Bayesian identification and estimation of radon-related increased hazard rates of cancer death in the updated French cohort of uranium miners (1946–2014)
Résumé
Objective : A recent update of the French cohort of uranium miners added seven years of follow-up data. We use these new data to look for new possible radon-related increased risks and refine the estimation of the potential association between cumulative radon exposure and four cancer sites: lung cancer, kidney cancer, brain and central nervous system (CNS) cancer and leukemia (excluding chronic lymphocytic leukemia, which is not radiation-induced).
Methods : Several parametric survival models are proposed, fitted and compared under the Bayesian paradigm, to perform new and original exposure-risk analyses. In line with recent UNSCEAR recommendations, we consider time-related effect modifiers and exposure rate as potential effect modifying factors. We use Bayesian model selection criteria to identify radonrelated increased hazard rates.
Results : Under the assumption of a linear exposure-risk relationship, we found a substantial evidence for a strictly positive effect of cumulative radon exposure on the hazard rate of death by lung cancer among French uranium miners. Given the current available data under the assumptions of a linear or log-linear exposure-risk relationship, it is not possible to conclude in favour of the absence or the existence of a strictly positive effect of chronic exposure to radon on the hazard rate of death by kidney cancer. Regarding death by brain and CNS cancer, there is a substantial evidence for the absence of radon-related effect. Finally, under the assumption of a log-linear exposure-risk relationship, a small positive radon-related effect appears when looking at the risk of death by leukemia (excluding CLL).
Conclusion : This study investigates the existence of radon-related increased risk of death by lung cancer, kidney cancer, brain and CNS cancer and leukemia under a Bayesian framework and assumptions of linear and log-linear exposure-risk relationships. If there is no doubt in the interpretation of the results for lung cancer and brain and CNS cancer, the conclusion is less clear-cut in the case of kidney cancer and leukemia (excluding CLL). A future update of the French cohort, increasing the follow-up time for miners, may help to reach a clearer conclusion for these two cancer sites.