Improving cable tray fire modelling with AI techniques - IRSN - Institut de radioprotection et de sûreté nucléaire
Communication Dans Un Congrès Année : 2024

Improving cable tray fire modelling with AI techniques

Résumé

Modelling cable tray fires remains a complex issue, and existing models such as the FLASH-CAT model still have limitations due to the lack of information on certain input data. This paper discusses improvements in cable tray fire modelling by finding appropriate input data using an artificial intelligence (AI) technique. An AI-driven expert system was developed to assess missing data from a fire test database of 29 large scale cable tray fire experiments in open atmosphere. The expert system quantifies the dependencies between input and output data, helps identify influential parameters and refine model inputs. It also guides modelling efforts by identifying areas for model improvement. In this way, the applicability of an expert system in obtaining reliable input data for simulation tools to simulate a real fire scenario that has already been tested is demonstrated. Cable tray fire simulation results show improved accuracy compared with the use of default values for uncertain parameters.
Fichier principal
Vignette du fichier
Plumecocq_2024_J._Phys.__Conf._Ser._2885_012019.pdf (1.22 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

irsn-04651880 , version 1 (17-07-2024)
irsn-04651880 , version 2 (12-12-2024)

Licence

Identifiants

Citer

William Plumecocq, Hugues Pretrel, Jean Paul Joret, Eric Chojnacki. Improving cable tray fire modelling with AI techniques. 4th European Symposium on Fire Safety Science, Oct 2024, Barcelona, Spain. pp.012019, ⟨10.1088/1742-6596/2885/1/012019⟩. ⟨irsn-04651880v2⟩
61 Consultations
6 Téléchargements

Altmetric

Partager

More