+
1

V

Z
Amox(t)

�oxD
O
oxêmox ·rCY

ox dA

(3.110)
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3.4.6.5 Energy Conservation Equation

Similarly, the unclosed volume averaged form of microscopic energy equations,
Eqs. (3.88, 3.92), are given by:

Oxide Phase:

@

@t
("ox�oxhHoxiox) + 1

V

Z
Amox(t)

�oxHoxêmox · (�wmox) dA

= r · ("ox�oxrhToxiox)
+
�ox

V

Z
Amox(t)

êmox ·rTox

+r ·

8<:�ox

V

Z
Amox(t)

êmox
eTox dA

9=;

(3.111)

Metal Phase:

@

@t
("m�mhHmim) + 1

V

Z
Amox(t)

�oxHmêmox · (vm �wmox) dA

+r · ("m�mhHmimhvmim) +r · ("m�mhevmfHmim)
= r · ("m�mrhTmim)

+
�m

V

Z
Amox(t)

êmox ·rTm

+r ·

8<:�m

V

Z
Amox(t)

êmox
eTm dA

9=;

(3.112)
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Assuming that there exist a thermal equilibrium between oxide and metal phase
[67], i.e. (hTmim ' hToxiox ' hT i), the above two averaged equations can be
combined into one single energy equation of the metal-oxide mixture. With
this assumption adding Eqs. (3.111, 3.112), and making use of the volume
averaged form of Eq. (3.96), the unclosed volume averaged form of energy
conservation reduces to:

@

@t
(h�ihHi) +r · ("m�mhHmimhvmim) +r · ("m�mhevmfHmim)

= r · (�mixrhT i)

+r ·

8<: 1

V

Z
Amox(t)

êmox(�m
eTm + �ox

eTox) dA
9=;

(3.113)

where:

h�i = "ox�ox + "m�m (3.114)

hHi = "ox�oxhHoxiox + "m�mhHmim
h�i (3.115)

�mix = "ox�ox + "m�m (3.116)

3.4.7 Closed Form of Macroscopic Model

To carry out the closure analysis it is again required to invoke Gray’s decom-
position detailed in section (3.4.6). This decomposition has been carried out
for all the microscopic fields in the set of Eqs. (3.87 - 3.93) giving rise to the
microscopic set of PDEs having partial derivatives of intrinsic phase average
fields (h	kik) and deviation fields ( e	k).

These new set of microscopic PDEs are then subtracted from unclosed
macroscopic Eqs. (3.105 - 3.113). This gives rise to set of complex deviation
equations. Bousquet Mélou [16] has shown that this set of complex deviation
equations can be simplified on the basis of several assumptions detailed in
[43] and order of magnitude analysis detailed in [17, 16, 124, 43], to finally
produce the following deviation problems for momentum (section (3.4.7.1)),
species (section (3.4.7.2)) and temperature (section(3.4.7.3)).

58 CHAPTER 3. MATHEMATICAL MODELING



CHAPTER 3. MATHEMATICAL MODELING

3.4.7.1 Momentum Deviation Relations and Closure

r · evm = 0 (3.117)

�mvm ·revm = �rgPm + �mr2evm
� 1

Vm

Z
Amox(t)

êmox · (�gPmI + �mrevm) dA (3.118)

evm = �hvmim at Amox (3.119)

evm = Y · hvmim at Ame (3.120)

It is assumed here that the B.C. given by Eq. (3.97) is equivalent to vm =
X · hvmim, where X is a second order tensor given by: Y = X� I. This closure
problem given by Eqs. (3.117 - 3.120) indicates that hvmim is source of velocity
fluctuations (evm) and pressure fluctuations ( ePm). Thus, following the analysis
given in Whitaker [124, 122] and Goyeau et al. [43], the expression for evm andePm can be written as:

evm = M · hvmim (3.121)

ePm = �mm · hvmim (3.122)

Further, the following decomposition from Whitaker [124, 122] has been con-
sidered to separate linear friction and inertial effect:

M = b("m) + c("m; hvmim) (3.123)

m = B("m) + C("m; hvmim) (3.124)

Thus, the Eqs. (3.121, 3.122) takes the following form:

evm = B("m) · hvmim + C("m; hvmim) · hvmim (3.125)

ePm = �mb("m) · hvmim + �mc("m; hvmim) · hvmim (3.126)

where B, b, C and c are solutions to the following boundary value problems,
Problem 1 and Problem 2.
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Problem 1:

r · B = 0 (3.127)

�rb +r2B� 1

Vm

Z
Amox(t)

êmox · (rB� bI) dA = 0 (3.128)

B = �I at Amox (3.129)

b(r + �i) = b(r) at Ame (3.130)

B(r + �i) = B(r) at Ame (3.131)

hBim = 0 (3.132)

Problem 2:

r · C = 0 (3.133)

�rc+r2C� 1

Vm

Z
Amox(t)

êmox · (rC� cI) dA = �m�
�1
m vm ·r(B+C) (3.134)

C = 0 at Amox (3.135)

c(r + �i) = c(r) at Ame (3.136)

C(r + �i) = C(r) at Ame (3.137)

hCim = 0 (3.138)

In Whitaker [124, 122, 123], the following terms:

� 1

Vm

Z
Amox(t)

êmox · (rC� cI) dA (3.139)

and

� 1

Vm

Z
Amox(t)

êmox · (rB� bI) dA (3.140)

in Eq. (3.134) and Eq. (3.128) respectively has been related to the Forchheimer
correction tensor (F) and permeability tensor (K) as:

"mK�1 = � 1

Vm

Z
Amox(t)

êmox · (rB� bI) dA (3.141)
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"mK�1 · F = � 1

Vm

Z
Amox(t)

êmox · (rC� cI) dA (3.142)

Finally, making use of deviation relations given by Eqs. (3.125, 3.126) and
definition of Forchheimer correction tensor (F) and permeability tensor (K),
in unclosed Navier-Stokes Eq. (3.107), it is easy to see the following closed
form of Navier-Stokes equation:

Closed Navier-Stokes Equation

@

@t
("m�mhvmim) +r · ("m�mhvmimhvmim) = �"mrhPmim

+"m�mr2hvmim + �mr"m · hvmim

+�m(r2"m)hvmim � "2m�mK�1 · hvmim

�"2m�mK�1 · F · hvmim + "m�mg

(3.143)
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3.4.7.2 Species Deviation Relations and Closure

Deviation equations for the species system in metal and oxide phase after
following the simplifications explained in Bousquet-Mélou [16] are:

DO
oxr2 eCY

ox �
1

"ox

8<: 1

V

Z
Amox(t)

DO
oxêmox ·r eCY

ox

9=; dA = 0 (3.144)

eCY
ox = CY �

ox � hCY
oxiox at Amox (3.145)

h eCY
oxi = 0 (3.146)

eCY
ox(r + �i) = eCY

ox(r); i = 1; 2; 3 at Aoxe (3.147)

vm ·r eCY
m + evm ·rhCY

mim = DFe
m r2 eCY

m

� 1

"m

8<: 1

V

Z
Amox(t)

DFe
m êmox · eCY

m

9=; dA
(3.148)

eCY
m = CY �

m � hCY
mim at Amox (3.149)

h eCmi = 0 (3.150)

eCY
m(r + �i) = eCY

m(r); i = 1; 2; 3 at Aoxe (3.151)

CY �
ox and CY �

m are equilibrium mass fractions in oxide and metal phase.

The constraints given by Eq. (3.146, 3.150) are necessary to obtain the
solution to the closure problem [89]. The conditions given by Eqs. (3.147,
3.151) are the boundary condition at the boundary of the volume set by
the periodicity of the medium [43, 16, 90, 91, 92, 67]. The form of the Eqs.
(3.144 - 3.151) suggest that the quantities CY �

ox � hCY
oxiox, CY �

m � hCY
mim and

rhCY
mim are the source of the deviations generated eCY

ox, eCY
m. In general for

these deviations, it has been shown in [16] that they can be written as:

eCY
ox = �ox(C

Y �
ox � hCY

oxim) (3.152)

eCY
m = �m(C

Y �
m � hCY

mim) + bm ·rhCY
mim (3.153)

where �ox, �m and bm are obtained by solving following three problems which
are obtained by integrating the Eqs. (3.152, 3.153) in the system of equations
given by Eqs. (3.144 - 3.151).
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Problem 1:

vm ·rbm + evm = DFe
m r2bm � "�1m um (3.154)

bm = 0 at Amox (3.155)

hbmi = 0 (3.156)

bm(r + �i) = bm(r); i = 1; 2; 3 at Aoxe (3.157)

where:

um =
1

V

Z
Amox(t)

DFe
m êmox ·rbm dA (3.158)

Problem 2:

vm ·r�m + evm = DFe
m r2�m � "�1m hm (3.159)

�m = 1 at Amox (3.160)

h�mi = 0 (3.161)

�m(r + �i) = �m(r); i = 1; 2; 3 at Aoxe (3.162)

where:

hm =
1

V

Z
Amox(t)

DFe
m êmox ·r�m dA (3.163)

Problem 3:

DO
oxr2�ox � "�1ox hox = 0 (3.164)

�ox = 1 at Amox (3.165)

h�oxi = 0 (3.166)

�ox(r + �i) = �ox(r); i = 1; 2; 3 at Aoxe (3.167)
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where:

hox =
1

V

Z
Amox(t)

DO
oxêmox ·r�ox dA (3.168)

The quantities um play the role of velocity of transport of macroscopic fields
hCY

mi, whereas the coefficients hm and hox play the role of mass exchange
due to diffusion and advection across the interface between solid-oxide and
liquid-metal.

Using Eqs. (3.145, 3.146, 3.149, 3.150) and Eqs. (3.152, 3.153) along
with Eqs. (3.154, 3.166) in the unclosed volume averaged equations for
species conservation in oxide and metal phase (Eqs. (3.108, 3.109)) and in the
unclosed form of rate of dissolution expression (3.110), gives the closed form
of species conservation and rate of dissolution:

Closed Species Conservation Equation in Oxide Phase

@

@t
("ox�oxhCY

oxiox)� CY �
ox

@

@t
("ox�ox) = r · ("ox�oxDO

oxrhCY
oxiox)

��oxDO
ox(r"ox) ·rhCY

oxiox

�r ·
h
�oxD

O
ox(r"ox)(CY �

ox � hCY
oxiox)

i

+�oxhox(C
Y �
ox � hCY

oxiox)

(3.169)

Closed Species Conservation Equation in Metal Phase

@

@t
("m�mhCY

mim) +r · ("m�mhCY
mimhvmim) + CY �

m

@

@t
("ox�ox)

= r · ("m�mDFe
m rhCY

mim)

��mDFe
m (r"m) ·rhCY

mim

�r ·
h
�mDFe

m (r"m)(CY �
m � hCY

mim)
i
+ �mhm(C

Y �
m � hCY

mim)

(3.170)
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Rate of Dissolution

@

@t
(�ox"ox)| {z }
_mox

=
1

(CY �
m � CY �

ox )

24�mhm(CY �
m � hCY

mim) + �oxhox(C
Y �
ox � hCY

oxiox)

��oxDO
ox(r"ox) ·rhCY

oxiox

��mDFe
m (r"m) ·rhCY

mim
35

(3.171)

In above equations of conservation of species in metal phase and rate of dis-
solution, the quantity DFe

m is a diffusion-dispersion tensor, which is written
as:

DFe
m = "mD

Fe
m I| {z }

Diffusion

� hevmbmi| {z }
Dispersion

(3.172)
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3.4.7.3 Temperature Deviation Relations and Closure

The deviation equations after simplifications detailed by Bousquet-Mélou [16]
are:

�oxr2 eTox � �ox

"ox

8<: 1

V

Z
Amox(t)

êmox ·r eTox
9=; dA = 0 (3.173)

�mcpmvm ·r eTm + �mcpmevm ·rhT i

= �mr2 eTm � �ox

"m

8<: 1

V

Z
Amox(t)

êmox ·r eTm
9=; dA

(3.174)

�oxêmox ·r eTox � �mêmox ·r eTm = (�m � �ox)êmox ·rhT i at Amox (3.175)

r eTox = r eTm at Amox (3.176)

eTox(r + �i) = eTox(r); i = 1; 2; 3 at Aoxe (3.177)

eTm(r + �i) = eTm(r); i = 1; 2; 3 at Ame (3.178)

Further, it is shown in the work of Bousquet-Mélou [16] that deviation term
can be written as:

eTk = ekhT i; k = (ox; m) (3.179)

where ek is another closure variable having an associated closure problem with
it. The details of the closure problem of ek can be directly found in the works
of Bousquet-Mélou et al. [17, 16]. Further, it has been shown in Goyeau [43]
and Bousquet-Mélou et al. [17, 16] that using deviations equations summarised
above and Eq. (3.179) in unclosed energy conservation equation given by Eq.
(3.113), a closed energy conservation is given by Eq. (3.180).
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Closed Energy Conservation Equation

@

@t
(h�ihHi) +r · ("m�mhHmimhvmim) = r · (ΛeffrhT i) (3.180)

where:
h�i = "ox�ox + "m�m (3.181)

hHi = "ox�oxhHoxiox + "m�mhHmim
h�i (3.182)

Λeff = �mixI +
�m � �ox

V

Z
Amox(t)

êmox · em dA| {z }
Tortuosity

� �mcpmhevmemi| {z }
Dispersion

(3.183)

�mix = "ox�ox + "m�m (3.184)

Usage of Temperature as a Pseudo Field in Dissolution Study:

It is important to mention at this point that in the present study of
dissolution, the temperature is used as a pseudo field. It essentially means
that the dissolution is studied at a fixed temperature. Thus, making the
analysis of dissolution thermodynamically a study of diffusion facilitated
redistribution or partitioning of species between liquid (metal) and solid
(oxide) phase. The thermodynamics of this kind of dissolution has already
been explained in section (3.1.1). This means that just for the dissolution
sake, it is not required to solve the energy equation. However, the energy
equation will still be a part of the solution routine in the present study, to
take into account the velocity generated, due to change in density resulting
from the gradients in the temperature field. In other words, in the present
study, the coupling of temperature with species transport equation will not
be considered but the coupling of temperature equation with Navier-Stokes
equation will be considered. This fact will be evident in the chapter 8, where
the results of dissolution with natural convection flow in the metal-oxide
system due to thermo-solutal gradients will be shown.

