An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations - IRSN - Institut de radioprotection et de sûreté nucléaire Accéder directement au contenu
Article Dans Une Revue SMAI Journal of Computational Mathematics Année : 2016

An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations

Résumé

In this paper we present a pressure correction scheme for the compressible Navier-Stokes equations. The space discretization is staggered, using either the Marker-And Cell (MAC) scheme for structured grids, or a nonconforming low-order finite element approximation for general quandrangular, hexahedral or simplicial meshes. For the energy balance equation, the scheme uses a discrete form of the conservation of the internal energy, which ensures that this latter variable remains positive; this relation includes a numerical corrective term, to allow the scheme to compute correct shock solution in the Euler limit. The scheme is shown to have at least one solution, and to preserve the stability properties of the continuous problem, irrespectively of the space and time steps. In addition, it naturally boils down to a usual projection scheme in the limit of vanishing Mach numbers. Numerical tests confirm its potentialities, both in the viscous incompressible and Euler limits.
Fichier principal
Vignette du fichier
ns.pdf (9.92 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01115250 , version 1 (10-02-2015)

Identifiants

Citer

D Grapsas, Raphaele Herbin, W Kheriji, J.-C Latché. An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations. SMAI Journal of Computational Mathematics, 2016, 2, pp.51-97. ⟨10.5802/smai-jcm.9⟩. ⟨hal-01115250⟩
456 Consultations
620 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More