Interfacial heat transfer with non-condensable gas in ASTEC V2.2: Application to severe accidents study during PWR cold shutdown states - IRSN - Institut de radioprotection et de sûreté nucléaire Accéder directement au contenu
Article Dans Une Revue Nuclear Engineering and Design Année : 2023

Interfacial heat transfer with non-condensable gas in ASTEC V2.2: Application to severe accidents study during PWR cold shutdown states

Résumé

In a diphasic flow, the presence of non-condensable gas has an important impact on interfacial heat transfer, especially at low global pressure. In severe accidents studies, such flow can be commonly encountered. For example, in pressurised water reactors, high concentration of non-condensable gas can be found in the reactor coolant system in case of late core reflooding with a high oxidation rate (high hydrogen concentration) or in case of accidents happening during the cold shutdown of the reactor, when the reactor coolant system has been partly drained (high air concentration). Such flows with non-condensable gas are challenging to compute for severe accident system codes. A new model is implemented in ASTEC v2.2 to improve the interfacial heat transfer calculation in presence of non-condensable gas. The model gives a more accurate estimation of the heat transfer by assuming that it is mainly driven by vapour diffusion in the gas phase. The new model is applied to study cold shutdown states for 1300 MWe pressurized water reactors. A complete calculation of the cooling, depressurisation and draining of the reactor can be successfully performed. In order to show ASTEC new capabilities, a first accident scenario with loss of the residual heat removal system is also presented.
Fichier principal
Vignette du fichier
NED-D-22-00334_R1-preprint.pdf (1.34 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Licence : CC BY NC ND - Paternité - Pas d'utilisation commerciale - Pas de modification

Dates et versions

irsn-04130158 , version 1 (16-06-2023)

Licence

Paternité - Pas d'utilisation commerciale - Pas de modification

Identifiants

Citer

Julie-Anne Zambaux, Laurent Laborde. Interfacial heat transfer with non-condensable gas in ASTEC V2.2: Application to severe accidents study during PWR cold shutdown states. Nuclear Engineering and Design, 2023, 411, pp.112434. ⟨10.1016/j.nucengdes.2023.112434⟩. ⟨irsn-04130158⟩
45 Consultations
23 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More