The complete macroscopic dissolution model for oxide-metal phase is
summarized in Table 3.3.
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Table 3.3: Complete macroscopic model

@

@t
(�ox"ox)| {z }
_mox

=
1

(CY �
m � CY �

ox )

24�mhm(CY �
m � hCY

mim) + �oxhox(C
Y �
ox � hCY

oxiox)� �oxDO
ox(r"ox) ·rhCY

oxiox � �mDFe
m (r"m) ·rhCY

mim
35

@

@t
("m�m) +r · ("m�mhvmim) = � @

@t
(�ox"ox)| {z }
_mox

@

@t
("m�mhvmim) +r · ("m�mhvmimhvmim) = �"mrhPmim + "m�mr2hvmim + �mr"m · hvmim + �m(r2"m)hvmim � "2m�mK�1 · hvmim

�"2m�mK�1 · F · hvmim + "m�mg

@

@t
("ox�oxhCY

oxiox)� CY �
ox

@

@t
(�ox"ox)| {z }
_mox

= r · ("ox�oxDO
oxrhCY

oxiox)� �oxD
O
ox(r"ox) ·rhCY

oxiox �r ·
h
�oxD

O
ox(r"ox)(CY �

ox � hCY
oxiox)

i

+�oxhox(C
Y �
ox � hCY

oxiox)

@

@t
("m�mhCY

mim) +r · ("m�mhCY
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Further, in the works of Roux et al. [25, 96, 98, 99, 97] and Bousquet-Mélou
et al. [17, 16] it has been shown that the non-classical terms like deviations
of fields terms ( e ) can be neglected. Roux in his work [97] has found out
that gradient in porosity (r") terms has negligible effect on the final solution
of the macroscopic model, and thus can be neglected as well. Also, in the
present work all the calculations are carried out with mole fractions, instead
ofmass fractions. Thus, with these simplifications and taking into account the
conversion from mass fractions to mole fractions, the simplified macroscopic
model is given in Table 3.4.
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Table 3.4: Simplified macroscopic model

@

@t
(�ox"ox)| {z }
_mox

=
1

(nY �m � nY �ox )

24�mhm(nY �m � hnYmim) + �oxhox(n
Y �
ox � hnYoxiox)

35 (3.185)

@

@t
("m�m) +r · ("m�mhvmim) = � @

@t
(�ox"ox)| {z }
_mox

(3.186)

@

@t
("m�mhvmim) +r · ("m�mhvmimhvmim) = �"mrhPmim + "m�mr2hvmim � "2m�mK�1 · hvmim � "2m�mK�1 · F · hvmim + "m�mg (3.187)
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= r · ("ox�oxDO
oxrhnYoxiox) + �oxhox(n

Y �
ox � hnYoxiox) (3.188)
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@
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_mox

= r · ("m�mDFe
m rhnYmim) + �mhm(n

Y �
m � hnYmim) (3.189)

@

@t
(h�ihHi) +r · ("m�mhHmimhvmim) = r · (ΛeffrhT i) (3.190)
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Chapter 4

Simplified Thermochemical Model

In the process of simulating various phenomena related to the severe accidents
– like dissolution in present study – with the help of the mathematical mod-
els, there is an inherent need to calculate the equilibrium compositions while
numerically solving the mathematical models. This problem of calculating
the equilibrium compositions in real time in the numerical simulations can be
broadly dealt in two ways, namely:

1. Using a full fledged Gibbs minimization solver like IRSN’s NUCLEA Tool-
box during runtime of CFD calculations.

2. Using a simplified model, which can be used for fast calculations of the
equilibrium compositions of species in phases during large CFD simula-
tions.

Due to its own internal iterations, calling a full Gibbs solver like NUCLEA
during numerical calculations comes with a CPU cost over already memory
demanding simulations. This CPU over head cost can be significantly reduced
by the use of a suitable model. A simplified model thus can serve as a fast
tool for calculating the equilibrium compositions, at the same time reducing
the CPU time.

A simplified model is generally given by a fit function (f(y) ; y being
some independent variable). This fit function f(y) can then be used to fit the
NUCLEA equilibria composition data in order to evaluate the fit parameters
in the fit function f(y). Thus, once the fit parameters are known, the fit
function f(y) can be used to quickly produce the equilibrium compositions
during real time CFD simulations.

The present chapter, thus deals with the derivation of a simplified ther-
mochemical model, which can efficiently fit the thermochemical equilibria
compositions produced by NUCLEA thermochemical Toolbox. To proceed
with the development of simplified model, it is important to first recollect the
some preliminary results of the thermochemical study of quaternary system
(U;Zr; Fe;O) conducted with NUCLEA-17_1 from section (3.4.2).
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4.1 Recollection of Thermochemical Study Con-
ducted with NUCLEA Toolbox

In section (3.4.2) one of the important outcomes was the invariability of global
molar ratio of U=Zr in both oxide and metal phases. Such invariability has
already been shown in Fig. (3.7) and in Fig. (3.8). In section (3.4.2.5) because
of this important result, it was possible to formulate a partitioning coefficient
K for (U � Zr). This partitioning coefficient K was given by Eq. (3.32) and
is invoked again below:

K =
NU
m

NU
=
NZr
m

NZr
=
NZr
m +NU

m

(1 + Cuz)
(4.1)

The thermochemical study with NUCLEA Toolbox is further extended to study
the relationship between nFem and Cox, and, nFem and Cuz for different moles of
Iron (NFe).

4.1.1 Relation Between nFem , Cox and Cuz

Referring to Fig. 4.1, it can be seen that the molar concentration of Fe in
the metal becomes asymptotically independent of Cuz as soon as the number
of moles of Iron (NFe) becomes more than 5, and even for lower values, the
dependence is weak.
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Figure 4.1: Dependence of Fe molar fraction in metal (nFem ) on Cuz

Looking at Fig. 4.2, it clearly appears that there is a linear dependence of
the mole fraction of Fe in the metal (nFem ) with Cox, for NFe = 1. This linear
dependence can be written as:

nFem = 1� n�m(1� Cox) (4.2)
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Figure 4.2: Dependence of Fe molar fraction in metal (nFem ) on Cox

nUm + nZrm = n�m(1� Cox) (4.3)

NU
m +NZr

m = n�mN
m(1� Cox) (4.4)

And, using the partitioning coefficient K, we can write that:

K(Cox; Cuz; Csz)(1 + Cuz) = n�mN
m(1� Cox) (4.5)

From the previous equation, it can be seen that the unknown partition coeffi-
cient K is not only related to input variables Cuz and Cox but also to n�m, which
is another unknown. This relation will be used to derive the simple analytical
model in the following section (4.1.2).
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4.1.2 Derivation of a Simplified Model for the (U, Zr, Fe,
O) System

The analysis starts with the identification of the global inventory (recalling
from section 3.4.2.2) as:

NZr = 1 (4.6)

NU = Cuz (4.7)

NO = 2(Cuz + Cox) (4.8)

NFe = Csz (4.9)

N tot = NZr +NU +NO +NFe (4.10)

4.1.2.1 Expressions for nFem , nOox and nm

The inventory of the metal phase is:

Nm = NZr
m +NU

m +NFe (4.11)

and nFem is given by:

nFem =
NFe

NZr
m +NU

m +NFe
(4.12)

The inventory of the oxide phase is:

N ox = NZr
ox +NU

ox +NO (4.13)

and nOox is given by:

nOox =
NO

NZr
ox +NU

ox +NO
(4.14)
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It is straightforward to see that:

NFe

nFem
+
NO

nOox
= Nm +N ox = N tot (4.15)

which may also be written as:

nFe

nFem
+
nO

nOox
= 1 (4.16)

Thus, the conservation of the total number of atoms gives the relation between
nFem and nOox:

nOox = nO(1� nFe

nFem
)�1 (4.17)

Then, the mole fraction of metal phase is simply obtained by:

nm =
Nm

N tot
=
Nm

NFe

NFe

N tot
=
nFe

nFem
(4.18)

Therefore, it can be seen that, in principle, only one of the three variables nFem ,
nOox or nm has to be fitted.

4.1.2.2 Choice of the Fitting Function and Parameters

Assuming that O is present only in the oxide phase, as discussed previously, a
relation between Cox and nOox can be derived from Eqs. (3.25, 3.26, 3.27, 3.29).
The relation can be written as:

nOox =
NO

N ox
=

2(Cuz + Cox)

(1�K)(1 + Cuz) + 2(Cuz + Cox)
(4.19)

After some algebraic transformations, the previous expression is equivalent to:

1� Cox = (1 + Cuz)
1� 3�K

2
nOox

1� nOox
(4.20)
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Substituting the left-hand side term in Eq. (4.20), with Eq. (4.2):

nFem = 1� n�m(1 + Cuz)
1� 3�K

2
nOox

1� nOox
(4.21)

At this point, it is interesting to remember that, when Cox tends to 1, the
partition coefficient K tends asymptotically to 0, and nOox tends asymptotically
to nOst = 2=3. Thus, in general nOox can be written as nOox = nOst � x or
nOox = 2=3� x, where x is some unknown. This is also true when Csz becomes
large. Writing the Eq. (4.21) as a function of x, and setting K = 0, the
following expression is obtained:

2

3n�m(1 + Cuz)
nFem =

2

3n�m(1 + Cuz)
� x

1
3
+ x

(4.22)

Making an approximation that 1
3
+ x � 1

3
, and defining the two constants m

and b as:

m =
2

9n�m(1 + Cuz)
(4.23)

b =
2

3
�m = nOst �m (4.24)

The Eq. (4.22) can then be re-written as:

mnFem � (m� 2

3
) + (

2

3
� x) = nOox � b (4.25)

From the Eq. (4.25), it can be seen that:

nFem =
nOox � b

m
(4.26)

and:

nOox = mnFem + b (4.27)
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The previous relation is asymptotically correct when Cox = 1 or when Csz is
large. Therefore, it can be generalized, and additionally it can be assumed
that both nFem and nOox can be written as a function of some fitting function
f(y), as:

nFem =
1

m
f(y) (4.28)

nOox = b+ f(y) (4.29)

From constraint given by Eq. (4.16), it can be written:

mnFe

f(y)
+

nO

b+ f(y)
= 1 (4.30)

which gives a second order equation:

f(y)2 + (b� nO �mnFe)f(y)� bmnFe = 0 (4.31)

We define the variable y as:

y =
1

2
(nO +mnFe � b) (4.32)

Then, the previous equation can be written as:

f(y)2 � 2yf(y)� bmnFe = 0 (4.33)

Selecting the positive solution:

f(y) = y +
q
y2 + bmnFe (4.34)

Finally, the two unknown concentrations are given by the Eqs. (4.32, 4.34,
4.28, 4.29). And it is easy to check that the last unknown variable nm is given
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by:

nm =
mnFe

f(y)
(4.35)

4.1.2.3 Behavior of the Fitting Function f(y)

The fitting function given by Eq. (4.34), starts from 0 for nFe = 0 (mole
fraction of iron) and tends to m, very quickly, in an asymptotic way when nFe

increases. Therefore the asymptotic solution for nFem is 1 and for nOox is b+m.
This gives the following constraint:

b+m = nOst (4.36)

Thus the fit is made only with one fitting parameter (either b or m), the other
being deduced from Eq. (4.36).

4.1.3 Illustration of Fit to NUCLEA Thermochemical Cal-
culations for Various Inventory Compositions

In this section the quality of fit, made by the derived simplified model, for
the NUCLEA calculations has been shown. Method of Least Squares have
been used to fit the NUCLEA data by the derived simplified model, which
has lead to the deduction of the values of fit parameter (m). Fig. 4.3, shows
fit data (coloured lines) to the NUCLEA data (coloured dots), corresponding
to Cuz = 1:0 and Cox = 0:3. It can be seen that the model fits quite well to
the thermochemical calculations. The value of fit parameter (m) for this case
is found to be 0:0948. The value of other fit parameter (b) can be calculated
from Eq. (4.36). Similarly, fits for thermochemical calculations, obtained for
other values of Cuz and Cox, can be seen in Figs. 4.4, 4.5 and 4.6, respectively.

Cox

Cuz 0:8 1:0 1:45

0:3 m = 0:11000 m = 0:0948 m = 0:07176
0:6 m = 0:05130 m = 0:0446 m = 0:03400
0:9 m = 0:00615 m = 0:0048 m = 0:00266

Table 4.1: m values for various Cuz and Cox

The values of fit parameter (m) found after fitting the NUCLEA data, for
other important values of Cuz and Cox, can be seen in Table 4.1.
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Figure 4.3: Inventory: Cuz = 1:0 and Cox = 0:3 (m = 0:0948)
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Figure 4.4: Inventory: Cuz = 1:0 and Cox = 0:6 (m = 0:0446)

To calculate the values of the fit parameter (m), for other values of Cuz

and Cox, apart from the one given in Table 4.1, we found in our study, that
for a given Cox, m follows a simple dependence on Cuz. This dependence is
expressed as:

m(Cuz) = mref 1 + Cref
uz

1 + Cuz
(4.37)
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Figure 4.5: Inventory: Cuz = 1:45 and Cox = 0:3 (m = 0:07176)
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Figure 4.6: Inventory: Cuz = 1:45 and Cox = 0:6 (m = 0:034)

where,m(Cuz) is the unknown for a given Cuz at a fixed Cox,mref is a reference
value of m, which can be taken to be any already known value of m from
Table 4.1, at a fixed Cox. Similarly, Cref

uz is the value of Cuz, corresponding to
mref , at a fixed Cox, and Cuz is the value for whichm(Cuz) is to be determined.

Table 4.2, shows the use of Eq. (4.37), to determine the value of m for
various values of Cuz at a given value of Cox. In this analysis, Cuz is varied
from 0:8 to 1:45 at a given Cox = 0:3, chosen mref = 0:11 (from Table 4.1) and
the Cref

uz corresponding to mref = 0:11 is Cref
uz = 0:8 (from Table 4.1).
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Cox

Cuz 0:8 0:9 1:0 1:2 1:3 1:45

m m m m m m
0:3 0:11 0:104 0:0948 0:09 0:086 0:07176

Table 4.2: m values calculated from Eq. (4.37)

In Table 4.2, the values of m in bold corresponds to the already known values
given in Table 4.1, and non-bold m values are the one calculated by using
Eq. (4.37). In a similar way, values of m for other values of various Cuz, at
Cox = 0:6 and Cox = 0:9 can be approximated by using Eq. (4.37).
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4.1.4 Range of Application of Fit model (Range of Data
Fitted)

Figure 4.7 shows the range of fitted thermochemical data obtained from NU-
CLEA database. Clearly it can be seen that fitting covers values of Cuz ranging
from 0:8 to 1:5 and Cox ranging from 0:3 to 0:9. This data set is larger than the
available experimental data points, thus making the fitting relevant to various
inventory compositions found in different nuclear reactors like PWR, BWR,
etc. Another illustration, showing the globalness of the fit data can be seen
in Fig. 4.8, which is showing a full quternary system (U � Zr; Fe;O) in a
cross-sectional ternary phase diagram. Yet again, it can be seen that the fit
data covers broader range than the experimental data.
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Figure 4.7: Range of data fitted, shown in (U;Zr;O) form
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Figure 4.8: Range of data fitted, shown in (U � Zr; Fe;O) form
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4.1.5 An Algorithm for Using Simplified Model For Fast
Thermochemical Calculations of nFem ; nm; nOox

Global data:

Cuz, Cox, Csz

Calculate:

m = mref 1+C
ref
uz

1+Cuz

b = nOst � m

Set:
NZr = 1

NU = Cuz

NO = 2(Cuz + Cox)

NFe = Csz

N tot = NZr + NU + NO + NFe

ni = N i=N tot (i = O;Fe)

Calculate the fit function f(y):

f(y) = y +
q
y2 + bmnFe

where:

y = 1
2
(nO + mnFe � b)

Calculate thermochemical equilibrium parameters:

nFem = f(y)
m

nm = mnFe

f(y)

nOox = b + f(y)

Figure 4.9: An algorithm to calculate the thermochemical parameters with
derived simplified model
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Chapter 5

Application to 0-D and 1-D Cases

5.1 Application to 0-D case

In this chapter, an application of the ternary in each phase model to predict
the quaternary equilibria in a stratified metal-oxide system is presented. At
first, a 0-D model by neglecting the diffusion terms from Eqs. (3.188) and
(3.189) is considered. Consequently, the Eqs. (3.188) and (3.189), reduces to
system of Ordinary Differential Equations (ODEs) given below:

d(�ox"oxhnYoxiox)
dt

� nY �ox _m = �oxhox(n
Y �
ox � hnYoxiox) (5.1)

d(�m"mhnYmim)
dt

+ nY �m _m = �mhm(n
Y �
m � hnYmim) (5.2)

_m =
d(�ox"ox)

dt

=
1

(nY �m � nY �ox )

24�mhm(nY �m � hnYmim) + �oxhox(n
Y �
ox � hnYoxiox)

35 (5.3)

To solve the above system of ODEs, it is required to know the equilib-
rium mole fractions values represented by nY �ox and nY �m . In order to know the
mole fractions values, derived simplified thermochemical model is to be used
as demonstrated in the next section (5.1.1).
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5.1.1 Calculations of Equilibrium Compositions nY �
ox and

nY �
m from Simplified Thermochemical Model

In order to determine the equilibrium composition in the 0-D model, the algo-
rithm explained in section (4.1.5) needs to be followed. At first, global values
of Cuz, Cox, Csz or NFe has been chosen to be 1, 0:3 and 2:0 respectively.
Secondly, for these Cuz and Cox, values of m and b are found to be 0.0948 and
0.572. With these values of Cuz, Cox, Csz, m, b, and following the third, fourth
and fifth steps of the algorithm (Fig. 4.9), the equilibrium values of nOox and
nFem are calculated to be 0:65 and 0:8. Finally the equilibrium values nY �ox and
nY �m are calculated to be 0:35 and 0:2, respectively.

5.1.2 Results for 0-D case
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Figure 5.1: Results for 0-D study performed with ODE model, and its com-
parison with 1-D model
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The initial values of hnYoxiox and hnYmim are taken as 0:4 and 0, respectively.
The system of coupled ODEs given by Eqs. (5.1, 5.2, 5.3) has been solved by
a split algorithm elaborated in Appendix (B). It can be seen from Fig. 5.1
(a) that hnYmim reach its equilibrium value at around 1400 seconds and hnYoxiox
has almost reached to its equilibrium by 1400 seconds. Also, from Fig. 5.1
(b), it can be inferred that by starting with 80% oxide (shown in red curve in
Fig. 5.1 (b)), there will be a reduction of about 5% in oxide volume fraction,
hence, metal volume fraction (shown in green curve in Fig. 5.1 (b)) increases
to 25% from initial 20%, at around 1400 seconds. It is also interesting to see
the conservativeness of the ternary in each phase model (here represented by
an ODE model) from Fig. 5.2, where mass of O and Fe remains conserved
in respective oxide phase and metal phase, and the mass of (U � Zr) remains
conserved in oxide-metal phase.
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Figure 5.2: Conservation of total mass of O, Fe, UZ in both oxide and metal
phases
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5.2 Application to 1-D case and Results

Analysis carried out with 0-D model is also repeated with a 1-D model. For
this, the diffusion terms in Eqs. (3.188) and (3.189) are retained. Thus, the
system of PDEs read as:

@

@t
(�ox"oxhnYoxiox)�nY �ox

@

@t
(�ox"ox) = r · (�ox"oxDO

oxrhnYoxiox)+�oxhox(nY �ox�hnYoxiox)
(5.4)

@

@t
(�m"mhnYmim)+nY �m

@

@t
(�ox"ox) = r · (�m"mDFe

m rhnYmim)+�mhm(nY �m �hnYmim)
(5.5)

_m =
d(�ox"ox)

dt
=

1

(nY �m � nY �ox )

24�mhm(nY �m � hnYmim) + �oxhox(n
Y �
ox � hnYoxiox)

35
(5.6)
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Figure 5.3: Solid volume fraction profiles for 1-D study performed
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Figure 5.4: Results for 1-D study performed

The above system of coupled PDEs has been solved numerically by a semi-
implicit Finite Volume scheme adopted in a fully coupled solver, explained
in Appendix (A). Further, the value of diffusivity, DFe

m , is chosen to be
10�6 m2=sec: [65], and it is 10�9 m2=sec: [3, 62] for DO

ox. Fig. 5.3 illustrates
the 1-D analysis with the same thermochemical data used for 0-D study. For
the sake of comparison with 0-D model, the initial oxide volume fraction ("ox)
in Fig. 5.3 (a) is taken to be 80% in a square domain. Fig. 5.3 (b) and Fig. 5.4
(b) shows the state of the system at 1400 seconds, when the interface between
oxide and metal phase has moved by around 5% because of the dissolution of
the oxide phase, making oxide phase to have around 75% volume fraction, sim-
ilar to one observed in 0-D model (shown in Fig. 5.1 (b)). Similarly, the mole
fraction of (U � Zr) in metal phase (i.e. hnYmim) has attained an equilibrium
value of hnYmim = 0:2 by 1400 seconds, shown in Fig. 5.4 (a), which is also in
good agreement with 0-D model (Fig. 5.1 (a)).
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6.1 Topological Relations

The derivation of volume averaged model in section (3.4.6) in chapter 3, lead
to the system of closed PDEs. The closure problems detailed there, were
concerned with the closure of following variables:

1. Mass transfer coefficient in solid-oxide phase represented by hox.

2. Mass transfer coefficient in liquid-metal phase represented by hm.

3. Diffusion coefficient in solid-oxide phase represented by DO
ox.

4. Diffusion coefficient tensor in liquid-metal phase represented by DFe
m .

5. Forchheimier correction tensor represented by F.

6. Permeability tensor represented by K.

Ideally, whole set of PDEs along with the derived closure problems can be
numerically solved. In fact, at least for K and F, the associated closure
problems Eqs. (3.128 - 3.138) was solved by [16] for representative cells of
dendrite equiaxed structures in solidification. These are still to be solved for
representative cells of solid grains saturated with liquid, illustrated in Fig.
(2.3). The case of stratified cells will be acceptable for this study. In the case
of solidification, [41, 42] had solved these closure problems by considering the
parallel and transverse flows on primary axis of dendrites. These cases are not
very appropriate for the present problem of dissolution. In fact, the present
problem of dissolution does not involve the dendrite structures, the problem
in hand in this study is more like classical porous media. Consequently, in
the present thesis, these closure problems can be solved for special type of
representative cells appropriate for dissolution, however, it will arise an extra
level of numerical complexity, which is not a primary aim of the present thesis.
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Therefore, an alternate simpler approach of closure of variables detailed
above has been worked out in the present work by choosing various empirical
relations for the unclosed variables. These empirical relations are generally
termed as topological relations, outlined by [76]. On going enumeration
summarizes some important assumptions and the closure of variables.

1. At first it is assumed that the Forchheimier correction tensor (F), rep-
resenting the inertial effects in flow through porous media, is negligible
[14]. Further, the permeability tensor (K) is assumed to be a scalar (K)
and closed by Kozeny-Carman relation [12].

K =
l2d
180

"3m
(1� "m)2 (6.1)

Also, it is important to note that, as the porosity ("m) increases to some
higher values of 40% or above, due to the dissolution in the crust, the
grains becomes quite mobile and can not be assumed to be connected
anymore. Hence, in order to simulate the rate of increase of permeability,
consistent with the rate of increase of porosity, beyond a certain limit-
ing value of porosity, a new expression is proposed, which retains the
dimension of Eq. (6.1) but is more relaxed for higher porosities. This
expression reads as.

Kr =
l2d"m

(1� "m)4 (6.2)

2. For diffusivity in liquid phase it is assumed that the dispersion in
diffusion-dispersion tensor (DFe

m ) is negligible [14] reducing it to a scalar
(DFe

m ). Further, this diffusivity in liquid-metal phase along with diffusiv-
ity in solid-oxide phase is represented by an effective diffusivity obtained
from the homogenization of the diffusion equation [57] for periodic grains
shown in Fig. (6.1), where: l2d = "oxl

2
v.

De =
(2� "m)DO

ox +DFe
m

2� "m + DO
ox

DFe
m

(6.3)

3. In effective conductivity tensor (Λeff), the contribution from dispersion
and tortuosity are neglected and the resulting scalar effective conductivity
is closed by Eq. (6.4) [57].

�eff =
(2� "m)�ox + �m

2� "m + �ox
�m

(6.4)

4. For mass transfer coefficients, several models from the literature has been
tested to correctly reproduce the morphology of the crust observed in
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ox
m

Figure 6.1: 2D Periodic representative cells

CORDEB experiment [4] after dissolution by molten steel. The complete
analysis about the physics of these equations will be discussed in chapter
7. Here, the form of several models of mass transfer coefficients in oxide
and metal phases are given by Eq. (6.5) [16], Eq. (6.6) [14] and Eq. (6.7).

hk =

hk0Dk

24256"k � 300"k � 653"k + 1320"k � 623"k

35
l2d

(6.5)

hk =
hk0Dk"k(1� "k)

l2d
(6.6)

hk =
hk0"k(1� "k)

�
(6.7)

where: k = (ox;m), hk0 is some constant whose value will be discussed
in chapter 7, and � is like an effective time of dissolution.

6.2 Numerical Implementation

For the sake of clarity the simplified set of PDEs from Table 3.4 along with
the modified rate of dissolution term ( _mox) explained in chapter 5, is presented
again below.

@

@t
("m�mhvmim) +r · ("m�mhvmimhvmim) = �"mrhPmim + "m�mr2hvmim

�"2m�mK�1 · hvmim + "m�mg

(6.8)
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@

@t
("ox�oxhnYoxiox)� nY �ox _mox = r · ("ox�oxDO

oxrhnYoxiox)

+�oxhox(n
Y �
ox � hnYoxiox)

(6.9)

@

@t
("m�mhnYmim) +r · ("m�mhnYmimhvmim) + nY �m _mox

= r · ("m�mDFe
m rhnYmim)

+�mhm(n
Y �
m � hnYmim)

(6.10)

_mox =
1

(nY �m � nY �ox )

24�mhm(nY �m � hnYmim) + �oxhox(n
Y �
ox � hnYoxiox)

35 (6.11)

@

@t
(h�ihHi) +r · ("m�mhHmimhvmim) = r · (�effrhT i) (6.12)

where:
h�i = "ox�ox + "m�m (6.13)

hHi = "ox�oxhHoxiox + "m�mhHmim
h�i (6.14)

Further implementing following assumptions from [16, 14, 97]:

1. The density of continuous liquid-metal phase is equal to a constant refer-
ence density �0 in all the terms except in the body force per unit volume
term, "m�mg, in momentum equation. In this body force term, Boussi-
nesq approximation [125] is assumed to be valid i.e.

�m = �0

241� �T (hT i � T0)� �S(hnYmim � n0)
35 in "m�mg (6.15)

�m = �0 in all other terms (6.16)

where: �T and �S are the respective thermal and solutal expansion coef-
ficients defined as:
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�T = � 1

�m

0@@�m
@T

1A (6.17)

�S = � 1

�m

0@@�m
@n

1A (6.18)

Further, it is also assumed from [14] that density is solid-oxide phase is
equal to density of liquid-metal phase i.e.

�ox = �m = �0 (6.19)

2. The macroscopic enthalpies in oxide and metal phases are independent of
the mole fractions and vary linearly with the temperature of the mixture
as:

hHoxiox = CPoxhT i (6.20)

hHmim = CPmhT i+ Lf (6.21)

where: CPox, CPm and Lf are the respective heat capacity of oxide phase,
heat capacity of metal phase and latent heat of fusion. Further, it is also
assumed [14]:

CPox = CPm = CP0 (6.22)

Further, with the implementation of above assumptions and with following
simplifications of the notations :

1. "m�m = "m�0 = e�m, termed as apparent density of liquid-metal phase.

2. hvmim = vm

3. hPmim = Pm

4. "ox�ox = "ox�0 = e�ox, termed as apparent density of solid-oxide phase.

5. hnYoxiox = nox

6. nY �ox = n�ox

7. DO
ox = Dox

8. hnYmim = nm
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9. nY �m = n�m

10. DFe
m = Dm

11. hT i = T

The final set of PDEs, ready for numerical implementation read as:

@

@t
(e�mvm) +r · (e�mvmvm) = � e�m

�0
rPm +

e�m
�0
�mr2vm

�
0@ e�m
�0

1A2

�mK
�1 · vm + e�m

241� �T (T � T0)� �S(nm � n0)
35g

(6.23)

@

@t
(e�oxnox)� n�ox _mox = r · (e�oxDoxrnox)

+�0hox(n
�
ox � nox)

(6.24)

@

@t
(e�mnm) +r · (e�mnmvm) + n�m _mox

= r · (e�mDmrnm)

+�0hm(n
�
m � nm)

(6.25)

_mox =
@

@t
(e�ox) = 1

(n�m � n�ox)

24�0hm(n�m � nm) + �0hox(n
�
ox � nox)

35 (6.26)

@

@t
(e�mCP0T ) +r · (e�mCP0T vm) = r · (�effrT )

�Lf _mox � @

@t
(e�oxCP0T )

(6.27)

The numerical implementation of the above system of PDEs has been
done in IRSN’s high fidelity C++ CFD solver CALIF 3S [20]. The main
highlight of the numerical scheme implemented in CALIF 3S is the use
of time semi-discretization scheme. One of the main highlights of this
time semi-discretization scheme is that it ensures the conservativeness and
discrete maximum principle for the scalar transport equations like species
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and temperature. The mathematical proof for the satisfaction of discrete
maximum principle is given in Appendix (D). Below is the summarised
algorithm with time semi-discretization of the system of PDEs given by Eqs.
(6.23 - 6.27).

Considering a partition; 0 = t0 < t1 < :::: < tK = T ; of the time inter-
val (0; T ), which for the sake of simplicity, is taken uniform. Let �t be
a constant time step; �t = tk+1 � tk for k = 0; 1; 2; ::::;K � 1. The time
semi-discretization of Eqs. (6.23 - 6.27) reads:

Knowing e�k�1ox , e�k�1m , e�kox, e�km, vk
m, P k, nkox and nkm:

1. Step 1: Solve for e�k+1ox and _mox

e�k+1ox � e�kox
�t

=
1

(n�m � n�ox)

24�0hm(n�m � nkox) + �0hox(n
�
ox � nkox)

35 (6.28)

_mox =
1

(n�m � n�ox)

24�0hm(n�m � nkm) + �0hox(n
�
ox � nkox)

35 (6.29)

2. Step 2: Solve for nk+1ox

e�koxnk+1ox � e�k�1ox nkox
�t

� n�ox _mox = r · (e�koxDoxrnk+1ox ) + �0hox(n
�
ox � nk+1ox )

(6.30)

3. Step 3: Solve for nk+1m

e�kmnk+1m � e�k�1m nkm
�t

+r · (e�kmnk+1m vk
m) + n�m _mox = r · (e�kmDmrnk+1m )

+�0hm(n
�
m � nk+1m )

(6.31)

4. Step 4: Solve for T k+1

e�kmCP0T
k+1 � e�k�1m CP0T

k

�t
+r · (e�kmCP0T

k+1 vk
m) = r · (�effrT k+1)

Lf _mox �
e�koxCP0T

k+1 � e�k�1ox CP0T
k

�t
(6.32)
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5. Step 5: Solve for e�k+1m

e�k+1m � e�km
�t

+r · (e�k+1m vk
m) = � _mox (6.33)

6. Step 6: Solve for evk+1
m (predicted velocity)

e�kmevk+1
m � e�k�1m vk

m

�t
+r · (e�kmevk+1

m vk
m) = � e�km

�0
rP k

m +
e�km
�0
�mr2evk+1

m

�
0@ e�km
�0

1A2

�mK
�1 · evk+1

m + e�km
241� �T (T k � T0)� �S(n

k
m � n0)

35g

(6.34)

7. Step 7: Solve for P k+1, vk+1
m , where: � = e�m + e�ox

�k(vk+1
m � evk+1

m )

�t
+r(P k+1 � P n) = 0 (6.35)

�k+1 � �k
�t

+r · (�k+1vk+1
m ) = 0 (6.36)

Step 2, Step 3 and Step 4 are the semi-implicit solution of the balance
equations for nk+1ox , nk+1m and T k+1, which is classical except the fact that the
density is shifted backward with respect to time, this will yield a discretization
satisfying a discrete-maximum principle (see Appendix (D)). Step 6 consist
in a semi-implicit solution of the momentum balance equation to obtain a
predicted velocity, with once again a shift in density. Step 7 is a pressure
correction step, which is a standard projection step used in constant density
incompressible flow solving algorithm [71]. At the discrete level, taking the
divergence of Eq. (6.35) and using the Eq. (6.36) to eliminate the unknown
velocity vk+1

m gives a linear elliptic problem for the pressure. Once pressure is
known, the Eq. (6.35) gives the vk+1

m .

Several test cases from the literature, testing the numerical accuracy of
the implemented Navier-Stokes equation in handling the flow through par-
tially porous medium and further calculating the solutal natural convection in
coupling with the implemented species transport equations for uniform porous
media has been shown in Appendix (E).
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The main aim of this chapter is to present a demonstration of the 2D
dissolution calculated by the macroscopic model in the crust with various
closure relations for the mass transfer coefficients. The closure models tested
in the present chapter are already been mentioned in chapter 6 under the
section (6.1). This sensitivity study is important to study the strong depen-
dency of mass transfer coefficients on the evolving micro-structures in the crust.

In the regard of this important sensitivity study with different closure
relations for mass transfer coefficients, the numerical results are compared
qualitatively in this chapter with the morphology of the crust produced by
CORDEB experiments [4]. This is done, in order to identify a unique closure
model for mass transfer coefficient, which can be used for all subsequent
calculations for reactor specific cases, detailed in chapter 8. It is important
to mention that a quantitative validation of the model with respect to
CORDEB results was not possible because there are several elements or
phenomena in CORDEB tests which could not be taken into account in the
model developed: the formation of cracks in the crust, the changes of volume
due to changes of composition and density, the existence of a liquid oxide phase.

Further, after identifying the appropriate closure model for mass trans-
fer coefficient, some calculations have also been shown with different boundary
conditions below the crust. Capability of the mathematical model for calculat-
ing the dissolution under the influence of the advection is also demonstrated
at the end of this chapter.

It is important to note that the present chapter only serves the purpose
of identifying the appropriate closure relation for mass transfer coefficient
capable of producing the morphology of the crust same as observed in
CORDEB experiments, and demonstrating the capability of the mathematical
model to compute dissolution for various cases with or without convection.
Thus, the dimensions of the molten metal layer in the computational domains
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taken for the study of the 2D dissolution may not correspond to the moles
of molten steel (NFe) present in the metal-oxide system. Also, the present
chapter does not cover the thermo-solutal convection in the metal domain.
These, more concrete reactor-specific cases are elaborated and discussed in
chapter 8.

Throughout this chapter, all the numerical results will be shown mainly
for two geometric configurations which are as follows:

1. A single liquid-metal domain above the two phase solid-oxide and liquid-
metal crust, henceforth called Geometry 1 and shown in Fig. 7.1 (a).

2. Two liquid-metal domains, one above and other below the crust, hence-
forth called Geometry 2 and shown in Fig. 7.1 (b).

m

m
ox

B

H

(a) Geometry 1

m

m
ox

H

B

m

(b) Geometry 2

Figure 7.1: Two geometric configurations studied
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7.1 Geometry 1

7.1.1 Without Convection (vm = 0)

The case of no convection in the liquid phase vm = 0 has been studied for two
cases. The two cases corresponds to the different boundary conditions below
the crust. The computational domains with the boundary conditions and the
numerical results has been elaborated in the following sections.

7.1.1.1 Case 1: Initial, Equilibrium and Boundary Conditions (B.C.)
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No mass transfer
N

o
 m

as
s 

tr
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No mass transfer 

(a) Computational domain

(Crust)

(b) Equivalent pictorial depic-
tion having metal below crust

Figure 7.2: Computational domain and B.C. for case: 1

The dimensions indicated in Fig. 7.2(b) are: H = 0:01 m and B = 0:06 m.

No mass transfer is taken on lateral boundaries in Fig. 7.2(a). In this
case liquid metal is taken to be at equilibrium below the crust. To simulate
a case of liquid at equilibrium below crust as shown in Fig. 7.2(b), No mass
transfer has been taken as the B.C below crust (m + ox) in Fig. 7.2(a). In
order not to impose any B.C. at the interface between the crust (m + ox)
and the liquid-metal (m), computational domain includes a purely liquid zone
at the top shown in Fig. 7.2(a), where again, No mass transfer has been taken.

The initial mole fractions of (U;Zr) in the liquid-metal phase is: hnYmim = 0.
The initial mole fractions of (U;Zr) in solid-oxide grains corresponds to
hnYoxiox = 0:45. The equilibrium mole fractions in liquid-metal and solid-oxide
phase as determined from simplified model for reactor case of Cuz = 1,
Cox = 0:3 and Csz or NFe = 2:0 are nY �m = 0:2 and nY �ox = 0:35 respectively.

The initial porosity field "m is initialized randomly in the range 10%� 5%, in
order to represent the non-uniform distribution of interstitial spaces between
the solid-oxide grains.
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7.1.1.2 Case 1: Numerical Results

The first set of numerical results has been produced by using the expression
of mass transfer coefficients given by Eq. (6.5) [16] and read as:

hk =

hk0D
i
k

24256"k � 300"2k � 653"3k + 1320"4k � 653"5k

35
l2d

(7.1)

where k = (ox;m), i = O for k = ox and i = Fe for k = m. The value of
hk0 is 10�3 for k = m, and 10�6 for k = ox. The value of diffusivities Di

k are
10�6 m2=sec: [65] for k = m and i = Fe, and 10�9 m2=sec: [3, 62] for k = ox
and i = O. The value of ld corresponds to the average grain size which is
about 10�4 m [13].

Fig. 7.3 shows the dissolution profile obtained in the crust by using the Eq.
(7.1). From Fig. 7.3 it appears that the dissolution progresses as plane front
in the crust. Further this front is quite sharp as the crust is fully dissolved
in around 4000 seconds. This corresponds to an average velocity of 0.025
mm/sec. for a 1 cm of crust. Other important observation can be made for
the evolution of porosity in the two-phase crust. It is quite evident that the
initial variation in porosity field subsides within crust in time. Also, there is
a simultaneous solidification of initial pores in the region not yet affected by
dissolution. Hence, no occurrence of liquid channels same as Fig. 2.3 from
CORDEB experiment [4] can be seen in these results obtained by use of Eq.
(7.1). The same can be seen from Fig. 7.4 as well.
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Figure 7.3: Dissolution profile calculated in crust by the model in the crust
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X

Y

Figure 7.4: Solid volume fraction distribution calculated in crust by the model
in the crust at 2000 sec.

The second set of results corresponds to the use of the expression of mass
transfer coefficient given by Eq. (6.6) [13], which read as:

hk =
hk0D

i
k"k(1� "k)
l2d

(7.2)

where k = (ox;m), i = O for k = ox and i = Fe for k = m. The values of hk0,
Di
k, ld are same as the one given below Eq. (7.1).
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Figure 7.5: Dissolution profile calculated in crust by the model in the crust

CHAPTER 7. MODEL DEMONSTRATION FOR DISSOLUTION
CALCULATIONS

101



CHAPTER 7. MODEL DEMONSTRATION FOR DISSOLUTION
CALCULATIONS

X

Y

Figure 7.6: Solid volume fraction distribution calculated in crust by the model
in the crust at 5000 sec.

From Fig. 7.5 it can be seen that the dissolution occurs almost like plane front
in this case, as well. But the front is not as sharp as the one observed in the
previous case because at the end of the 5000 sec. it seems that less than half
of the crust is dissolved. Some amplification of initial porosities can be seen
near the top part of the crust. But the solidification of initial porosities near
the bottom part of the crust renders the amplification ineffective to produce
the liquid channels. Fig. 7.6 shows that the use of Eq. (7.2) turns out to be
ineffective to reproduce the microstructure of the crust same as observed in
Fig. 2.3.
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Y

Figure 7.7: Dissolution profile calculated in crust by the model in the crust
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The third set of results are obtained with the use of Eq. (6.7), which is
proposed in this work. This expression reads as:

hk =
hk0"k(1� "k)

�
(7.3)

where k = (ox;m), i = O for k = ox and i = Fe for k = m. The values of
hk0 are same as the one given below Eq. (7.1). The value of � is chosen to be
1 sec:

X

Y

Figure 7.8: Solid volume fraction distribution calculated in crust by the model
in the crust at around 2500 sec.

Figure 7.9: Micro-structure of the crust after dissolution, showing oxide crust
in Grey and molten steel channels in Black. CORDEB experiment [4]
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From Fig. 7.8 it is observed that the dissolution occurs uniformly in the whole
crust with no distinct front. In this case it can be clearly seen that the initial
variation of porosity field gets amplified to create visible molten steel channels
in the crust. The same has been observed in the Fig. 7.9 from CORDEB
experiment [4].

7.1.1.3 Discussions About the Effect of Liquid Mass Transfer Coeffi-
cients on Dissolution in Crust

It is evident from section (7.1.1.2) that the closure model used for the mass
transfer coefficients have significant effect on the microstructure evolution in
the crust while dissolution. An insight on this issue can be derived by looking
into the comparison of characteristic times of dissolution in liquid and effective
diffusion. The characteristic time of dissolution in liquid is given by:

�hm =
1

hm
(7.4)

Likewise, the characteristic time of effective diffusion can be estimated as:

�De =
l2d
De

(7.5)
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Figure 7.10: Comparison between characteristic time of effective diffusion (�De)
and time of dissolution in liquid phase (�hm) for Eq. (7.1)
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Keeping these two expressions in mind, the characteristic times can be plotted.
The characteristic times for dissolution in liquid and effective diffusion for Eq.
(7.1) is shown in Fig. (7.10). Similarly, the characteristic times for dissolution
in liquid and effective diffusion for Eq. (7.2) and Eq. (7.3) are shown in Fig.
(7.11) and Fig. (7.12), respectively.
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Figure 7.11: Comparison between characteristic time of effective diffusion (�De)
and time of dissolution in liquid phase (�hm) for Eq. (7.2)
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Figure 7.12: Comparison between characteristic time of effective diffusion (�De)
and time of dissolution in liquid phase (�hm) for Eq. (7.3)
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Comparing the Fig. 7.12, Fig. 7.10 and Fig. 7.11, it can be seen that diffusion
is much faster than the dissolution in the case of using the expression of mass
transfer coefficient given by Eq. (7.3) and illustrated by Fig. 7.12. This is
evident from the fact that the relative difference between the characteristic
time of dissolution in liquid-metal and effective diffusivity is highest in Fig.
7.12 (outcome of Eq. (7.3)) when compared with Fig. 7.10 (outcome of Eq.
(7.1)) and Fig. 7.11 (outcome of Eq. (7.2)).

This very large relative difference between the characteristic time of ef-
fective diffusion and dissolution in liquid-metal phase obtained from Eq. (7.3),
making the effective diffusion much faster than the dissolution, can be one
of the reasons explaining the manifestation of liquid-metal channels (see Fig.
7.8) similar to the one observed in CORDEB experiment [4]. Consequently,
for the same reason, when the relative difference between the time of effective
diffusion and time of dissolution in liquid-metal phase decreases, as observed
from the trend produced by Eq. (7.2) and Eq. (7.1), the liquid-metal channels
become less and less visible in Fig. 7.11 and Fig. 7.10 respectively. Thus, for
the cases represented by Eq. (7.2) and Eq. (7.1), plane front is one of the
characteristics of the dissolution, but for the case represented by Eq. (7.3),
dissolution is prominently uniform in the crust, leading to the creation of
liquid-metal channels.

From the preceding analysis, done with the comparison of effective time
of diffusion and time of dissolution in liquid-metal, it can be concluded that,
in order to reproduce experimental observations, it is necessary to assume a
very fast diffusion of atoms through the crust, with a value of the effective
diffusion well above the standard molecular diffusion in solids. The reason for
that remains an open question at the moment and more investigations, both
numerical and experimental, are necessary.
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7.1.1.4 Case 2: Initial, Equilibrium and Boundary Conditions (B.C)
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Figure 7.13: Computational domain and B.C. for case: 2

The dimensions of the computational domain shown in Fig. 7.13 (a) are the
same as case 1. The initial and equilibrium conditions for mole fractions in this
case are exactly the same as case 1, detailed in section (7.1.1.1). The initial
porosity distribution is also the same as case 1. This case corresponds to the
presence of a liquid oxide below the crust. Consequently in order to simulate
the presence of liquid oxide below the crust, as shown in Fig. 7.13 (b), the
Fixed B.C. has been imposed on the bottom boundary in the computational
domain, which is shown in Fig. 7.13 (a). This Fixed B.C. corresponds to fixed
value of mole fractions of (U;Zr) on the bottom boundary i.e. hnYoxiox = 0:35
which is also the equilibrium value.

7.1.1.5 Case 2: Numerical Results

The expression of mass transfer coefficient used to generate the numerical
results for case 2 is the one, which worked for reproducing the microstructure
of the crust after dissolution in CORDEB experiment [4]. This mass transfer
expression was identified to be Eq. (7.3) in section (7.1.1.2), and reads as:

hk =
hk0"k(1� "k)

�
(7.6)

where k = (ox;m), i = O for k = ox and i = Fe for k = m. The value of hk0
are same as the one given below Eq. (7.1). The value of � is 1 sec:

Fig. 7.14 (a) depicts the dissolution profiles in the crust for case 2. Comparing
the dissolution profiles for case 2 with case 1, shown in Fig. 7.14 (b), some
similarities and differences can be accounted for. In general in both cases,
there is an amplification of initial distribution of porosities. However, looking
at the solid volume fraction calculated by the model it can be seen that only
in case 1, the liquid channels are observed (Fig. 7.15 (b)) but not in case 2
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(Fig. 7.15 (a)), despite the amplification of initial porosity distribution seen
in both the cases. This is because the dissolution in case 2 is non-uniform in
the crust. From Fig.7.14 (a), it can bee seen that it is more on the top part
of the crust and less at the bottom part of the crust. In fact the dissolution
is not only less in the bottom part of the crust but also there is occurrence
of solidification in the initial pores very close to the bottom part of the crust.
Due to this gradient in the dissolution profile with solidification close to the
bottom part of the crust, the amplification in the initial porosity distribution
rendered ineffective to give rise to the liquid channels in the crust.

X

Y

(a) For case 2

X

Y

(b) For case 1

Figure 7.14: Dissolution profile calculated in crust for case 1 and case 2
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(a) For case 2
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Y

(b) For case 1

Figure 7.15: Solid volume fraction distribution calculated in crust for case 1
and case 2 at around 2500 sec.
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It is clear in case 2 that the crust becomes stable after some time and dis-
solution is no more effective. This is due to the supply of O atoms into the
oxide phase in crust from the bottom liquid oxide phase. Due to this transfer
of O atoms, the crust seems to become stable. Thus, the composition of liquid
phase present below the crust has an impact on the stability of the crust. If
there is liquid metal at equilibrium below the crust, the crust seems to dissolve
eventually as seen in Fig. 7.15 (b), but having a liquid oxide below the crust,
seems to make it stable, especially at the bottom part of the crust as seen in
Fig. 7.15 (a).
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7.2 Geometry 2

The case with geometry 2 has been studied both with convection (vm 6= 0)
and without convection (vm = 0).

7.2.1 Without Convection (vm = 0)

7.2.1.1 Initial, Equilibrium and Boundary Conditions (B.C)
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Figure 7.16: Computational domain

The dimensions indicated in Fig. 7.16 are: H = 0:02 m and B = 0:06 m.

In Fig. 7.16, the initial mole fractions of (U;Zr) in top liquid-metal
phase is: hnYmim = 0. The initial mole fractions of (U;Zr) in solid-oxide grains
in crust corresponds to hnYoxiox = 0:45. The equilibrium mole fractions in
liquid-metal and solid-oxide phase as determined from simplified model for
reactor case of Cuz = 1, Cox = 0:3 and Csz or NFe = 2:0 are nY �m = 0:2 and
nY �ox = 0:35 respectively. Further, in Fig. 7.16, the initial mole fractions of
(U;Zr) in bottom liquid-metal phase is at equilibrium i.e. hnYmim = nY �m

No mass transfer is taken on lateral boundaries in Fig. 7.16. The top
B.C. corresponds to the Fixed mole fractions of (U;Zr) in both solid-oxide
and liquid-metal phase, which are: hnYoxiox = 0:45 and hnYmim = 0. The
bottom B.C. also corresponds to the Fixed value of mole fraction, where
hnYoxiox = 0:45, however, hnYmim = nY �m .

The porosity field "m is initialized randomly in the range 10% � 5%, in
order to represent the non-uniform distribution of interstitial spaces between
the solid-oxide grains.
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7.2.1.2 Numerical Results

X

Y

Figure 7.17: Dissolution profile calculated in crust by the model in the crust

The dissolution computed by the model in the present case by using the Eq.
(7.6) is shown in Fig. 7.17. It can been seen that the dissolution occurs
everywhere in the domain but is faster on the left side in Fig. 7.17 (top in the
Fig. 7.16) than the right side (bottom in Fig. 7.16).

This is due to the different liquid mole fractions below the crust, where
liquid is already at equilibrium. This obviously means that there is no dis-
solution (or very less) below the crust (right side in Fig. 7.17) in the beginning.

Similar to the results in the section (7.1.1.2) obtained by using Eq. (7.3), here
as well an amplification of porosities is observed, with formation of channels.
The important comparative study between the present case and the case with
convection is given in the following section.
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7.2.2 With Convection (vm 6= 0)

7.2.2.1 Initial, Equilibrium and Boundary Conditions (B.C)
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Figure 7.18: Computational domain

The initial, equilibrium values of mole fractions are same as one identified in
section (7.2.1.1) for the case of no convection (vm = 0). The porosity field in
the crust is randomly initialized, similar to all above cases.

The B.C. with respect to the mole fractions on lateral, top and bottom
boundaries are similar to the case of no convection described in section
(7.2.1.1). For velocity, No slip B.C. is imposed on the lateral boundaries, as
shown in Fig. (7.18). Additionally, for this case, in order to generate a flow,
after creation of the liquid channels, a pressure gradient is applied between
top and bottom boundary, such that, Ptop > Pbottom.

7.2.2.2 Numerical Results

In the calculations with convection, it is observed that in the beginning till
t < 5000 sec, due to the low porosity in the crust, depicted by black curve
in Fig. 7.19 (b), the velocity across the crust remains small as seen in Fig.
7.19 (a). However, at 5000 sec, when the average solid volume fraction "s in
the crust becomes less than 60 % i.e. ("s < 60 %), the velocity (of the order
10�3m=sec ) becomes significant in the crust. After t > 5000 sec, it can be
seen that dissolution becomes much faster, as observed from the black curve
in Fig. 7.19 (b).

This is due to the penetration of fresh steel, which replaces the satu-
rated steel within the pores. Looking at the Fig. 7.19 (a)-(b), it can also
be observed that the average velocity evolution along the cross-section in
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the crust, shows a sharp increase after 5000 sec, which is the beginning of
percolation, and is quickly followed by the breakthrough of metal through the
crust.

Finally, at around 7000 sec, almost complete dissolution of the crust is
observed. In Fig. 9 (b), it can be observed that convection has enhanced the
dissolution in the present case, unlike the case with no convection, described
in section (7.2.1). The red curve in Fig. 7.19 (b) shows the case with no
convection, and the black curve depicts the present case with convection.

(a) Average velocity evolution along the cross-
section in the crust

(b) Evolution of average solid volume fraction for
the case, with and without convection

Figure 7.19: Average velocity and solid volume fraction evolution in the crust

Fig. 7.20 (a)-(b) shows the picture of the crust at t = 0 sec and t = 5000 sec.
At t = 5000 sec, it can be seen that the crust has almost completely dissolved
from the top, and solid volume fraction has an average value of about 60%
near the bottom part of the crust.
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Y

(a) Crust at 0 sec:

X

Y

(b) Crust at 5000 sec: with average "ox < 60 %

Figure 7.20: State of crust

It can also be seen from the numerical results, that at 5000 sec, the point
of the first breakthrough (first point across the length of the crust to allow
flow of molten metal), corresponds to the small bulge in liquid mole fraction
distribution (hnYmi), below the crust, shown in Fig. 7.21 (b). This bulge
occurs as soon as there is a breach in the crust, due to high porosity, and
simultaneously, the liquid mole fractions is modified below the crust, due to
the advection of molten metal mass from top. Further, at 5400 sec, shown in
Fig. 7.21 (c), an even bigger region below the crust, shows a change in liquid
mole fractions, due to flow of molten steel from the top. Similar observations
were also made in the CORDEB experiment [4], shown in Fig. 7.21 (d), where
a similar bulge of molten metal can be seen below crust.
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Crust

(a) Liquid mole fraction profile above
and below the crust at 0 sec:

Crust

(b) Liquid mole fraction profile above
and below the crust at 5000 sec:

Crust

(c) Liquid mole fraction profile above
and below the crust at 5400 sec:

Top Metal

Crust

Metal below crust as seen

In CORDEB experiment

(d) Flow of metal through a per-
colation in the crust observed in
CORDEB experiment [4]

Figure 7.21: Flow of molten metal through the crust and effect on the liquid
mole fraction profile below the crust
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Chapter 8

Results for Reactor Specific Cases

This chapter shows the CFD calculations, which are both physically consistent
and relevant to reactor cases, unlike chapter 7. The numerical results are
made relevant to the reactor specific cases by improving upon the following
parameters:

1. Dimensions of the molten metal layer, which will now correspond to the
mass of steel, or moles of Fe in present analysis (NFe) present in the
metal-oxide system.

2. Choosing more accurate initial mole fractions for O atoms in oxide phase
(nOox) and Fe atoms in metal phase (nFem ), which will be relevant to reactor
scenario.

3. Choosing accurate material properties for metal and oxide phases.

4. Taking into account the thermo-solutal convection in the molten metal
layer.

8.1 Metal Layer Dimensions Corresponding to
N
Fe

This chapter broadly covers two values of moles of Fe (NFe), that are:

1. NFe = 2:0

2. NFe = 10:0

2D computational domain corresponding to NFe = 2:0 have equal width of
metal and crust layers. The corresponding geometry looks like Fig. 8.1 (a)-
(b), where, A is the width of the metal layer and B is the width of the crust.
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Figure 8.1: Computational domains for NFe = 2:0

Computational domain corresponding to NFe = 10:0 have width of metal layer
greater than the crust layer. The corresponding geometry looks like Fig. 8.2
(a), where, A and B are the width of metal layer and crust, respectively.
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mox
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(a) Rectangular domain (Horizontal crust) with
A > B

Figure 8.2: Computational domain for NFe = 10:0
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8.2 Equilibrium Mole fractions

For the calculation of the equilibrium mole fractions of Fe atoms in metal phase
(nFe�m ) and O atoms in oxide phase (nO�ox ), similar to chapter 7, the global ratio
of U=Zr atoms i.e Cuz and global degree of oxidation of Zr atoms i.e. Cox are
taken to be:

1. Cuz = 1:0.

2. Cox = 0:3.

From the above values, it is easy to calculate the equilibrium values from the
simplified model derived in chapter 4 for NFe = 2:0 and NFe = 10:0.

For NFe = 2:0, equilibrium values are calculated to be:

1. nO�ox = 0:65.

2. nFe�m = 0:8.

Similarly, for NFe = 10:0, equilibrium values are calculated to be:

1. nO�ox = 0:65.

2. nFe�m = 0:94.

8.3 Initial Mole Fractions for nOox and nFem
Unlike chapter 7, the initial mole fractions here are taken to be the ones consis-
tent with the reactor scenario, where initially no molten steel is present in the
crust. Thus accordingly, the initial mole fractions of O atoms in oxide phase
(hnOoxiox) and Fe atoms in metal phase (hnFem im) are as follows:

1. hnFem im = 1:0 in pure liquid domain and hnFem im = 0 in the crust region.

2. hnOoxiox = nO�ox in pure liquid domain and hnOoxiox = 0:6 in the crust region.
This value, hnOoxiox = 0:6, corresponds to the reactor case where global
degree of oxidation of Zr atoms is 30%, or Cox = 0:3.

These values will be used throughout this chapter for the initialization of mole
fraction fields.
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8.4 Material Properties for Metal and Oxide

The complete list of thermo-physical data used in the calculations for molten
steel or oxide is given in the Table 8.1.

Density (metal or oxide) [66] �m = �ox = �0 = 7000 kgm�3

Specific heat (metal or oxide) [66] CPm = CPox = CP0 = 720 Jkg�1K�1
Molecular diffusion (metal) [65] DFe

m = Dm = 1:0� 10�6 m2s�1

Molecular diffusion (oxide) [3, 62] DO
ox = Dox = 1:0� 10�9 m2s�1

Dynamic viscosity (metal) [66] �m = 8:0� 10�3 kgm�1s�1

Thermal conductivity (metal) [39] �m = 30:0 Wm�1K�1

Thermal conductivity (oxide) [13] �ox = 3:54 Wm�1K�1

Thermal expansion coefficient (metal) [66] �T = 1:0� 10�4K�1

Solutal expansion coefficient (metal) [66] �S = 4:0� 10�3�
Gravity g = 9:81 m=s2

Table 8.1: Physical data

8.5 Thermo-solutal Convection

The convection in the present chapter will be studied due to the combined ef-
fects of the thermal and solutal gradients. The thermal and solutal convection
are generally quantified by the thermal and solutal Rayleigh numbers, RaT
and RaS, respectively. At this point, it is important to mention that the role
of Darcy number (Da) in both mode of convection is not taken into account,
because here the metal flow will not be considered in the porous region, which
is crust. Of course, metal flow will take place in the crust region once there is
sufficient percolation due to the dissolution.

Thus, thermal and solutal Rayleigh numbers without Darcy number (Da)
contribution, are given by the following relations:

RaT =
�0g�T�TL

3

�m�
(8.1)

RaS =
�0g�S�nL

3

�mDm
(8.2)

where: � = �m
�0CP0

is the thermal diffusivity.

In the subsequent sections showing numerical results, the relative domi-
nance of the mode of convection, thermal over solutal or vice-versa, will be
checked by comparing the order of magnitudes of the two Rayleigh numbers,
RaT and RaS. Also, in the context of convection, the square domain with
vertical crust, shown in Fig. 8.1 (a) is studied both with and without
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thermo-solutal convection. Further, closer reactor cases represented by the
rectangular domains with vertical and horizontal crusts, shown in Fig. 8.1 (b)
and 8.2 (a), respectively, are studied only with thermo-solutal convection.

8.6 Cases

8.6.1 Case 1: Square Domain with Vertical Crust: No
Convection (vm = 0)

The first case shown here is the illustration of dissolution in the case of a vertical
crust having a square geometry with equal width of metal layer and crust, as
shown in Fig. 8.3. From the discussion in section (8.1), this case corresponds to
NFe = 2:0. Thus, from section (8.2), for NFe = 2:0, the calculated equilibrium
mole fractions of O in oxide and Fe in metal phase are: nO�ox = 0:65 and nFe�m =
0:8. The dimensions of Fig. 8.3 are: H = 6 cm and A = B = 3 cm. Here,
the porosity field "m is initialized randomly in the range 10%� 5%, in order to
represent the non-uniform distribution of interstitial spaces between the solid-
oxide grains. The boundary conditions in Fig. 8.3 are: Top = Bottom =
Left = Right = No mass transfer.

m m

ox

B

H

A
X

Y

Top

Bottom

Left
Right

Figure 8.3: Computational domain for case: 1

8.6.1.1 Results

In this case it can be seen from Fig. 8.4 (a) that the dissolution is more promi-
nent in the left region of the crust with initial porosity distribution getting
amplified. On the contrary, the right region in the crust is experiencing the
precipitation with the diminishing of initial porosity distribution. This precip-
itation is due to the increase in the mole fraction of O in oxide phase in the
right region of the crust. This is evident from the Fig. 8.4 (b), where it can be
seen that the mole fraction of O in oxide goes quickly to the equilibrium value
in the dissolved region of the crust, but on the right region the mole fraction of
O is evolving slowly towards equilibrium because of the mole fraction gradient.
The 2D pictures of the crust at the initial and final time steps can be seen in
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Fig. 8.5. In Fig. 8.5 (b) the dissolved left part of crust can be observed along
with the precipitated right part.

Crust

Liquid Metal

X

Y

(a) Dissolution profiles at the mid-
section of the domain y = 3 cm

Crust

Liquid Metal

X

Y

(b) Mole fraction profiles of Fe in
metal and O in oxide at mid-section
of the domain y = 3 cm

Figure 8.4: Results for dissolution and mole fractions profile evolution in the
domain with time in case: 1

(a) Solid volume fraction
(eps) in crust at 0 sec.

(b) Solid volume fraction
(eps) in crust at 5.0E4
sec.

Figure 8.5: State of crust at the beginning and end of time steps in case 1
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8.6.2 Case 2: Square Domain with Vertical Crust:
Thermo-Solutal Convection

In this case, the physical problem explained in case: 1 is studied with
thermo-solutal convection. The computational domain for this case is shown
in Fig. 8.6. Fig. 8.6 has the same dimensions as case: 1 with Left
boundary maintained at temperature of T = 1400�C, Right boundary at
T = 2500�C, Top and Bottom are taken to be adiabatic boundaries. For
species: Top = Bottom = Left = Right = No mass transfer, and for ve-
locity: Top = Bottom = Left = Right = No slip. The �T and �n in the
definition of thermal and solutal Rayleigh numbers are: �T = 1100�C and
�n = 1, respectively. This gives the RaT of the order of 107 and RaS of the
order of 106. Thus, for this case, the thermal convection will be dominant over
solutal convection.

m

m

ox

B

H

g

A
X

Y

Top

Bottom

Left
Right

Figure 8.6: Computational domain for case: 2

8.6.2.1 Results

Fig. 8.7 (a) shows the flow pattern generated by thermo-solutal convection at
time t = 400 sec:. The flow sets in motion in an anti-clockwise direction with
the peak velocity of 3:2 cm=sec:. Due to the low porosity in the crust, there
is a negligible flow in that region. The anti-clockwise flow direction results
in the erosion of the crust surface from bottom to top with velocity at the
bottom inflection point in the range 1:5 to 2:5 cm=sec:, which subsequently
results in more dissolution near the bottom left part of the crust. This can
be observed in Fig. 8.8 (b). Also, looking at the solid volume fraction values
near the bottom left part of Fig. 8.8 (b) at 4000 sec:, the approximate
values are in the range 0 < "ox(eps) < 0:75. Interestingly, at this instance
of time there can be seen flow penetration in the crust, as shown in Fig. 8.7 (b).
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(a) Velocity vectors in the domain at
400 sec.

(b) Velocity vectors in the domain at
the time of flow penetration in the
crust at 4.0E3 sec.

(c) Velocity vectors in the domain at
final time step at 5.0E4 sec.

Figure 8.7: Evolution of the velocity in the domain in case 2

(a) Solid volume fraction
(eps) in crust at 0 sec.

(b) Solid volume fraction
(eps) in crust at 4.0E3
sec.

(c) Solid volume fraction
(eps) in crust at 5.0E4
sec.

Figure 8.8: State of crust at three different time steps in case: 2
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X

Y

Liquid Metal

Crust

(a) Dissolution profiles at the mid-
section of the domain y = 3 cm

X

Y

Liquid Metal

Crust

(b) Mole fraction profiles of Fe in
metal and O in oxide at mid-section
of the domain y = 3 cm

Figure 8.9: Results for dissolution and mole fractions profile evolution in the
domain with time in case: 2

Further, the effect of the convection on the dissolution can be seen in Fig. 8.9
(a), where the dissolution takes place in the whole crust, with more dissolution
in the left that the right part. This is different from the results of the case:
1, where precipitation was observed in the right part of the crust (see Fig. 8.4
(a)) in the absence of any convection in the liquid-metal. The corresponding
mole fraction profiles in the whole domain can be seen in Fig. 8.9 (b). In 8.9
(b) the behaviour of mole fraction of Fe in metal is more or less same as case:
1 but the difference is more evident in the evolution of the O mole fraction
in the oxide, which unlike case: 1, goes to the equilibrium more uniformly,
following the progress of dissolution. Thus, there is less effect of diffusion of O
atoms. Finally, at the end of the time step, at 50; 000 sec:, it can be observed
from Fig. 8.8 (c) that almost complete crust (except some part in the top
right corner) becomes permeable and hence, the molten metal flow loop covers
almost the whole domain, as shown in Fig. 8.7 (c).
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8.6.3 Case 3: Rectangular Geometry with Vertical Crust:
Thermo-Solutal Convection

This case corresponds to the computational domain shown in Fig. 8.10. Again,
from the discussion in section (8.1), this case corresponds to NFe = 2:0. Hence,
from section (8.2), for NFe = 2:0, the calculated equilibrium mole fractions are:
nO�ox = 0:65 and nFe�m = 0:8. The dimensions of Fig. 8.10 are: H = 10 cm and
A = B = 3 mm. The B.Cs. are identical to case: 2. In this case as well
RaT > RaS, with RaT in the order of 108 and RaS having the order of 107.

H

B

m m

ox

g

A
X

Y

Left Right

Bottom

Top

(a) Computation domain (b) Equivalent reactor illustra-
tion

Figure 8.10: Physical domains for case: 3

8.6.3.1 Results

Looking at the flow patterns at time t = 400 sec: shown in Fig. 8.11 (a), it
can be observed that here as well the flow sets in an anti-clockwise direction
with peak velocity 3:9 cm=sec:. Even though in this case as well the flow hits
the crust from top to bottom but the more dissolution is not observed near the
bottom left part of the crust (dissolution is uniform in Fig. 8.13) unlike case:
2. This is due to the very small velocity at the bottom inflection point, which
is approximately 5 mm=sec:. However, the convection has an impact on the
dissolution in the whole crust, where a uniform dissolution profile is observed.
This is evident from Fig. 8.14 (a). It is interesting to note that even though in
case: 2 the dissolution was observed in the whole crust but it was not uniform
like the present case. This is may be due to the thin crust in the present case
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(B = 3 mm) as opposed to case: 2, where crust thickness was B = 3 cm. Due
to the thin crust, diffusion is fast enough to make mole fractions of Fe in metal
phase and O in oxide phase uniform in the whole crust. Consequently, both
Fe mole fraction in metal and O in oxide phase evolve very uniformly towards
their equilibrium values as seen in Fig. 8.14 (b), making dissolution uniform
in the whole crust.

Cr
us
t

(a) Velocity vectors in
the domain at 400 sec.

Cr
us
t

(b) Velocity vectors in
the domain at the time
of flow penetration in
the crust at 4.8E3 sec.

(c) Velocity vectors in
the domain at final
time step at 5.0E4 sec.

Figure 8.11: Evolution of the velocity in the domain in case: 3

The flow penetration in the crust is shown at 4000 sec: in Fig. 8.11 (b). Also,
it is interesting to see from Fig. 8.11 (c) that the initial single flow loop breaks
into three smaller flow loops. This is because when metal flow enters the whole
crust region, it directly comes in contact with the right hot boundary. Thus,
as soon as the metal reaches the right boundary temperature (i.e. 2500�C), it
reaches its maximum value and turns downwards and gets cooled.

Further, from Fig. 8.14 (a) it can also be observed that due to the uni-
form dissolution in the present case there is an amplification of the initial
porosity field distribution, which consequently leads to the creation of liquid
metal channels in the crust. This can be observed from Fig. 8.13, where no
channels are observed in 8.13 (a) and the deepest channels are observed at
the end time step in 8.13 (c).
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(a) Temperature distri-
bution in the domain at
400 sec.

(b) Temperature distri-
bution in the domain at
final time step at 5.0E4
sec.

Figure 8.12: Evolution of the temperature profile in the domain in case: 3

(a) Solid volume fraction
(eps) in crust at 0 sec.

(b) Solid volume fraction
(eps) crust at 1.0E3 sec.

(c) Solid volume fraction
(eps) crust at 5.0E4 sec.

Figure 8.13: Evolution of liquid metal channels in the crust in case: 3
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Crust

Liquid Metal

X

Y

(a) Dissolution profiles at the mid-
section of the domain y = 5 cm

Crust

Liquid Metal

X

Y

(b) Mole fraction profiles of Fe in metal
and O in oxide at mid-section of the do-
main y = 5 cm

Figure 8.14: Results for dissolution and mole fractions profile evolution in the
domain with time in case: 3

8.6.4 Case 4: Rayleigh-Bénard Convection

The last case is presented with Rayleigh-Bénard Convection. For this case,
the computational domain is presented in Fig. 8.15. From the discussion in
section (8.1), this case corresponds to NFe = 10:0 and thus, from section (8.2),
the calculated equilibrium mole fractions are: nO�ox = 0:65 and nFe�m = 0:94.
The dimensions are: H = 10 cm, A = 1 cm and B = 2 mm. In this case, Top
and Bottom boundaries are kept at 1400�C and 2500�C, respectively. Left
and Right boundaries are adiabatic. No mass transfer and No slip B.Cs.
are taken on all the boundaries for species and velocity, respectively. Similar
to the other cases, here as well, RaT > RaS, with RaT and RaS having order
of magnitudes to be 106 and 105, respectively.

H

B

m

mox

g
A

X

Y Top

Bottom

Left Right

Figure 8.15: Computational domain for case: 4
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(a) Velocity profile in the domain at 400 sec.

Crust

(b) Velocity vectors in the domain at 400 sec.

(c) Velocity profile in the domain at the time of flow penetra-
tion in the crust at 1.0E4 sec. sec.

Crust

(d) Velocity vectors in the domain at the time of flow pene-
tration in the crust at 1.0E4 sec.

(e) Velocity profile in the domain at final time step at 1.7E4
sec.

(f) Velocity vectors in the domain at final time step at 1.7E4
sec.

Figure 8.16: Evolution of the velocity in the domain in case: 4
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Observing the Fig. 8.16 (a) it can be seen that there is a generation of Bénard
cells in the top molten metal domain, with every odd cell having a clock-wise
rotation and all even cells having a counter clock-wise rotation. The flow
penetration in the crust is observed at 10; 000 sec:, which is more than the
time observed in case: 2 and case: 3, which shows that the dissolution has a
slower rate in the present case (see Fig. 8.19 (a)). This happens because the
equilibrium value of Fe in metal is much higher than the case: 2 and case:
3. This case having equilibrium value of nFe�m = 0:94 as opposed to other two
cases, where equilibrium values were of nFe�m = 0:8. Thus, as evident from Fig.
8.19 (b), that the Fe in metal goes to equilibrium at 13; 000 sec:, which is
quicker compared to other two cases with convection. This leads to a slower
dissolution. However, even though the metal reaches equilibrium early, there
is still some dissolution because, O atoms in oxide reach to their equilibrium
value of 0:65 later than Fe in metal, somewhere between 13; 000 sec: and
16; 000 sec: (see Fig. 8.19 (b)), which is almost equal to the time observed in
case: 2 and case: 3.

(a) Temperature distribution in the domain at 400 sec.

(b) Temperature distribution in the domain at 1.0E4 sec.

(c) Temperature distribution in the domain at final time step
at 5.0E4 sec.

Figure 8.17: Evolution of the temperature profile in the domain in case: 4

Similar to the case: 3, here as well the dissolution profile in the crust in
uniform with the amplification of the initial porosity field (see Fig. 8.19 (a)).
This is again due to the fast diffusion in the thin crust in this case, making
the mole fractions of Fe in metal and O in oxide to have uniform evolution
towards their respective equilibrium values (see Fig. 8.19 (b)). This is also due
to the more intense mixing in the metal layer due to natural convection. Also,
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(a) Solid volume fraction (eps) in crust at 0 sec.

(b) Solid volume fraction (eps) in crust at 1.7E4 sec. with molten metal
channels

Figure 8.18: Evolution of liquid metal channels in the crust in case: 4

similar to case: 3, in Fig. 8.18 it can be seen that due to the amplification of
the initial porosity field there is the formation of molten metal channels in the
crust in this case as well.
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(a) Dissolution profiles at the mid-
section of the domain y = 5 cm
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Crust

(b) Mole fraction profiles of Fe in metal
and O in oxide at mid-section of the do-
main y = 5 cm

Figure 8.19: Results for dissolution and mole fractions profile evolution in the
domain with time in case: 4
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Conclusions

In this thesis, a macroscopic model was proposed for the dissolution of a
(UO2; ZrO2; Zr) solid phase by liquid iron. This model includes a descrip-
tion of the distribution of liquid phase inside the solid as a quasi-periodic
porous medium. The model was elaborated from the analysis of experi-
mental observations and from a simplification of the quaternary diagram.
This simplification was deduced from thermochemical equilibrium calculations.

Observations made in CORDEB and VITI-CORMET experiments have
shown that dissolution of the crust is associated to the formation and growth
of liquid metal channels inside the crust. Several experimental evidences tend
to indicate that the dissolution process is driven by molecular diffusion of Fe
and O atoms in the liquid and solid phases, respectively.

On the basis of those observations, a two-phase model was built, paying
a particular attention to the description of species diffusion at two different
scales. At the small (microscopic) scale, which was assumed to be the scale
of ceramic (oxide) grains, the diffusion of species governs the displacement
of the solid/liquid interface, and therefore, the local dissolution of grains (or
their precipitation in some cases). At the scale of the crust (macroscopic),
the effective diffusion of species controls the global time of dissolution and
formation of metallic channels, leading to the possibility of percolation of
liquid metal through the crust. When the model was written for the four
species U;Zr; Fe;O, it was not possible to write explicitly the diffusion fluxes
(they were linked).

In addition, several binary diffusion coefficients appear, but several of
them were not known, for the species considered in this thesis. This issue had
to be addressed owing to a simplification of the quaternary system. Boundary
conditions also play an important role, in particular the conditions on the side
of the crust which is not in contact with steel. If there is no way for O atoms
to go out of the crust, this will limit the dissolution. Similarly, if there is not
enough convection in the liquid metal to avoid saturation of the metal near
the crust, dissolution may be limited. This implies that taking into account
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the convective in the metal is also necessary, as it determines the boundary
condition on one side of the crust.

To reduce the complexity of multi-species diffusion, a thermochemical
study of the quaternary system U;Zr; Fe;O was made, estimating the fraction
of phases and their respective compositions. This study was made with
IRSN database NUCLEA and the solver NUCLEA � Toolbox. It was first
observed that the results did not depend much on temperature, at least at high
temperature, around the miscibility gap temperature. It was also observed
that Fe was absent of the oxide phase and that the solubility of O in the metal
phase was limited, and even negligible in many cases. Another important
conclusion was that the atomic ratio U=Zr was approximately identical in
both phases. This lead to a drastic simplification of the quaternary system. It
may be viewed as two ternary systems, one in each phase.

Additionally, the uniform U=Zr ratio allows to consider that U and Zr
atoms are always associated in the same proportion: therefore it is only
necessary to know the mole fraction of one of those atoms and the other one
can be directly deduced. Based on those conclusions, a simplified system was
proposed, made of two "quasi-binary" systems: (U;Zr) + Fe in the metal
phase and (U;Zr) + O in the oxide phase. For this simplified system, the
diffusion transport depends on two main binary diffusion coefficients: the
diffusivity of O in U;Zr (for the solid phase) and the diffusivity of Fe in U;Zr
(for the liquid phase).

After reduction of the quaternary system, the macroscopic model be-
comes easier to solve numerically. In the first test cases, convective motion in
the liquid phase were neglected. It was shown that the model could represent
two different kinds of dissolution behaviour. If the characteristic time of
effective diffusion is much lower than the characteristic time of dissolution at
the microscopic scale, then it is possible to simulate the formation of metal
macro-channels, as observed in experiments. If that condition is not verified,
then the dissolution front is planar and there is not formation of metal
channels within the solid phase. The consequence of the formation of channels
is that, after some time of interaction, percolation of the metal through the
crust is possible. Tests including the possible motion of the liquid have shown
that when percolation occurs, the dissolution rate is increased around the
percolating channels and the metallic phase can easily flow through the crust.
This may explain some of the experimental results obtained in CORDEB
experiments.

In order to be more accurate on the metal composition at the crust/liquid in-
terface, the simulation of natural convection in the liquid phase was simulated.
It was estimated that thermal convection is likely to be dominant over solutal
convection. If the crust is vertical, large convection cells develop along the
crust and this leads to a rather uniform dissolution front. If the crust is hor-
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izontal, Rayleigh-Bénard cells are formed and produce non-uniform patterns
of dissolution along the crust. Finally, the sensitivity study to the boundary
condition on the side opposite to the metal has brought interesting conclusions.
If the boundary condition simulates the contact with a stoichiometric oxide,
there is no mass flux of O through that boundary and it stabilizes the crust
in the vicinity of that boundary: dissolution cannot be complete. If the
boundary condition simulates the contact with a metal at equilibrium, there is
again no mass flux of O through that boundary and the crust is stabilized and
cannot be completely dissolved. On the contrary, if the boundary condition
simulates the contact with a sub-stoichiometric oxide (i.e. O concentration is
below its equilibrium value), there is a mass flux of O through that boundary
and the dissolution front can progress up to that boundary (see Appendix (F) ).

Therefore, even with a simplified model, we can conclude that the dis-
solution patterns can vary significantly and depend on several parameters: the
evaluation of effective diffusivity, the boundary condition on the side opposite
to the metal and the flow patterns generated by thermal convection in the
metal layer.

Some theoretical difficulties of the modelling remain, in spite of the ap-
parent relevance of the results produced by the developed model. The first
theoretical difficulty is related to the concept of effective diffusivity at the
macroscopic scale. In many models of the literature, the effective diffusivity
is estimated as a combination of diffusivities in the liquid and solid phases.
But, in our case, two different species are concerned for the two phases. In
the solid, the diffusivity of O with respect to U;Zr is involved. In the liquid
phase, the diffusivity of Fe with respect to U;Zr is involved. Therefore, it is
justified to consider that effective diffusivity in each phase does not depend on
the molecular diffusivity in the other phase. Only geometrical aspects should
be taken into account in the closure of those terms. This is particularly true
for Fe which is never present in the oxide phase. For O, a limited solubility in
the metal exists and, therefore, the model could be improved by considering
the diffusivity of O in the metal. But this would require to add an equation for
the transport of O in the liquid metal phase. This option was not investigated
in this thesis.

The second theoretical issue is related to the topology and geometry of
the two-phase region. The channels seem to have a more or less periodic
structure, at least when the solid volume fraction is larger than the liquid
one. But the size and shape of the channels does not seem to be only related
to the grain size. Other scales seem to appear. One interesting point of the
developed model is that, with a particular choice of effective diffusivities, it
is able to predict the formation of liquid channels, starting at the grain scale
and evolving to other scales. But it must be kept in mind that the evolution
of porosity predicted by the model is also necessarily scaled with the size of
meshes because the model is not able to describe channels with a size smaller
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than the mesh size. So, there is at least an implicit condition to be verified: the
scale of the channels must be larger than the mesh size which must be larger
than the grain size. This condition allows describing the formation of macro-
channels. Due to the limited time of this work, it was not possible to study
possible instability mechanisms generating those macro channels. But, clearly,
they result from the coupling of the evolution of the local geometry and the
dependence of effective diffusivities and local dissolution rate on that geometry.

There are several possible perspectives after this work. One of them
would be to make a more detailed and systematic analysis of the model chosen
for the effective diffusivities in each phase. It should include the dependence
of binary diffusion coefficients with temperature, which was not taken into
account in this work. Another important perspective would be to consider
the solubility of O in the metal phase. This would allow some transport of O
through the metal phase with a possible precipitation of oxides in regions that
are not in direct contact with the crust itself.
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Appendix A

Discretization of Diffusion Form of
Macroscopic Model

A.1 System of PDEs

The system of PDEs identified in section (5.2) is:

@

@t
(�ox"oxhnYoxiox)�nY �ox

@

@t
(�ox"ox) = r · (�ox"oxDO

oxrhnYoxiox)+�oxhox(nY �ox�hnYoxiox)
(A.1)

@

@t
(�m"mhnYmim)+nY �m

@

@t
(�ox"ox) = r · (�m"mDFe

m rhnYmim)+�mhm(nY �m �hnYmim)
(A.2)

@

@t
(�ox"ox) =

1

(nY �m � nY �ox )

24�mhm(nY �m �hnYmim)+�oxhox(nY �ox �hnYoxiox)
35 (A.3)

Assuming: �ox"ox = g�ox, where g�ox is termed as apparent density of oxide
(solid) phase. Similarly apparent density of metal (liquid) phase is assumed to
be: g�m = �m"m. Rewriting the Eqs. (A.1, A.2, A.3) with the assumptions:

@

@t
(g�oxhnYoxiox)� nY �ox @@t(g�ox) = r · (g�oxDO

oxrhnYoxiox) + �oxhox(n
Y �
ox � hnYoxiox)

(A.4)

@

@t
(g�mhnYmim) + nY �m

@

@t
(g�ox) = r · (g�mDFe

m rhnYmim) + �mhm(n
Y �
m � hnYmim)

(A.5)

@

@t
(g�ox) = 1

(nY �m � nY �ox )

24�mhm(nY �m � hnYmim) + �oxhox(n
Y �
ox � hnYoxiox)

35 (A.6)
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Further making the following transformations for simplicity of notations:

1. hnYoxiox = ns.

2. nY �ox = ns
eq .

3. g�ox = f�s.
4. DO

ox = Ds.

5. hox = hs.

6. hnYmim = nl.

7. nY �m = nl
eq .

8. g�m = e�l.
9. DFe

m = Dl.

10. hm = hl.

With above transformations of notations, the system of PDEs looks like:

@

@t
(f�sns)� nseq @

@t
(f�s) = r · (f�sDsrns) + �shs(ns

eq � ns) (A.7)

@

@t
( e�lnl) + nl

eq @

@t
(f�s) = r · ( e�lDlrnl) + �lhl(nl

eq � nl) (A.8)

@

@t
(f�s) = 1

(nleq � nseq)

"
�lhl(nl

eq � nl) + �shs(ns
eq � ns)

#
(A.9)

Assuming: Y s = f�sns and Y l = e�lnl, the final set of PDEs transforms to Eqs.
(A.10, A.11, A.12):

@

@t
(Y s)� nseq @

@t
(f�s) = r · (DsrY s)�r · (Dsnsrf�s) + �shs(ns

eq � ns) (A.10)

@

@t
(Y l) + nl

eq @

@t
(f�s) = r · (DlrY l) +r · (Dlnlrf�s) + �lhl(nl

eq � nl) (A.11)

@

@t
(f�s) = 1

(nleq � nseq)

"
�lhl(nl

eq � nl) + �shs(ns
eq � ns)

#
(A.12)

Figure A.1: Final system of PDEs
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A.2 Discretization Methodology

To discretize the system of PDEs summarized in Fig. A.1, standard Finite
Volume method has been used. The system of PDEs has been discretized over
a 2D Cartesian grid shown in Fig. A.2. The time discretization scheme is
semi-implicit as evident from the equations below:

Figure A.2: A typical Finite Volume (FV) 2D cell

Y s � Y s0

�t
� nseq

f�s � f�s0
�t

= r · (DsrY s)�r · (Dsnsrf�s) + �shs(ns
eq � ns0)

(A.13)

Y l � Y l0

�t
+nl

eq
f�s � f�s0
�t

= r · (DlrY l)+r · (Dlnlrf�s)+�lhl(nleq�nl0) (A.14)

f�s � f�s0
�t

=
1

(nleq � nseq)

"
�lhl(nl

eq � nl0) + �shs(ns
eq � ns0)

#
(A.15)

Further, the mass transfer coefficients and diffusivities are related to the ap-
parent liquid and solid densities by the following simple relations:

hk = hk0(f�k0=�k)(1� (f�k=�k)); k = (s; l) (A.16)

Dk = Dk0(f�k0=�k); k = (s; l) (A.17)

The hk0 are constants whose values are chosen to be 10�3 for k = l and 10�6

for k = s. Similarly, the Dk0 are constants whose values are chosen to be
10�6 m2=sec: for k = l and 10�9 m2=sec: for k = s. The final set of coupled
algebraic system of linear equations are given in the following section.
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A.2.1 Discretized form (Semi-implicit and coupled) for an
Internal Finite Volume cell

Oxide phase:

aY
s

P Y
s
P + a

e�s
P
f�sP = aY

s

E Y
s
E + aY

s

W Y
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(A.18)

Coefficients are:
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Metal phase:
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Coefficients are:
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Rate of dissolution ( _m) :
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Coefficients are:
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A.3 Numerical Resolution

For numerical resolution of the coupled algebraic equations, a fully coupled
solver has been programmed in Python using NumPy and SciPy libraries.
Routines involving loops has been optimized with Python’s Numba library.
The global assembled matrix at each time step is sparse, positive definite
and non-symmetric, thus, iterative scheme of Generalized Minimal Residual
(GMRES) method has been adopted for the resolution of the system:

AX = B: (A.21)
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Appendix B

Numerical Resolution of Coupled
ODEs

The system of coupled ODEs identified in the section (5.1), is given as:

d(�ox"oxhnYoxiox)
dt

� nY �ox _m = �oxhox(n
Y �
ox � hnYoxiox) (B.1)

d(�m"mhnYmim)
dt

+ nY �m _m = �mhm(n
Y �
m � hnYmim) (B.2)

_m =
d(�ox"ox)

dt

=
1

(nY �m � nY �ox )

24�mhm(nY �m � hnYmim) + �oxhox(n
Y �
ox � hnYoxiox)

35 (B.3)

Assuming:

1. �ox"ox = g�ox
2. �m"m = g�m
3. nY �ox = n�ox

4. nY �m = n�m

5. hnYoxiox = nox

6. hnYmim = nm
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Thus, above system of ODEs can be further written as:

d(g�oxnox)
dt

� n�ox _m = �oxhox(n
�
ox � nox) (B.4)

d(g�mnm)
dt

+ n�m _m = �mhm(n
�
m � nm) (B.5)

_m =
d(g�ox)
dt

=
1

(n�m � n�ox)

24�mhm(n�m � nm) + �oxhox(n
�
ox � nox)

35 (B.6)

Further, the mass transfer coefficients are related to the solid and liquid volume
fractions by the following simple relations:

hk = hk0(f�k=�k)(1� (f�k=�k)); k = (ox;m) (B.7)

The hk0 are constants whose values are chosen to be 10�3 for k = m and 10�6

for k = ox.

To numerically solve the Eqs. (B.4 - B.5), following algorithm has been used:

Knowing the values of g�oxt, g�mt, ntox and ntm from previous time step (t):

Step 1: Calculate _m, g�oxt+1 and g�mt+1:

_m =
1

(n�m � n�ox)

24�mhtm(n�m � ntm) + �oxh
t
ox(n

�
ox � ntox)

35

g�oxt+1 �g�oxt
�t

=
1

(n�m � n�ox)

24�mhtm(n�m � ntm) + �oxh
t
ox(n

�
ox � ntox)

35

g�mt+1 = �m(1�g�oxt+1=�ox)
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Step 2: Calculate nt+1ox :

g�oxtnt+1ox � ntox
�t

= n�ox _m+ �oxh
t
ox(n

�
ox � ntox)

Step 3: Calculate nt+1m :

g�mtn
t+1
m � ntm
�t

= �n�m _m+ �oxh
t
m(n

�
m � ntm)

Step 4:

g�oxt = g�oxt+1
g�mt =g�mt+1

ntox = nt+1ox

ntm = nt+1m
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Appendix C

Method of Volume Averaging

System (ls)

Solid

Liquid

REV (λ) Solid

λ << ls

Liquid

xr

yl

Figure C.1: Position vectors associated with Representative Elementary Vol-
ume (REV)

C.1 Volume Averaging

In the method of volume averaging, an averaging volume V is associated with
every point in space, both in solid and liquid phase. This allows the association
of an average value to every point in space. Most commonly this is called
superficial average [124] and defined as:

h�li = 1

V

Z
Vl
�l dV (C.1)

where: Vl represents the volume of the liquid (l) phase contained within the
averaging volume V and �l is some field defined at every point in the liquid
domain.

Further, the average of the field �l, represented by h�li, is assumed to
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be associated to the centroid of the averaging volume (Fig. C.1). The centroid
is located by the position vector x, and points in the liquid (l) phase relative
to the centroid are located by yl. Thus, it can be written that:

h�lix = 1

V

Z
Vl(x)

�l(x + yl) dVy (C.2)

From above it is clear that h�li is associated with the centroid and that inte-
gration is carried out with respect to the components of the relative position
vector, yl. In general, it is common to use the simpler notation indicated by the
Eq. (C.1). In addition to the the superficial averaging indicated by Eq. (C.1),
another way of representation is the intrinsic average [124], which reads as:

h�lil = 1

Vl

Z
Vl
�l dV (C.3)

The superficial and intrinsic averages given by Eq. (C.1) and Eq. (C.3),
respectively, are related as:

h�li = "lh�lil (C.4)

In Eq. (C.4), quantity "l is the liquid (l) phase volume fraction or more gen-
erally, porosity.

C.2 Theorems

C.2.1 Spatial Averaging Theorem

This theorem gives the rule for interchanging the derivative with respect to
space. The derivation of the spatial averaging theorem can be referred from
[121]. The theorem reads as:

hr ·�li = r · h�li+ 1

V

Z
Als(t)

�l · �̂ls dA (C.5)

C.2.2 General Leibniz Rule

This theorem gives the rule for differentiation under the integral sign. In
volume averaging formulation, general Leibniz rule is used to interchange
time derivative from inside of the averaging integral to outside of the averaging
integral. The general form of the theorem reads as:

d

dt

Z
V (t)

� dV =
Z
V (t)

@�

@t
dV +

Z
Als(t)

� wls · �̂ls dA (C.6)
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In terms of volume averaging notation the theorem reads as:

d

dt
h�i = h@�

@t
i+ 1

V

Z
Als(t)

� wls · �̂ls dA (C.7)

where: wls is the velocity of the interface between solid and liquid phase.

The derivation of the general Leibniz rule can be referred from [111].
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Appendix D

Discrete Maximum Principle

In chapter 6, in section (6.2), it was explained that one of the features of the
numerical scheme used, is the use of time semi-discretization, which essen-
tially means that the density is shifted backward with respect to time. This
discretization will satisfy the discrete maximum principle. Here, it will be
proved that by applying the same discretization on a generic advection-diffusion
equation for a variable �, it will satisfy the discrete maximum principle. Be-
low is the generic advection-diffusion equation for a variable �. The equation
reads:

@

@t
(��) +r · (��v)��� = 0 (D.1)

where: � and v are related by mass balance equation:

@

@t
(�) +r · (�v) = 0 (D.2)

The solution of the aforementioned equation Eq. (D.1) will be sought on a
polygon domain (d = 2) of Rd, of boundary @
 = @
D [ @
N . Over @
D,
� is assumed to be fixed and the flow is assumed to enter the domain i.e.
v · �@
D � 0, where: �@
D is the outward normal vector to @
D. Further,
over @
N , � is assumed to satisfy the Neumann boundary condition, and flow
is assumed to leave the domain i.e. v · �@
N � 0. Using, relation (D.2), a
non-conservative form of Eq. (D.1) reads:

�

24 @
@t
(�) + v ·r�

35��� = 0 (D.3)

The aforementioned equation is known to satisfy the maximum principle. The
proof of the discrete analog of this principle relies on the following lemma:
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Lemma D.0.1 Let A be a matrix of Rnxn such that:

1. For 1 � i � n;Ai;i > 0, diagonal elements should be greater than 0.

2. For 1 � i; j � n; j 6= i; Ai;j � 0, off-diagonal elements should be less
than 0.

3. For 1 � i � n;
P

1�i�nAi;j > 0. Thus A is a diagonal dominant
matrix.

Then, matrix A will be invertible i.e. A�1 will exist.

Further, referring to the notation for the control volumes from Fig. D.1, let
(�K)K2M , (��K)K2M and (FK)K2M;�2(K) be the discrete quantities associated
with density (�) and the flux (F = �u), respectively. It is further supposed
that these quantities will satisfy the following conditions:

8K 2M; �K > 0; �� > 0;

8� = KjL; FK;� = �FL;�;
8K 2M; jKj (�K � �

�
K)

�t
+

X
�2"(K)

FK;� = 0

(D.4)

K

M

Dσ’

σ’=Κ Ι Μ

σ=K Ι L

LDσε=Dσ/Dσ’

Figure D.1: Control volumes representation

The third relation of (D.4) is a discrete version of the mass balance equation
given by Eq. (D.2). To solve the Eq. (D.1), implicit linear upwind scheme has
been demonstrated. According to which:

Assuming the time semi-discretization by backward Euler method and
an upwind discretization be used for the convection flux. Let (��

K)K2M be the
known discrete solution at the previous time step. The set of faces decomposes
in " = "int [ "D [ "N , where "D and "N stand for faces included in @
D and
@
N , respectively. "int are set of internal faces. Thus, time semi-discretized
form of Eq. (D.1) having unknowns ((�K)KinM , looks like:
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8K 2M; jKj (�K�K � ��K��
K)

�t
+

X
�2"(K)

FK;��� +
X

�=KjL

j�j (�K � �L)

d�
+

X
�2"(K)\"D

j�j (�K � ��)

d�
= 0

(D.5)

Further:

8� 2 "int; � = KjL;�� = �K ; if FK;� >= 0 and �� = �L else:

8� 2 "N ; � = Kjext;�� = �K ; For these faces flux FK;� < 0

8� 2 "D;�� = �D;�; which is given at the boundaries:

Now, it will be shown that the system of algebraic equations obtained from
time semi-discretization and given by Eq. (D.5) has one and only one solution
satisfying:

8K 2M : Minimum(�) <= �K <= Maximum(�)

This is Discrete Maximum Principle.

Proof:

Assuming any real number R and defining R+ = max(0; R) and
R� = min(0; R), such that R = R+ � R� . Thus, now advection fluxes
through internal face � = KjL can be written: FK;��� = F+

K;��K � F�
K;��L,

and advection flux through � = Kjext 2 "N takes the form: FK;��� = F+
K;��K .

The diagonal elements for the system of Eq. (D.5) thus becomes:

AK;K =
jKj �K
�t

+
X

�2K"(K)

F+
K;� +

X
�=KjL

j�j
d�

+
X

�2K"(K)\"D

j�j
d�

and off-diagonal entries will be:

AK;L = �F�
K;KjL �

��KjL��
dKjL

Thus, it can be seen that, AK;K > 0, all diagonal values are positive and non-
zero. Also, all off-diagonal values are negative or equal to zero, i.e. AK;L <= 0.
It is also easy to see that the sum of diagonal and off-diagonal entries is positive.
Hence, from Lemma D.0.1, the system of algebraic equations given by Eq. (D.5)
will have a unique solution. Also, for proving the boundedness of the solution,
on substituting (�K � Minimum(�)) instead of � in Eq. (D.5), will also
satisfy the Lemma D.0.1, and thus will yield a solution:

�K �Minimum(�) >= 0
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Hence, �K >=Minimum(�), always.

Similarly, on substituting (Maximum(�) � �K) instead of � in Eq.
(D.5), will also satisfy the Lemma D.0.1, and thus will yield a solution:

Maximum(�)� �K >= 0

Hence, �K <=Maximum(�), always.

Thus:

8K 2M : Minimum(�) <= �K <= Maximum(�)

Which essentially means, the solution will be bounded.
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Appendix E

Test Cases

E.1 Validation of Implemented Navier-Stokes
Equation for Partially Porous Domains in
case of Forced Convection

The numerical validation of implemented macroscopic Navier-Stokes equation
in CALIF 3S [20] for partially porous region in case of forced convection has
been done with the work of Vafai and Kim [114]. In this work, Vafai and Kim
[114] had worked out an exact solution for describing the fluid mechanics of
interface region between a porous medium and fluid layer. They had made the
analysis of the fluid mechanics of the interface region by taking into account
two parameters, which are:

1. A = ReH�H

2. B = 1
DaH

where: ReH is the Reynolds number based on the fluid layer of height H
shown in Fig. E.1, DaH and �H are the Darcy number and inertia parameter
respectively, with definitions:

DaH =
K

H2
(E.1)

�H =
F"Hp
K

(E.2)

where:

1. F is the function used in expressing terms, which depends on the
Reynolds number and the microstructure of the porous medium.

2. " is the porosity of the porous medium.

3. H is the height of the fluid layer shown in Fig. E.1.
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4. K is the permeability of the porous medium.

However, in the present comparative study the contribution from F parameter
will be neglected. Because of which the velocity profile are re-calculated from
the formula derived by Vafai and Kim [114] by setting F = 0. The comparative
study is done for a partially porous domain shown in Fig. E.1.

H

Uφ

Χ

Υ

Β

Figure E.1: Schematic of a partial porous cavity

Fig. E.1 shows the physical domain having a porous region and a fluid channel
of height H. A free stream velocity u� is imposed over the domain by imposing
a velocity inlet boundary condition. The study has been performed for two
values of Darcy number (DaH) at a fixed channel Reynolds number (ReH).
These values of DaH and ReH are:

1. DaH = 10�5 and ReH = 103.

2. DaH = 10�7 and ReH = 103.

where: ReH = �U�H

�
and DaH = K

l2
d

.

The dimensions taken for the partially porous schematic shown in Fig.
E.1 are:

1. H = 1 m.

2. B = 4 m.
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(a) Numerical results from CALIF 3S
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(b) Recalculated velocity profiles from the formula derived by
Vafai and Kim [114]

Figure E.2: Effects of the permeability variations on the velocity field
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Values of other physical parameters are:

1. � = 103 kgm�3.

2. � = 10�3 kgm�1sec�1.

3. " = 0:1

The closure model for permeability (K) is given by Konzey-Carman relation
[12].

K =
1

180

l2d"
3

(1� ") (E.3)

The value of l2d are taken to be 10 m2 and 0:1 m2 for DaH = 10�5 and
DaH = 10�7, respectively.

Further, the velocity and width has been made dimensionless by inlet
velocity (U�) and channel width (H).

The effect of the Darcy number can be seen in Fig. E.2. It can be
seen that an decrease in the Darcy number, results in less permeability in
the porous region. This decrease in permeability give rise to the lower mass
flow rate through the porous region, thus resulting an increase in the velocity
through the open region. From, Fig. E.2 it can also be seen that the numerical
results shown in Fig. E.2 (a) are in good agreement with the recalculated
velocity profiles from Kim and Vafai [114].
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E.2 Validation Against Solutal Natural Convec-
tion in a Uniform Porous Medium

The numerical implementation of coupling between Navier-Stokes equation
with the concentration equation by Boussinesq approximation [125] has been
validated against a semi-analytical solution proposed by Marwan et. al. [34]
for density driven flows in porous media. Fig. E.3 shows the square domain
used by [34] having the fixed concentrations on the lateral boundaries. The
gravity is downward pointed and porous media is water saturated.

Figure E.3: Domain for porous cavity [34]

The benchmark shown here is for the case with solutal Rayleigh number Ra =
380, where solutal Rayleigh number for porous cavity is computed by the data
given in the Table E.1, using the following expression:

RaS =
�0g�SHKe

�mDm
; Ke =

K

"
(E.4)

Square cavity dimension [34] H = 1 m
Porosity [34] " = 0:35

Permeability [34] K = 1:0204� 10�9 m2

Molecular diffusion [34] Dm = 18:86� 10�7 m2s�1

Density [34] �o = 1000 kg=m3

Solutal expansion coefficient �S = �2:5� 10�2 �
Gravity g = 9:81 m=s2

Viscosity [34] �m = 10�3 kgm�1s�1

Table E.1: Parameters for the porous cavity problem
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E.2.0.1 Ra = 380

This case in [34] corresponds to a small Rayleigh number with high diffusion
coeffecient. The value for this diffusion coefficient is given in Table E.1. Fig.
E.6, E.5 and Fig. E.4 show the comparison between the velocity and con-
tours generated by the semi-analytical solution of [34] and CALIF 3S. The
numerical results seems to have good agreement. The velocities has been made
dimensionless by the product of DmH".
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(a) Liquid concentration contours

(b) Liquid concentration contours [34]

Figure E.4: Liquid concentration contours for case: 1
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(a) Non-dimensional vertical (Y) velocity at mid-section Y =
0.5

(b) Non-dimensional vertical (Y) velocity at mid-section Y =
0.5 [34]

Figure E.5: Non-dimensional vertical velocities for case: 1
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Figure E.6: Non-dimensional horizontal velocities for case: 1
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Appendix F

Different B.C. for Oxygen Atoms

This appendix shows the results for the Fixed B.C. for O atoms on the Right
boundary of computational domain shown in Fig. 8.3. This Fixed B.C. corre-
sponds to the initial value of O atoms in oxide, i.e. nOox = 0:6. It is observed
in this case when compared with the original case discussed in chapter 8, in
section (8.6.1), that there is more dissolution. Fig. (F.1) (a)-(b) and Fig. (F.2)
(a)-(b), shows the results for the present case and its comparison with the case
shown in section (8.6.1).

Crust

Liquid Metal

X

Y

(a) Dissolution profiles at the mid-
section of the domain y = 3 cm for
NO MASS TRANSFER B.C.

X

Y

Liquid Metal

Crust

(b) Dissolution profiles at the mid-
section of the domain y = 3 cm for
FIXED B.C.

Figure F.1: Results for dissolution profiles with different B.Cs. for O atoms
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Crust

Liquid Metal

X

Y

(a) Mole fraction profiles of Fe in
metal and O in oxide at mid-section
of the domain y = 3 cm for NO
MASS TRANSFER B.C.

X

Y

Liquid Metal

Crust

(b) Mole fraction profiles of Fe in
metal and O in oxide at mid-section
of the domain y = 3 cm for FIXED
B.C.

Figure F.2: Results for mole fractions profile evolution in the domain with
different B.Cs. for O atoms
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